API src

Found 403 results.

Related terms

Strom aus Wasserkraft - Installierte Leistung (Plan.-Reg.)

Die Karte zeigt die Summe der installierten Leistungen der Wasserkraftanlagen für die Planungsregionen (Plan.-Reg.) in Bayern.

AGEE-Stat aktuell - Nr.: 5/2024

Liebe Leser*innen, vor Kurzem wurde der Monatsbericht Plus zur Entwicklung der erneuerbaren Energien in Deutschland im Gesamtjahr 2024 veröffentlicht. Damit präsentiert die Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) erste Schätzungen zur Entwicklung der erneuerbaren Energien in den Bereichen Strom, Wärme und Verkehr für das Gesamtjahr 2024. Dieser Newsletter gibt Ihnen eine Kurzzusammenfassung der Ergebnisse und alle wichtigen Links zu den neuen Daten. Außerdem möchten wir Sie mit diesem Newsletter über weitere Aktivitäten mit Bezug zur Erneuerbare-Energien-Statistik informieren, insbesondere die Veröffentlichung der Publikation „ Erneuerbare Energien in Zahlen“ des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK). Eine interessante Lektüre und eine besinnliche Weihnachtszeit wünscht das Team der Geschäftsstelle der AGEE-Stat am Umweltbundesamt Monatsbericht Plus: Gesamtjahresschätzung zur Entwicklung der Erneuerbaren Energien in Deutschland im Jahre 2024 veröffentlicht Entwicklung der erneuerbaren Energien im Gesamtjahr 2024 Quelle: AGEE-Stat / Umweltbundesamt Nach vorläufigen Daten und unter Berücksichtigung einer Schätzung für den Dezember steigt die erneuerbare Stromerzeugung im Jahr 2024 um etwa 4 Prozent auf 285 Terawattstunden (TWh). Dies sind etwa 12 TWh mehr als im Jahr 2023. Wichtigster Grund war die deutliche Steigerung der Stromerzeugung aus Photovoltaikanlagen, die gegenüber dem Vorjahr um 16 Prozent zunahm. Die Stromerzeugung aus Windenergielangen blieb in etwa auf dem Niveau des Vorjahres, dabei nahm die Stromproduktion aus Windenergieanlagen an Land leicht ab, die Erzeugung auf See dagegen zu. Die Stromerzeugung aus Biomasse lag auf dem Niveau des Vorjahres. Auch die Wasserkraft konnte gegenüber dem trockeneren Vorjahr zulegen. Erneuerbare Wärmeerzeugung bleibt auf Vorjahresniveau Im Gesamtjahr 2024 blieb die Wärmebereitstellung aus erneuerbaren Energien in etwa auf dem Niveau des Vorjahres. Insgesamt wurden etwa 193 Terawattstunden (TWh) Wärme und Kälte aus erneuerbaren Energien bereitgestellt. Gekennzeichnet war das Jahr durch eine ähnlich warme Witterung wie im Vorjahr sowie leicht gesunkene Preise für fossile Energieträger. Während der Einsatz von Biomasse zu Heizzwecken voraussichtlich leicht rückläufig war, erreichte die mittels Wärmepumpen nutzbar gemachte oberflächennahe Geothermie und Umweltwärme im Jahr 2024 über 29 TWh – ein Anstieg von 14 Prozent gegenüber dem Vorjahr. Damit tragen Wärmepumpen bereits mehr zur erneuerbaren Wärme bei als flüssige und gasförmige Biobrennstoffe zusammen. Die Wärmeerzeugung in Solarthermieanlagen lag aufgrund geringerer Sonneneinstrahlung um 2 Prozent unter dem Wert des Vorjahres. Weniger Biokraftstoffe, aber mehr erneuerbarer Strom im Verkehr genutzt Im Verkehr wurden auch infolge der Änderung der 38. Bundesimmissionsschutzverordnung (BImSchV) deutlich weniger Biokraftstoffe eingesetzt als im Vorjahr. Zwar scheint nach derzeitigem Datenstand der Bioethanolverbrauch knapp vier Prozent höher als im Vorjahr zu liegen, der Verbrauch an Biodiesel könnte jedoch mit einem Minus von 24 Prozent sehr stark zurückgegangen sein. Ein wesentlicher Grund ist, dass Mineralölunternehmen ihre im Zuge einer Übererfüllung der Treibhausgasminderungsquote in den Vorjahren eingesparten Emissionen nur noch im Jahr 2024 oder erst wieder ab 2027 anrechnen lassen können. Zugleich lässt die Rechtsänderung für die Jahre 2025 und 2026 einen deutlichen Anstieg beim Verbrauch an Biokraftstoffen erwarten. Den Rückgang bei den Biokraftstoffen konnte auch ein starkes Wachstum von fast 14 Prozent bei der Nutzung von erneuerbarem Strom im Schienen- und Straßenverkehr nicht ganz ausgleichen. Es wurden rechnerisch etwa neun TWh grüner Strom im Verkehr eingesetzt – dies entspricht etwa drei Prozent der erneuerbaren Stromerzeugung. Ausführliche Informationen, Grafiken und Tabellen zur Entwicklung der erneuerbaren Energien in Deutschland für das Gesamtjahr 2024 sowie monatsweise Daten für die Monate Januar bis Dezember finden Sie in unserem kürzlich veröffentlichten „Monatsbericht-PLUS“ sowie mit einigen weiteren Hintergrundinformationen in der kürzlich erschienenen Pressemitteilung. Erneuerbare Energien in Zahlen – Nationale und internationale Entwicklung im Jahr 2023 Die neue Publikation „ Erneuerbare Energien in Zahlen – Nationale und internationale Entwicklung im Jahr 2023 “ wurde auf den Internetseiten des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) veröffentlicht. Sie veranschaulicht mit einer Vielzahl interessanter Grafiken und Tabellen die Entwicklung der erneuerbaren Energien im Strom-, Wärme- und Verkehrssektor im Jahr 2023 und gibt Einblicke in die Auswirkungen auf Wirtschaft und Klima. Neben Daten zur Entwicklung in Deutschland hält die Publikation auch informative Fakten zum Status Quo der erneuerbaren Energien in Europa und der Welt bereit. Grundlage der Publikation sind die Daten und Ergebnisse der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat), die im Auftrag des BMWK die Bilanz der erneuerbaren Energien für Deutschland erarbeitet. Die Zeitreihen zur Entwicklung der erneuerbaren Energien ab dem Jahr 1990 sind sowohl im EXCEL- als auch im PDF-Format auf dem Informationsportal „Erneuerbare Energien“ des BMWK verfügbar. Des Weiteren finden Sie auf diesen Internetseiten eine Vielzahl von Schaubildern zur Entwicklung der erneuerbaren Energien. EU- Berichterstattung nach RED: Übermittlung des SHARES-Tools Anteil erneuerbarer Energien am Bruttoendenergieverbrauch Quelle: AGEE-Stat / Umweltbundesamt Am 19.11.2024 hat Deutschland das SHARES-Tool (Short Assessment of Renewable Energy Sources) an Eurostat übermittelt. Die Berechnungsvorschriften basieren auf den Regeln der jeweils gültigen „Renewable Energies Directive“ (RED) und unterliegen damit über die Jahre methodischen Änderungen. Seit 2021 gilt die RED II, wobei im Oktober 2023 die RED III verabschiedet wurde, die ab 2025 in die Berichtspflichten einfließen wird. Die SHARES-Daten sind auch Grundlage für die Zustandsbeschreibung relevanter Indikatoren im Bereich der erneuerbaren Energien entsprechend der Governance-Verordnung. So fließen die Daten unter anderem in die zweijährig zu erstellenden Fortschrittsberichte zu den Nationalen Energie- und Klimaschutzplänen (NECP-R) ein, die zum Monitoring der Zielerreichung der europäischen Energie- und Klimaschutzpolitik eingesetzt werden. Diese sind auch die Basis für die „State of the Energy Union“-Reports . Der Anteil erneuerbarer Energien am Bruttoendenergieverbrauch steigt von 20,9 % im Jahr 2022 auf 21,5 % im Jahr 2023 an. Die sektoralen Anteile stiegen ebenfalls: Im Stromsektor stieg der Anteil erneuerbarer Energien von 47,9 % (2022) auf 52,2 % (2023), im Sektor Wärme und Kälte von 17,6 % (2022) auf 17,1 % (2023) und im Verkehrssektor von 10,1 % (2022) auf 11,9 % (2023). Anfang Dezember wurden die entsprechenden Tabellen aller Mitgliedsländer durch Eurostat veröffentlicht . Terminankündigung: AGEE-Stat Fachgespräch „Steckersolargeräte in Deutschland: Marktvolumen, Stromerzeugung und Selbstverbrauch“ Steckersolargeräte, umgangssprachlich auch „Balkonkraftwerke“ genannt, bieten eine relativ kostengünstige und einfach umzusetzende Möglichkeit zur Solarstromerzeugung und -nutzung für breite Teile der Bevölkerung. Seit 2023 ist der Markt dieser Anlagen erheblich gewachsen. Zum Ende des ersten Halbjahres 2024 waren rund 586.000 Steckersolargeräte mit einer kumulierten Leistung von knapp 500 Megawatt im Marktstammdatenregister (MaStR) gemeldet. Da jedoch viele Anlagen nicht gemeldet wurden und werden, dürfte die tatsächliche Anlagenzahl deutlich größer sein. Da die Anlagen vorwiegend zur Eigennutzung des Photovoltaik-Stroms genutzt werden, stellt sich die Frage, in welchem Umfang der mit Steckersolargeräten erzeugte Photovoltaik-Strom selbst verbraucht bzw. eingespeist wird. Die AGEE-Stat hat das Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) mit einem Kurzgutachten zum Thema „Steckersolargeräte: Statistische Untersuchung zu Anzahl, installierter Leistung und Selbstverbrauch“ beauftragt, um diesen Fragen nachzugehen. Hierzu wird am 22. Januar 2025 ein Fachgespräch stattfinden, in dessen Rahmen das ZSW erste Ergebnisse ihres Kurzgutachtens vorstellt. Der Termin richtet sich an geladene Fachexpert*innen und wird als Webkonferenz stattfinden.

Naturschutzaspekte beim Repowering von Windenergieanlagen − Analyse rechtlicher Fragen und eine Entscheidungshilfe

Die Erneuerung von Windenergieanlagen (WEA), das sog. Repowering, kann in naher Zukunft wesentlich zur Erhöhung der in Deutschland installierten Leistung beitragen. Es bietet sich die Chance, aus Naturschutzsicht den Genehmigungsprozess von WEA so zu steuern, dass bestehende Konflikte gemindert werden und wegfallende Kapazitäten möglichst naturverträglich ersetzt bzw. neu gebaut werden. Im vorliegenden Beitrag werden hierfür insbesondere die rechtlichen Grundlagen des Bundesnaturschutzgesetzes (BNatSchG), die auch Regelungen zur artenschutzrechtlichen Prüfung enthalten, erläutert. Auf Grundlage von Ergebnissen eines Raumbewertungsmodells zur Einschätzung des Konfliktrisikos von Potenzialflächen für die Errichtung von WEA wird dargelegt, dass sich für insgesamt 72 % aller bestehenden WEA (20.181 von 27.959 WEA) ein geringes Potenzial für ein standorterhaltendes Repowering ergibt, da diese WEA innerhalb von Ausschluss flächen oder Flächenkategorien mit hohen Konfliktrisikowerten stehen. Ein standortverlagerndes Repowering in Bereichen mit einem geringeren Konfliktrisikopotenzial kann hingegen naturschutzfachliche Konflikte mindern. Um mögliche Vereinfachungen in den Genehmigungsverfahren zu identifizieren, wird die Konfliktintensität der Bestandssituation im Vergleich zur Konfliktintensität der Repowering-Situation bewertet. Mittels einer Entscheidungshilfe werden unter Berücksichtigung der aktuellen gesetzlichen Rahmenbedingungen für unterschiedliche Fallbeispiele mögliche Erleichterungen, insbesondere für das artenschutzrechtliche Verfahren, ermittelt und bewertet. Solche Erleichterungen betreffen v. a. ein standorterhaltendes Repowering außerhalb von Windenergiegebieten, wenn dort keine Natura-2000-Gebiete mit kollisionsgefährdeten Vogel- oder Fledermausarten betroffen sind.

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p>&nbsp;</p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

Strom aus Photovoltaik - Installierte Leistung (Plan.-Reg.)

Die Karte zeigt die Summe der installierten elektrischen Leistung der Photovoltaikanlagen für die Planungsregionen (Plan.-Reg.) in Bayern - unterteilt nach Gebäude- und Freiflächenanlagen.

ELCALC - Tabellenkalkulation für nachhaltige Stromversorgung

Das Modellinstrument ELCALC erlaubt die Definition, Quantifizierung und Nachverfolgung verschiedener Indikatoren, mit denen der Versuch unternommen werden kann, das Modell einer nationalen bzw. regionalen Stromversorgung in Richtung Nachhaltigkeit zu verändern. Auf diese Weise ist es möglich, durch Modellexperimente zu lernen, wie nicht-nachhaltige Elemente der Stromversorgung sukzessiv abgebaut und nachhaltigkeitsfördernde Elemente aufgebaut werden können. ELCALC kann zur Erstellung und Plausibilitätsprüfung von Szenarien für die Stromversorgung eines Landes oder einer Region eingesetzt werden. Das Modell erlaubt die Veränderung der installierten Leistung verschiedener Technologieoptionen und liefert dem Nutzer eine direkte Rückmeldung über die Auswirkung jeder Veränderung hinsichtlich Kosten, Umweltwirkungen und Energieerträgen des eingestellten Strom-Mix. Auf diese Weise ist es möglich, iterativ verschiedene Szenarien im Hinblick auf bestimmte Zielfunktionen, z.B. möglichst geringe Gesamtkosten, Flächenverbrauch, Treibhausgasemissionen, Importabhängigkeit oder Kombinationen mehrerer Kriterien zu erstellen. Die eingegebenen Parameter werden für eine stündliche Zeitschrittsimulation des gesamten Strom Mix zur Erfüllung einer durch eine jährliche Lastkurve vorgegebenen Versorgungsaufgabe verwendet. Das Modell ELCALC arbeitet mit festen Modelljahren, z.B. 2015, 2020, 2030, 2040, usw., Zwischenschritte können nicht berechnet werden. Das Modell verwendet einen vereinfachten 'Grüne Wiese' Ansatz, d.h. der gesamte vorgegebene Kraftwerkspark wird unter der Annahme berechnet, dass sämtliche Infrastrukturen in dem jeweiligen Modelljahr gebaut und betrieben werden.

Der meteorologische Winter 2024/2025 aus klimatischer Sicht und die Bedeutung für die erneuerbaren Energien (EE) Einordnung von Temperatur, Niederschlag und Sonnenscheindauer sowie ein Überblick zur Auslastung von EE-Anlagen Winter 2024/25 Der Winter 2024/2025 aus Sicht der erneuerbaren Energien

Der Winter 2024/2025 war in Sachsen-Anhalt erneut zu warm, brachte aber zwei kurze winterliche Phasen. Er war sonnenscheinreicher und trockener als im Durchschnitt. Die dominierenden Hochdruckgebiete sorgten im vergangenen Winter für einen ausreichenden Ertrag bei den Photovoltaikanlagen, insbesondere der Februar zeichnete sich durch überdurchschnittliche Erträge aus. Im Gegensatz dazu gab es weniger Wind und entsprechend unterdurchschnittliche Erträge aus der Windenergie. Häufige Hochdruckgebiete gestalteten den Dezember relativ ruhig. Tiefdruckphasen mit sehr milder Luft beschränkten sich auf die erste Dezemberwoche und die Tage vom 15.12. bis 22.12. Sonst blieb es unter Hochdruckeinfluss auch häufig trocken mit Nebel oder Sonne, dabei war es durchweg mild. In der Folge betrug die Monatsmitteltemperatur in Sachsen-Anhalt 3,7 °C und lag damit um 2,6 K über dem Mittel der Referenzperiode von 1961 bis 1990. Auch im Vergleich zum 30-jährigen Mittel von 1991 bis 2020 war der Monat 1,6 K zu warm. Besonders mild war es dabei am 18.12. in Wernigerode mit 14,5 °C und am 19.12. in Magdeburg mit 14,4 °C. Durch den wiederholten Hochdruckeinfluss blieb der Niederschlag im Dezember in Sachsen-Anhalt mit 37,0 mm hinter den langjährigen Mittelwerten zurück. Im Vergleich zur Referenzperiode 1961-1990 wurden damit 79,3 % erreicht, im Vergleich zur Periode 1991-2020 wurden 80,3 %. Dabei war es gerade in der Südhälfte des Landes besonders trocken. So gab es beispielsweise in Wettin-Löbejün-Neutz gerade einmal 20,2 mm Niederschlag und in Bad Lauchstädt 21,4 mm. Dagegen haben in der Börde und in der Altmark einige Stationen sogar mehr Niederschlag als im langjährigen Mittel registriert. Mit 37,9 Sonnenstunden erreichte der Dezember 2024 in Sachsen-Anhalt 106,5 % der Klimareferenzperiode 1961-1990 und 87,3 % im Vergleich zu 1991-2020. Der Januar 2025 zeigte sich sehr wechselhaft und mild im ersten und letzten Monatsdrittel, während er sich um die Monatsmitte dank eines Hochdruckgebietes und einer dünnen Schneedecke von seiner winterlichen Seite zeigte. Insgesamt erreichte der Monat in Sachsen-Anhalts eine Mitteltemperatur von 2,5 °C. Damit war der Januar um 2,7 K wärmer als nach der Referenzperiode 1961-1990 üblich. Im Vergleich zum 30-Jahreszeitraum 1991-2020 betrug die Abweichung 1,4 K. Der Wintereinbruch zur Monatsmitte brachte in weiten Teilen des Landes eine dünne Schneedecke, die auch über einige Tage erhalten blieb. So lagen beispielsweise im Harz und Harzvorland häufig 10 bis 20 cm Schnee, während ganz im Süden und ganz im Norden nur 1 bis 3 cm zusammenkamen. Klarte der Himmel dann nachts über den Schneeflächen länger auf, kühlte es deutlich ab, wie beispielsweise in Wernigerode-Schierke mit -13,7 °C am 13. Januar. Einen besonders milden Tag hingegen gab es am 25.01. in weiten Teilen Sachsen-Anhalts: Bad Lauchstädt erreichte an jenem Tag 16,5 °C. Während der tiefdruckgeprägten Phasen dominierten überwiegend feuchte und milde Luftmassen das Geschehen. In der Folge kam es zu reichlichen Niederschlägen. In der Konsequenz brachte der Monat mit 55,7 mm Niederschlag mit 144,0 % deutlich mehr als das Soll des Referenz-Mittelwertes 1961-1990 erwarten lässt und mit 123,6 % auch mehr als das 30-Jahres-Mittel 1991-2020. Darüber hinaus war der Niederschlag sehr ungleichmäßig verteilt. In einem Streifen vom Harz über die Börde bis in die Altmark war es besonders feucht mit teilweise mehr als dem Doppelten der üblichen Niederschlagsmenge, während im Süden und Osten nur wenig mehr als die übliche Niederschlagmenge registriert wurde. Die rege Tiefdrucktätigkeit im Januar sorgte für viel Bewölkung und nur verhaltene Sonnenscheinanteile. In der Folge erreichte der Monat insgesamt 43,9 Sonnenstunden. Dies entspricht 103,4 % im Vergleich zur Referenzperiode 1961-1990 oder 82,3 % in Bezug auf die Klimaperiode 1991-2020. Die Sonnenscheinanteile waren dabei im Süden und Osten Sachsen-Anhalts größer als im Westen und Norden des Landes. Auch der Februar 2025 präsentierte sich bzgl. des Wetters vielfältig, wenn auch überwiegend von Hochdruck dominiert. Nach einem milden und hochdruckgeprägten ersten Monatsdrittel sorgte im Anschluss ein kurzer Kaltlufteinbruch für eine winterliche Woche um die Monatsmitte herum. Zum Ende des Monats hielt dann bereits der Frühling Einzug. Der Kaltlufteinbruch ging mit einigen Schneefällen einher, sodass sich gerade in der nördlichen Hälfte des Landes bei 5 bis 10 cm eine sehr winterliche Woche einstellte, während in der Südhälfte wenige Zentimeter Schnee bereits nach wenigen Tagen abgetaut waren. Gerade in klaren Nächten über Schnee wurde es empfindlich kalt mit deutlich unter -10 °C. Besonders kalt war es dabei in Oberharz am Brocken/OT Stiege mit -19,0 °C, aber beispielsweise auch in Genthin mit -13,8 °C . Im Kontrast dazu reichte es an mehreren Tagen ab dem 21. Februar für milde 15 °C, wie zum Beispiel in Wernigerode mit 16,8 °C oder in Quedlinburg mit 16,1 °C. Das Monatsmittel des Februars für Sachsen-Anhalt erreichte 1,1 °C und lag damit um 0,7 K über der Referenzperiode 1961-1990, war aber im Vergleich zur Klimaperiode 1991-2020 0,6 K kühler. Die Niederschlagsmenge im Flächenmittel Sachsen-Anhalts blieb im Februar mit 15,3 mm deutlich hinter den langjährigen Mittelwerten zurück. So wurden nur 46,0 % des üblichen Niederschlags des Referenzzeitraums 1961-1990 registriert, im Vergleich zum Zeitraum 1991-2020 nur 44,8 %. Besonders trocken war es dabei in Altmark und r Börde. So wurden in Zielitz nur 6,1 mm und in Gardelegen-Lindstedterhorst 6,7 mm gemessen. Etwas mehr Niederschlag gab es in einem Streifen vom Harz bis in den Burgenlandkreis, dennoch wurde auch hier das langjährige Mittel nicht erreicht. Der Februar war mit 97,7 Sonnenstunden ein sehr sonniger Monat und erreichte im Vergleich zur Referenzperiode 1961-1990 144,4 % der üblichen Sonnenscheindauer und auch gegenüber dem Mittel von 1991-2020 waren es noch 128,0 %. Besonders sonnenscheinreich war dabei die zweite Monatshälfte. Im Rückblick auf den gesamten Winter vom 1. Dezember 2024 bis 28. Februar 2025 zeigte sich ein mit 2,4 °C um 2,0 K zu warmer Zeitraum im Vergleich zur Referenzperiode 1961-1990. Auch im Vergleich zum neueren 30-Jahres-Zeitraum 1991-2020 war es noch um 0,8 K wärmer als üblich. Eine jeweils sehr winterliche Woche im Januar und Februar konnten die überwiegend milden übrigen Winterwochen nicht ansatzweise ausgleichen. Damit war der Winter der zwölfte zu warme in Folge im Vergleich zur Referenzperiode 1961-1990. In den letzten drei Monaten fielen insgesamt 108,0 mm Niederschlag im Flächenmittel über Sachsen-Anhalt. Als Folge des wiederholten Hochdruckeinflusses blieb es – mit 90,6 % Niederschlag –trockener als in der Referenzperiode 1961-1990. Im Vergleich zum Mittel 1991-2020 wurden lediglich 85,6 % der normalen Niederschlagsmenge erreicht. Besonders trocken war es dabei im südlichen Sachsen-Anhalt. So fiel in Bad Lauchstädt mit 63,2 mm der wenigste Niederschlag, nicht nur in Sachsen-Anhalt, sondern in ganz Deutschland. Nur im Harz und seinem direkten Umfeld wurde das Niederschlagssoll des Winters erreicht. Während des Winters schien die Sonne in Sachsen-Anhalt 179,4 Stunden. Damit war der Winter mit 123,4 % im Vergleich zur Referenzperiode 1961-1990 der sonnigste Winter seit sechs Jahren. Auch im Vergleich zum Klimazeitraum 1991-2020 wurden noch 103,8 % erreicht. Maßgeblich dazu beigetragen hat der sehr sonnige Februar, der die beiden anderen, nicht so sonnigen Wintermonate mehr als ausgleichen konnte. Diese Analyse betrachtet ausschließlich volatile erneuerbare Energiequellen zur Stromerzeugung, also diejenigen, die durch meteorologische Bedingungen beeinflusst werden: Windenergie und Photovoltaik. Als Berechnungsgrundlage der folgenden Auswertung dient die produzierte elektrische Arbeit im Tagesmittel im Gebiet Ostdeutschlands und Hamburgs (Gebiet des Übertragungsnetzbetreibers 50Hertz). Die produzierte Arbeit wurde ins Verhältnis zur installierten Leistung gesetzt und so die Auslastung berechnet. Diese Auslastung wurde für die Jahreszeit gemittelt. Darüber hinaus wurde ein 10-jähriges Mittel über den Zeitraum 2010-2019 gebildet. Die Auslastung der betrachteten Jahreszeit des aktuellen Jahres wird ins Verhältnis zur Auslastung im 10-jährigen Mittel für diese Jahreszeit gesetzt. Dies Verhältnis wird im Folgenden als Ertrag bezeichnet. Im Sommer haben Solarenergieanlagen aufgrund des Sonnenstandes und der Tageslänge in der Regel eine größere Auslastung als Windenergieanlagen. Im Winter tritt der gegenteilige Effekt auf, sodass Windenergieanlagen eine größere Auslastung haben. Somit ergänzen sich Windenergie und Photovoltaik im Jahresgang. Der Herbst markiert dabei den Übergang zwischen den vorherrschenden Erzeugungsarten. Gerade in den Herbst- und Wintermonaten gibt es aber manchmal Phasen mit wenig Wind und wenig Sonnenschein. Der diesjährige Dezember war ein wolkenreicher Monat, so dass nur an einzelnen Tagen der Ertrag deutlich über 100 % stieg. Dies war lediglich am 01., 24. und 25. Dezember 2024 der Fall. Sonst überlagerten sich wenig Sonnenschein und wenig Wind besonders am 11. und 12. Dezember. Dagegen sorgte kräftiger Tiefdruckeinfluss im zweiten Monatsdrittel für reichlich Wind, sodass der Ertrag mehrere Tage am Stück 200 % im Vergleich zum Mittel 2010-2019 betrug. Somit ergänzten sich die volatilen Energieträger nur teilweise im Dezember. Der Januar war aus Sicht des Sonnenscheins ein durchschnittlicher Monat, es gab nur einzelne sonnenreiche Tage, wie beispielsweise vom 19. bis 22. Januar mit einem Ertrag der Photovoltaikanlagen von über 200 % im Vergleich zum Mittel 2010-2019. In diesen Tagen war der Ertrag aus der Windenergie sehr gering, so dass es in diesem Zeitraum zumindest tagsüber eine gute Ergänzung gab, während nachts der Ertrag aus erneuerbaren Quellen nur gering war. Insbesondere im ersten Monatsdrittel und im letzten Monatsdrittel zeigte sich ein Ertrag, der häufig zwischen 150 und 200 %, vom 24. bis 27. Januar sogar über 250 % lag. Ein sehr sonnenscheinreicher Monat war der Februar, insbesondere in den ersten Tagen des Monats und der zweiten Monatshälfte. Der Ertrag lag nur an einzelnen Tagen unter dem langjährigen Mittelwert von 2010-2019. Umgekehrt stellt sich die Situation bzgl. der windgetriebenen erneuerbaren Energien dar. Durch den dominierenden Hochdruckeinfluss wehte der Wind häufig nur schwach, sodass nur wenige Tage im Februar mehr als 100 % Ertrag lieferten. Hier ergänzten sich aber die beiden erneuerbaren Energieformen gut. Lediglich vom 14. bis 17. Februar war der Ertrag aus beiden Quellen gering. Über den gesamten Winter gesehen lag der Ertrag bei der Windkraft mit 87,2 % unter dem Mittel der Jahre 2010-2019. Dies war das Ergebnis des dominierenden Hochdruckeinflusses mit wenig Wind. Der Ertrag aus der Photovoltaik blieb mit 90,9 % nur wenig unterhalb des Mittels der Jahre 2010-2019.

Solarpotenzialflächen Hamburg

Dieser Datensatz bildet die ausgewerteten Solarpotenzialflächen ab. Diese Daten sind hinsichtlich ihrer Eignung für Photovoltaikanlagen klassifiziert und werden gemäß der Eignungsklasse farbig differenziert dargestellt. Die Klassifizierung wird in der Legende erläutert. Datengrundlage: Frühjahrsbefliegung 2022 Beschreibung der Attributtabelle: Layer "Gebäude" - Gebäude_ID: Eindeutige ID je Gebäude - Eignung_PV: Gesamteignungskategorie Photovoltaik der bestgeeigneten Dachseiten des Gebäudes - Eignung_ST: Durchschnittliche Gesamteignungskategorie Solarthermie der geeigneten Dachseiten des Gebäudes - Leistung: Insgesamt auf allen geeigneten Dachseiten des Gebäudes installierbare Leistung in kWp - Fläche_PV: Dachfläche in Quadratmetern, die sich für die Installation einer Photovoltaikanlage eignet (m²) - Anzahl_Module - Kalkulation_PV: Verlinkung zum Wirtschaftlichkeitsrechner (Photovoltaik) - Kalkulation_ST: Verlinkung zum Wirtschaftlichkeitsrechner (Solarthermie) - Adresse: Adresse bestehend aus Straße, Hausnummer und Ort Layer "Dachseiten" - Fläche_Dachseite: Fläche in Quadratmeter [m²] - Ausrichtung: Ausrichtung der Dachseite in Grad [°] - Aufständerung: Gibt an, ob eine Aufständerung empfohlen wird (0 = nein / 1 = ja) - Gebäude_ID: Eindeutige ID je Gebäude - Eignung_PV: Gesamteignungskategorie Photovoltaik - Eignung_ST: Gesamteignungskategorie Solarthermie - Ertrag_kWp_ohneAufstd: Ertrag der Anlage in Kilowattstunden pro Jahr pro installiertem Kilowatt peak Leistung (kWh/kWp/a) (diesen Wert verwenden, wenn Aufständerung = 0) - Ertrag_kWp_mitAufstd: Ertrag der Anlage in Kilowattstunden pro Jahr pro installiertem Kilowatt peak Leistung (kWh/kWp/a) (diesen Wert verwenden, wenn Aufständerung = 1) - Ertrag_kWh_ohneAufstd: Gesamtertrag der Anlage in Kilowattstunden pro Jahr ohne Nutzung einer Aufständerung (diesen Wert verwenden, wenn Aufständerung = 0) - Ertrag_kWh_mitAufstd: Gesamtertrag der Anlage in Kilowattstunden pro Jahr ohne Nutzung einer Aufständerung (diesen Wert verwenden, wenn Aufständerung = 1) - Anzahl_Module - Einstrahlung_ohneAufstd: Auf diese Dachseite durchschnittlich eintreffende Einstrahlung in Prozent vom lokal maximal möglichen Wert (diesen Wert verwenden, wenn Aufständerung = 0) - Einstrahlung_mitAufstd: Auf diese Dachseite durchschnittlich eintreffende Einstrahlung in Prozent vom lokal maximal möglichen Wert (diesen Wert verwenden, wenn Aufständerung = 1) - Power: Installierbare Leistung auf der Dachseite in Kilowatt peak (kWp). Hinweis: Die Leistung kann im Wirtschaftlichkeitsrechner modulgenau berechnet wird. - Fläche_PV: Dachfläche in Quadratmetern, die sich für die Installation einer Photovoltaikanlage eignet (m²) - Fläche_ST: Dachfläche in Quadratmetern, die sich für die Installation einer solarthermischen Anlage eignet (m²) - Dach_ID: Eindeutige ID je Dachseite innerhalb eines Gebäudes - Schatten_ohneAufstd: Reduzierung der auf die Dachfläche einfallenden Einstrahlung durch Verschattung in Prozent pro Jahr (diesen Wert verwenden, wenn Aufständerung=0) - Schatten_mitAufstd: Reduzierung der auf die Dachfläche einfallenden Einstrahlung durch Verschattung in Prozent pro Jahr (diesen Wert verwenden, wenn Aufständerung=1) - Neigung: Neigung der Dachseite in Grad (°)

Nutzung der Wasserkraft

<p>Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt.</p><p>Vom Wasser zum Strom</p><p>Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet.</p><p>Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet.</p><p>Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können.</p><p>Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie</p><p>Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a>⁠ ist bekannt, dass in 37 Prozent aller berichteten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserkrper#alphabar">Wasserkörper</a>⁠ – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen:</p><p>Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen.</p><p>Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz </p><p>Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft:</p><p>Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein <a href="https://www.umweltbundesamt.de/dokument/die-besondere-bedeutung-der-erneuerbaren-energien">Factsheet</a> erstellt.</p><p>Wasserkraftnutzung in Deutschland </p><p>Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten.</p><p>In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller.</p><p>Wasserkraftanlagen in Deutschland</p><p>Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen).</p><p>Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent.</p><p>Stromproduktion aus Wasserkraft in Deutschland</p><p>In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen.</p><p>Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Aktuelle Zahlen</a> zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die <a href="https://www.bmwk.de/Redaktion/DE/Downloads/S-T/schlussbericht-wasserkraft-231027.pdf?__blob=publicationFile&amp;v=6%20l">EEG-Erfahrungsberichte</a>. Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar.</p><p>Wasserkraftpotenzial in Deutschland</p><p>Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen.</p><p>Die Rolle der Wasserkraft bei der Energiewende</p><p>In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie "<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-konzepte-fuer-die-klimaschutz/rescue-wege-in-eine-ressourcenschonende">RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität</a>" des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen ⁠Bruttostromerzeugung⁠ leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft.</p><p>Wasserkraft und Klimawandel</p><p>Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der ⁠Klimawandel⁠ mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft <a href="https://www.umweltbundesamt.de/publikationen/klimafolgen-fuer-wasserkraftnutzung-in-deutschland">untersuchen lassen</a>. Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden.</p><p>So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern.</p><p>Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert.</p><p>Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert.</p><p>Wasserkraftanlage in der Sieg (Unkelmühle).</p><p>Demonstration der Nutzung von Wasserkraft.</p><p>Wasserkraftanlage in der Saale bei Öblitz.</p><p>Wasserkraftanlage in der Saale unterhalb von Jena.</p><p>Wasserkraftnutzung im Bayerischen Wald.</p><p>Ausleitungswehr für die Wasserkraftnutzung bei Tübingen.</p><p>Literatur</p><p>Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227.</p><p>Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39.</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a>⁠ (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010.</p><p>Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht).</p><p>International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights.</p><p>Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18.</p><p>LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water &amp; Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017.</p><p>LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. <a href="https://www.energieatlas.bayern.de/thema_wasser/daten.html">https://www.energieatlas.bayern.de/thema_wasser/daten.html</a>. Zugriff am 04.05.2021.</p><p>MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg.</p><p>Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748.</p><p>Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870.</p><p>Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23.</p><p>Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011.</p><p>TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011.</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150.</p><p>UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.</p>

Strom aus Photovoltaik - Installierte Leistung (Gem.)

Die Karte zeigt die Summe der installierten elektrischen Leistung der Photovoltaikanlagen für die Gemeinden in Bayern - unterteilt nach Gebäude- und Freiflächenanlagen.

1 2 3 4 539 40 41