API src

Found 169 results.

Related terms

Die Biogeochemie der Ozean-Eis-Interaktion in Grönland

In diesem Projekt werden wir die grönländische Küste als ideales Ziel für eine Prozessstudie nutzen, um zu untersuchen, wie sich Veränderungen des Wasserkreislaufs auf die Biogeochemie und Produktivität des Ozeans auswirken.Mit zunehmender jährlicher Abflussmenge aus dem Grönländischen Eisschild (GrIS) stellt sich die Frage, wie sich dieser Süßwasserabfluss auf die Produktivität der Schelfmeere in Grönland auswirkt. Der GrIS ist das zweitgrößte Eisschild der Erde. Wenn Süßwasser vom GrIS in den Ozean gelangt, entstehen in den Küstengewässern der Insel starke physikalische und biogeochemische Gradienten. Diese Gradienten sind am ausgeprägtesten in den Fjorden Grönlands, die flächenmäßig zu den größten maritimen Kohlenstoffsenken gehören. Grönlands Fjorde und Schelfmeere beherbergen auch national wichtige Fischereien, deren Zukunft für die grönländische Wirtschaft von entscheidender Bedeutung ist.Obwohl allgemein anerkannt ist, dass Süßwasser-Gletscher-Inputs die regionale Ozeanzirkulation beeinflussen, steht unser Verständnis von Verbindungen zwischen der Physik der Schmelzwasser-Freisetzung und langfristigen Veränderungen in der marinen Biogeochemie noch in den Anfängen. Ein Thema von aktuellem Interesse für der Intergovernmental Panel on Climate Change (IPCC) ist, wie Kryosphäre und Ozean biogeochemisch in einem sich erwärmenden Klima interagieren werden. Das Hauptziel hier wird sein, zu bestimmen, wie die physikalischen und chemischen Veränderungen, die durch erhöhte Süßwassereinträge in den Ozean um Grönland verursacht werden, die Verfügbarkeit von Nährstoffen (Makronährstoffe und Mikronährstoffe) für Phytoplankton und somit die Primärproduktion beeinflussen.Durch die Kombination von Feldforschung mit idealisierten Modellen werden die Auswirkungen der drei wichtigsten unterschiedlichen Süßwasserquellen (Oberflächenabfluss, Untergrundabfluss und Eisbergschmelze) bestimmt. Die Chemie des Mündungs-Mischprozesses, welcher häufig schnelle Veränderungen der chemischen Form und damit der Bioverfügbarkeit von Nährstoffen induziert wenn sich Süß- und Salzwasser mischen, wird untersucht. Der Nährstofflimitierungsstatus von Phytoplanktongemeinschaften in von Süßwasser beeinflussten Gebieten in Grönland wird bestimmt und somit der Nettoeffekt gleichzeitiger Veränderungen der physikalischen und chemischen Zusammensetzung der Wassersäule bewertet.Dadurch wird es möglich sein, die Auswirkungen der Zunahme von Süßwassereintrag in den polaren Ozean, im Hinblick auf Änderungen der Primärproduktion im Meer zu verstehen.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Zirkum-Antarktische Auftrittsfrequenz von Meereis-Rinnen und regionale Verteilung aus Satellitendaten

Ziel dieses Projektvorhabens ist es, einen Einblick in die räumliche und zeitliche Variabilität des Auftretens von Meereisrinnen im Antarktischen Meereis während der Wintermonate zu erhalten. Meereis-Rinnen zeichnen sich dadurch aus, dass es in ihrem Einflussbereich zu einem starken Austausch von Wärme, Feuchte und Impuls zwischen dem relativ warmen Ozean und der kalten Atmosphäre kommt. In Meereis-Rinnen bildet sich demnach neues, dünnes Eis und trägt damit zur Meereis-Massenbilanz bei. Wir beabsichtigen auf einer Methode aufzubauen, die entwickelt wurde, um Eisrinnen in der Arktis automatisch aus Thermal-Infrarot Satellitendaten zu identifizieren. Diese Methode muss für eine Anwendung auf Satellitendaten der Antarktis neu implementiert und erweitert werden. In diesem Rahmen gilt es auch, hemisphärische Besonderheiten in den Meereiseigenschaften und atmosphärischen Einflüssen zu berücksichtigen. Darum werden Anpassungen im ursprünglichen Algorithmus mit Hilfe detaillierter Fallstudien vorzunehmen sein. Als Ergebnis erwarten wir umfangreiche Erkenntnisse darüber, wann und wo Meereis-Rinnen gehäuft in der Antarktis auftreten, und wie diese Auftrittsmuster durch atmosphärische und ozeanische Antriebe gesteuert werden.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Algivore Cercozoa prägen die Zusammensetzung der Gemeinschaft von Bodenkrusten, der dominanten Vegetation in Polarregionen

Räuber-Beute-Beziehungen zwischen Bakterien und ihren eukaryotischen Räubern werden seit langem in der terrestrischen Ökologie untersucht, jedoch werden die Interkationen zwischen Mikroeukaryoten oft vernachlässigt. Mikroalgen nehmen eine Schlüsselposition als phototrophe Organismen in den marinen und Süßwasserökosystemen der Antarktis und Arktis ein; die meiste Energie und die meisten Nährstoffe werden durch diese zu höheren trophischen Ebenen kanalisiert. In diesem Kontext fehlen Studien in den terrestrischen Ökosystemen der Antarktis. Die terrestrische Vegetation der Antarktis wird dominiert durch kryptogamen Bewuchs mit einer Vielzahl und hoher Abundanz von Mikroalgen. Bis zu 55% des eisfreien Bodens der antarktischen Halbinsel und bis zu 70% im arktischen Spitzbergen werden von biologischen Bodenkrusten (Biokrusten) bedeckt. Diese Zahlen werden zukünftig auf Grund des Klimawandels und der daraus folgenden Erwärmung der Polarregionen steigen (“Arctic Greening”). Man kann daher annehmen, dass ein großer Anteil der Primärproduktion in den Polarregionen durch Mikroalgen in Biokrusten realisiert wird. Dennoch fehlt die Verbindung zu höheren trophischen Ebenen; insbesondere, wenn man bedenkt, dass in der Antarktis algenfressende Metazoen selten und artenarm sind. Cercozoa sind eine der häufigsten algenkonsumierenden einzelligen Eukaryoten (Protisten) in terrestrischen Systemen; vorläufige Ergebnisse zeigen: algenkonsumierende Cercozoa dominieren die mikrobielle Gemeinschaft in den Biokrusten der Polarregionen. Wir werden zum ersten Mal die Räuber-Beute-Beziehung in Biokrusten zwischen den Algen als Primärproduzenten und den wichtigsten Algenkonsumenten erforschen, um so ein vollständigeres Bild des terrestrischen Nahrungsnetzes in den beiden Polarregionen zu erhalten. Um das zu erreichen, kombinieren wir einen Barcode-basierten Hochdurchsatz-Illumina Ansatz mit klassischen Kulturexperimenten, welche Aufschluss über ökologische Funktionen der einzelnen Organismen liefern. Damit erhalten wir erstmalig ein umfassendes Bild der Räuber-Beute-Beziehung zwischen Mikroalgen und ihren Räubern, den Cercozoa, für das terrestrische Ökosystem in Arktis und Antarktis. Diese Daten werden zur Beantwortung der folgenden Fragen beitragen: Wie wichtig ist das terrestrische Nahrungsnetz in den Polarregionen? Und hat die Klimaerwärmung das Potential diese Interaktionen zu verändern?

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, WedUp: Weddellwirbel-Auftrieb und Dynamik

Der Weddellwirbel transportiert Wärme zu den Schelfeisen der Antarktis und reguliert die Dichte der Wassermassen, die den untersten Ast der globalen Umwälzzirkulation versorgen. Er stellt somit einen fundmentalen Bestandteil des globalen Klimasystems dar. Jedoch ist sehr wenig darüber bekannt, wie der Weddellwirbel auf langfristige Änderungen des atmosphärischen Antriebs reagieren wird. Der Auftrieb stellt eine wichtige Komponente im Klimasystem dar, da er Quellwassermassen durch Wärmeverluste und durch von Eisschmelze hervorgerufene Süßwassereinträge modifiziert. Während die beobachteten positiven Langzeittrends von Nährstoffkonzentrationen und Salzgehalten auf einen verstärkten Auftrieb hindeuten, könnte die im gleichen Zeitraum beobachtete Reduktion der Aufnahme von anthropogenem Kohlenstoff auf einen verringerten Auftrieb schließen lassen. Zusätzlich zum Auftrieb ist auch die Rolle der turbulenten wirbelbedingten Diffusion von Wärme kaum verstanden, aber möglicherweise von großer Bedeutung. Sie könnte einen wichtigen Mechanismus darstellen, um Wärme vom südlichen Ast des Weddellwirbels sowohl hin zum Zentrum maximaler Auftriebs zu befördern, als auch zu den Schelfeisen der Antarktis, wo die Wärme deren Abschmelzen und somit auch den Meeresspiegelanstieg vorantreiben könnte.Meine Vorarbeiten zeigen, dass Maud Rise eine wichtige Rolle für den Wärmehaushalt des Weddellwirbels spielt, dass aber gleichzeitig die kritischen Prozesse lokal bislang kaum in Feldstudien aufgelöst worden sind. Die Erforschung der Bedeutung von Maud Rise bezüglich des Wärmehaushalts ist von aktueller Bedeutung, da die Weddell-Polynya in 2017 nach vier Dekaden der Abwesenheit direkt über Maud Rise zurückgekehrt ist.Das Ziel von WedUP ist es, die langzeitlichen, großräumigen Änderungen der Zirkulation und des Auftriebs im Weddellwirbel zu bestimmen und deren Auswirkungen auf den Wärmehaushalt des Ozeans zu erforschen. Verbesserte Abschätzungen der räumlich und saisonal schwankenden Eddy-Diffusion sollen Analysen zum Beitrag von wirbelbedingten Wärmetransporten sowohl vom Zentrum des Weddellwirbels als auch zu den Schelfeisen ermöglichen. Abschließend soll eine Fallstudie basierend auf den zuvor erfolgten Auswertungen mit dem Ziel durchgeführt werden, die Rolle des Ozeans für das Auftreten der Weddell-Polynya in 2017 zu erforschen. WedUP wird den umfangreichen Datensatz des Argo-Float Observatoriums nutzen, das eine Abdeckung des Weddellwirbels seit 2002 zu allen Jahreszeiten und auch in von Meereis bedeckten Gebieten gewährleistet. Diese Daten sollen mit seehundgebundenen, schiffsgebundenen, und verankerungsgebundenen Messungen kombiniert werden, um die raumzeitlichen Änderungen des Salzgehalts und der Schichtung in Oberflächennähe zu erfassen. Die Erfassung von Langzeittrends in den Nährstoffkonzentrationen, oberflächennahen Salzgehalten und Radionukliden soll mich in die Lage versetzen, Änderungen der Rate des Auftriebs im Inneren des Weddellwirbels zu bestimmen.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Pol zu Pol Austausch: Klima begünstigter Parasitendruck auf cyanobakterielle Matten und deren ökosystemare Antwort

Ein Vergleich der Artendiversität von antarktischen und arktischen Cyanobakterienmatten (Cyanomatten) durch unsere Arbeitsgruppe weist auf eine überraschend hohe Übereinstimmungsrate der Arten hin (Kleinteich et al. 2017). Da es höchst unwahrscheinlich ist, dass sich diese Arten unabhängig voneinander in beiden polaren Regionen entwickelten, wird vermutet, dass Vögel oder Aerosole den Transport von Cyanomatten von der Arktis in die Antarktis ermöglichen. Entsprechend untersucht dieses Projekt den Einfluss des Klimawandels auf die potentielle Etablierung von Temperatur-toleranteren, nicht-endemischen Cyanobakterien (Xeno-Cyano) und deren Parasiten (Xeno-Parasiten) in antarktischen Gebieten und welche Konsequenzen dies für das antarktische Cyanomatten-Ökosystem hat. Wir konnten durch frühere Experimente den Einfluss von erhöhter Temperatur auf die Artendiversität und Toxinproduktion in antarktischen Cyanomatten nachweisen (Kleinteich et al. 2012). Da antarktische Gebiete einem kontinuierlichen Verlust der Eisdecke ausgesetzt sind, liegt die Vermutung nahe, dass nicht-endemische Cyanobakterien bisher unbesiedelte Gebiete erschließen bzw. werden endemische Cyanobakterien aufgrund ihrer schlechteren Anpassung an nicht-endemische Parasiten aus bereits besiedelten Gebieten verdrängt. Entsprechend hat dieses Projekt vier Hauptziele: Fest zu stellen ob 1.) sich in historischen Cyanomatten (1902, Scott Expedition) und den letzten 30 Jahren (1990, 1999/2000, 2010, 2021/2022) aus Rothera, Byers Halbinsel und McMurdo diese Xeno-Cyano und -Parasiten nachweisen lassen; 2.) Cyanomatten aus Spitzbergen eine vergleichbare Speziesverteilung (Cyanobakterien, Viren und Pilze) aufweisen wie auf der antarktischen Halbinsel (vermuteter Haupteintragungsort arktischer Spezies über Aerosole oder Vögel); 3.) eine Temperaturerhöhung durch Plexiglasabdeckung in den Cyanomatten auf Rothera und Byers zu einer Veränderung der Cyanodiversität, Toxinproduktion und verstärkt Parasitierung durch Viren und Pilze führt; und 4.) die Infektion mit arktischen Cyanomatten und Temperaturerhöhung bei antarktischen Cyanomatten im Labor nachweislich zu Veränderungen der endemischen Cyanomattendiversität führt. Die Diversitätsanalyse der Cyanomatten erfolgt durch Illumina (16S, ITS, g20 Gene) und Shotgun Sequenzierung. Die Abundanz von Viren und Pilzen wird durch ddPCR bestimmt und der Nachweis der Cyanotoxine erfolgt durch PCR, ELISA und UPLC-MS/MS. Die erhobenen Daten dürften die Eroberung und hiermit profunde voranschreitende Veränderung des antarktischen Cyanomattensystems durch nicht-endemische Spezies nachweisen. Durch die SARS-Cov2 Pandemie konnte die Hypothese, dass Vögel die Vektoren von Cyanomatten-Material sind, nicht getestet werden. Dennoch werden wir Cyanomatten aus unmittelbarer Nähe zu Vogelnistplätzen in Spitzbergen untersuchen. GPS-tracking Daten sollten mögliche Zusammenhänge zwischen Vogelmigration und der Verbreitung nicht-endemischer Cyanos und ihrer Parasiten aufdecken.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Bedeutung von Meio- und Makrofauna für Ökosystemfunktion: Auswirkungen regional unterschiedlicher Eisbedeckungsmuster

Die antarktischen Ökosysteme sind von starken Veränderungen betroffen, insbesondere was die Eisbedeckung angeht. Wir wissen nicht wie dies die Prozesse am Meeresboden, die benthischen Funktionen, beeinflusst. Informationen zur Rolle verschiedener Tiergemeinschaften für benthische Funktionen unter variabler und stabiler Eisbedeckung sind für ein besseres Verständnis der Ökosystemprozesse dringend notwendig. Nur in wenigen Studien wurden unterschiedliche Größenklassen wie Meio- und Makrofauna gleichzeitig untersucht, und in keiner wurde ihre Bedeutung für benthische Funktionen untersucht. Daher ist der Einfluss von geringer werdender oder sich verändernder Meereisbedeckung auf die trophischen Interaktionen zwischen Meio- und Makrofauna sowie deren Bedeutung für die Prozesse am Meeresboden nicht geklärt. Dazu gehört auch ob und wie sich die benthische Remineralisation, bestimmt durch Stoffflussmessungen von Ammonium, Nitrat, Phosphat, Kieselsäure und Sauerstoff an der Sediment-Wasser-Grenzschicht, verändert. Für den Südozean ist über die jeweiligen Anteile der Meio- und Makrofaunagemeinschaften an dieser Remineralisation nichts bekannt.Mit unserem 3-Jahres Projekt werden wir gemeinsam die Reaktion benthischer Ökosystemfunktionen auf unterschiedliche Meereisbedeckungssituationen im Weddellmeer und entlang der Antarktischen Halbinsel einschätzen. Um die Rollen der verschiedenen Größenklassen und ihrer assoziierten Taxa im System Meeresboden besser zu verstehen, müssen wir (1) die Bedeutung der Strukturen der Meio- und Makrofaunagemeinschaften für die Ressourcenaufteilung und die Remineralisierung in Regionen mit unterschiedlicher Eisbedeckung und (2) den Effekt von erhöhtem Nahrungsaufkommen bei sich verändernder Eissituationen auf die Interaktionen von Ökosystemfunktion und Größenklassen bestimmen.Die beiden komplementären Aspekte werden mit einem/r gemeinsam betreuten Doktoranden/in durchgeführt. Proben wurden bereits auf den beiden Polarstern-Expeditionen PS 81 (22.01 bis 18.03.2013, nordwestliches Weddellmeer, Antarktische Halbinsel) und PS 96 (06.12.2015 bis 14.02.2016 südöstliches Weddellmeer) genommen. Die untersuchte Region umfasst Gebiete mit reduzierter, variabler und anhaltender Eisbedeckung. Mittels Inkubationen wird die räumliche Variabilität der Remineralisationsraten und die Rolle der Meio- und Makrofaunataxa bestimmt und mit deren Position im Nahrungsnetz zu verbunden. Um den Einfluss erhöhten Nahrungseintrags auf die Partitionierung der Nahrungsaufnahme und die Remineralisation durch die Tiergruppen zu testen, wurden Pulse-Chase Experimente durchgeführt.Die Ergebnisse bilden die Grundlage für das dritte Arbeitspaket: Die Entwicklung eines konzeptionellen Modells für die Evaluation benthischer Systemfunktionen im sich verändernden Südozean, welches die Mehrheit der Größenklassen und Prozesse betrachtet.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Bakterielle Umwandlungen von Dimethylsulfoniumpropionat im Weddellmeer

Dimethylsulfid (DMS) ist ein klimarelevantes Spurengas marinen Ursprungs, das in der Atmosphäre als Vorstufe von Kondensationskernen bei der Wolkenbildung dient. Das Südpolarmeer wurde als Region mit erheblicher DMS Freisetzung aus dem Ozean in die Atmosphäre erkannt. Schwerpunkte der DMS Produktion wurden in der Nähe des Antarktischen Kontinentes und in der Zone der saisonalen Eisschmelze ermittelt. Modellsimulationen haben gezeigt, dass Störungen der DMS Flüsse vom Ozean in die Atmsophäre die Wolkenbedeckung beeinflussen und so zu Veränderungen im Strahlungshaushalt der Atmosphäre führen können. Das Prozessverständnis für marine DMS Emissionen und ihre Vorhersage sind somit entscheidend für Szenarien zukünftiger Klimabedingungen. DMS wird im Oberflächenozean durch den bakteriellen Abbau von Dimethylsulfoniumpropionat (DMSP) freigesetzt, das wiederum durch Phytoplankton produziert wird. Der bakterielle DMSP-Abbau folgt zwei konkurrierenden enzymatischen Stoffwechselwegen: dem Demethylierungsweg und dem Spaltungsweg. Da nur der Spaltungsweg zur Produktion von DMS führt, ist ein verbessertes Verständnis von Umweltfaktoren und genetischen Voraussetzungen, die die Balance zwischen den beiden Stoffwechselwegen kontrollieren, von großer Bedeutung um die Regulation der biologischen DMS Flüsse vom Ozean in die Atmosphäre abzuschätzen. Während die globalen Auswirkungen des DMSP Umsatzes im Ozean schon vor mehr als 30 Jahren erkannte wurden, ist es durch neue Methoden der Molekularbiologie und der „Omics“ Techniken erst kürzlich möglich geworden relevante Gene des bakteriellen DMSP Stoffwechsels zu identifizieren und Einsicht in ihre phylogenetische Verteilung zu gewinnen. Bisherige Erkenntnise zum bakteriellen Umsatz von DMSP in marine Systemen basieren weitgehend auf Studien aus mittleren und niederen Breiten, während die polaren Ozeane kaum untersucht wurden. Die Analyse der Bakteriengemeinschaften im Weddellmeer mittels Amplicon Sequenzierung des 16S rRNA Gens hat hohe Abundanzen potentiell DMS produzierender Bakteriengruppen wie der Roseobacter Gruppe und SAR11 gezeigt.Im vorgeschlagenen Projekt möchten wir modernen Methode der Moleklularbiologie in Kombination mit bioinformatischen Werkzeugen anwenden um im Weddellmeer(1) die Umweltkontrolle des bakteriellen DMSP Abbaus zu analysieren(2) die Diversität und Taxonomie DMSP abbauender Bakterien zu untersuchen(3) das genetische Inventar für DMSP Transformationen zu analysieren und(4) Stoffwechsel und ökologische Strategien von Schlüsselarten zu charakterisieren.Hierzu werden Seewasserproben analysiert, die am Östlichen Weddellmeer Eisschelf, am Filchner-Ronne Eisschelf und im Weddellwirbel genommen wurden. Die zu erwartenden Ergebnisse werden das mechanistische Verständnis des bakteriellen DMSP Abbaus im Weddellmeer verbessern und zu verlässlichen Prognosen von marinen DMS Emissionen im Südpolarmeer unter zukünftigen Klimaszenarien beitragen.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Einflusss von Umweltveränderungen auf antarktisches Phytoplankton untersucht mit Hilfe eines synergistischen multi- und hyper-spektralen Satellitendatenansatzes

Klimamodelle sagen voraus, dass sich in naher Zukunft im Antarktischen Ozean signifikant die Temperatur und der PH-Wert ändern werden, bedingt durch den Anstieg der Konzentrationen troposphärischer Treibhausgase und vor allem durch den erhöhten Kohlenstoffdioxidausstoß aus fossilen Brennstoffen. Solche Änderungen wirken sich auf die Zusammensetzung des Phytoplanktons aus und damit auch auf die Stoffkreisläufe wichtiger Elemente (Kohlenstoff, Stickstoff, usw.). Ziel dieses interdisziplinären Projektes ist die genauere Bestimmung der räumlichen und zeitlichen Variabilität der Biomasse von unterschiedlichen Phytoplanktontypen im Antarktischen Ozean. Einerseits wird hiermit das Verständnis der Rolle des antarktischen Phytoplanktons für das Ökosystem vertieft und andererseits deren Beitrag für den globalen Kohlenstoffzyklus genauer quantifiziert. Durch die einzigartige Kombination von Satellitendaten zweier unterschiedlicher Instrumententypen soll die Konzentration verschiedener Phytoplankton-Typen im Antarktischen Ozean zum ersten Mal mit umfassender zeitlicher und räumlicher Abdeckung bestimmt werden. Die Gesamtbiomasse wird durch eine an die Antarktis angepasste Prozessierung mit Hilfe multispektraler Satellitenmessdaten berechnet. Der Anteil wesentlicher Phytoplanktontypen an der Gesamtbiomasse wird anhand der Auswertung charakteristischer Absorptionsstrukturen von hyperspektralen Messdaten (PhytoDOAS-Methode) ermittelt. Somit soll ein synergetisches Produkt aus sich ergänzenden Informationen multi- und hyperspektraler Satelliteninstrumente entwickelt werden, das auf ähnliche Satelliteninstrumente, deren Messungen in naher Zukunft starten, übertragbar sein wird. Damit kann dann ein Datensatz über die Verteilung von Phytoplanktontypen über Dekaden erstellt werden. Mit dem im Projekt entstehenden Datensatz über die Verteilung der Phytoplanktontypen soll deren Variabilität und Korrelation mit sich ändernden Umweltfaktoren im Antarktischen Ozean in den vergangenen untersucht werden. Darüber hinaus soll unser Datensatz genutzt werden, zur Verbesserung und Evaluierung eines Ökosystem-Models, welches die Biogeographie verschiedener Phytoplanktontypen durch Parametrisierung physiologischer Eigenschaften an ein Ozeanzirkulatonsmodell errechnet. Mit Hilfe des Langzeitdatensatz und dem damit verbundenen Wissen über die Variabilität der Phytoplanktontypen, wird ein Fundament geschaffen, um den Einfluss der Klimaveränderungen im Antarktischen Ozean zu bemessen.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Von Erstbesiedlern zu vernetzten Gemeinschaften: simultane Bestimmung der Zusammensetzung und Ableiten Spezies-gebundener Interaktionen fossiler sowie rezenter pro- und eukaryotischer mikrobieller Gemeinschaften

Ziel des Projektes ist ein Verständnis der Entwicklung mikrobieller Gemeinschaften in Böden, vom ersten Auftreten bis zu komplexen Netzwerken. Mikroorganismen nehmen entscheidenden Einfluss auf die Entwicklung von Böden unter extremen Bedingungen. Veränderungen der Umwelt, etwa Nährstoffzunahme oder Temperaturanstieg, führen unmittelbar zu Veränderungen in den mikrobiellen Gemeinschaften. Antarktische Böden sind wegen ihres sehr geringen Nährstoffgehaltes empfindliche Ökosysteme; sie gelten als sehr gute Zeiger von Umweltveränderungen. Unsere zentrale Arbeitshypothese beinhaltet, dass prokaryotische Mikroorganismen die Entwicklung von Bodenlebensräumen in der Antarktis in Gang setzen und anschließend ein komplexes Netzwerk unterschiedlicher pro- und eukaryotischen Mikroorganismen entsteht, das auf der Basis unterschiedlicher Funktionen innerhalb des Netzwerkes schließlich zur stabilen Etablierung des Bodenhabitats führt. Eukaryotische Algen könnten bereits als Pioniere in frühen Sukzessionsstadien auftreten. Zum Testen der Hypothesen wird das Projekt wird die Expertise von Universität Göttingen und GFZ Potsdam zusammenzuführen. Wir werden bereits vorhandene Sedimentproben aus fünf Transsekten an Gletscherresten arider eisfreier Oasen der Ostantarktis (Larsemann-Berge, Prydz Bucht) untersuchen. Eine umfassende Analyse physiko-chemischer Parameter der Proben ist dabei Voraussetzung, die mikrobielle Diversität in Bezug zu geochemischen Variablen setzen zu können. Aufgrund der extremen Nährstoffarmut und Abgeschiedenheit des Untersuchungsgebietes erwarten wir eine erhebliche Anzahl noch unbekannter Arten in unseren Untersuchungsgebieten, die eine wertvolles Potential für biotechnologischer Anwendungen bergen können. Wir erweitern das Entfernung-steht-für-Zeit-Konzept von Chronosequenzen um den Mikromaßstab durch Vergleiche zwischen extrazellulärer und intrazellulärer DNA von Mikroorganismen. Durch den Einsatz einer neuartigen Methode zur DNA-Extraktion wird eine genaue Unterscheidung zwischen vergangenen (fossilen) und lebenden mikrobiellen Gemeinschaften erreicht. Beide DNA-Pools dienen zum Erfassen der taxonomischen Diversität der mikrobiellen Gemeinschaften auf Artniveau. Durch ultratiefe Sequenzierung (Deep Sequencing; Illumina Miseq) anhand zweier unterschiedlich variabler rRNA Genabschnitte wird eine Auflösung auf dem Artniveau erreicht. Das ist wichtig um für die Entwicklung früher Bodenökosysteme maßgebliche Spezies-gebundene Interaktionen innerhalb mikrobieller Gemeinschaften über die Grenzen taxonomischer Abteilungen und Domänen hinweg aufdecken zu können. Mit Analysen funktioneller Gene werden Struktur- und Funktionsbeziehungen zwischen pro- und eukaryotischen Mikroorganismen in Stoffflüssen des Kohlen- und Stickstoffs erfasst. Schließlich werden nach Abschätzen relativer Abundanzen der einzelnen Organismen- und Funktionsgruppen durch quantitative qPCR Spezies-Interaktionen zur mikrobiellen Produktivität abgeleitet.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Genauere Bestimmung des Klimasignals aus Wasserisotopen in antarktischen Eisbohrkernen

Die Antarktis ist ein wesentlicher Bestandteil des Klimasystems: Die enorme Menge an Eis interagiert mit der Atmosphäre und dem Ozean und hat einen entscheidenden Einfluss auf das Strahlungsbudget der Erde und auf die ozeanische und atmosphärische Zirkulation. Aufgrund der verhältnismäßig kurzen Verfügbarkeit instrumenteller Aufzeichnungen, wird die Signatur des Klimawandels in der Zentralantarktis durch starke natürliche Klimavariabilität maskiert. Deutlich aussagekräftigere Werte kann die Auswertung von Eisbohrkernen liefern, in denen die gemessene Isotopenzusammensetzung belastbare Informationen über vergangene Klimaentwicklungen sowohl auf kurzen Zeitskalen (anthropogene Periode) wie langen Zeitskalen (Eis- / Warmzeitzyklen) zulässt. Dies ermöglicht es, die gegenwärtigen Temperaturschwankungen der Antarktis im Kontext der letzten Jahrtausende einzuordnen und vergleichbaren Szenarien gegenüberzustellen. Dabei wird die Interpretation des Wasserisotopensignals, insbesondere bei hoher zeitlicher Auflösung, durch bisher noch nicht vollständig verstandene Prozesse während der Deposition an der Oberfläche und Archivierung des Signals im Eis eingeschränkt. Diese Einflüsse spielen speziell bei Untersuchungen auf dem ostantarktischen Plateau eine erhebliche Rolle.Das hier vorgestellte Projekt untersucht die Archivierung des Klimasignals in der Isotopenzusammensetzung in der Region von Dome C, in der die längsten verfügbaren Eisbohrkerne der Welt vorliegen. Ziel ist es, die Fähigkeit zur Rekonstruktion früherer Klimaschwankungen zu verbessern, indem genauer untersucht wird, wie Klimaschwankungen die Isotopenzusammensetzung im Eis prägen. Dies wird erreicht, indem Rauschquellen identifiziert werden, welche das Klimasignal in der Eisisotopen-zusammensetzung maskieren und verzerren, hier insbesondere das stratigraphische Rauschen, das durch eine kleine (<5m) Dekorrelationslänge gekennzeichnet ist, und das Rauschen durch unregelmäßigen Niederschlag, welches durch eine große (>100km) örtliche Dekorrelationslänge gekennzeichnet ist. Die Untersuchung basiert dabei auf zwei Methoden. Einem mechanistischen Ansatz bei dem die Ergebnisse einer einjährigen Messung des Wasserdampf-Schnee Isotopenaustauschs verwendet werden, wird die statistische Analyse der Schneeisotopenvariablilität gegenübergestellt, die auf eine große Anzahl statistisch auswertbarer Daten aus der Dome C Umgebung zurückgreifen kann. Durch diese vergleichende Auswertung kann ein besseres Prozessverständnis erreicht werden, welches es erlaubt Wasserisotope als genaueren Indikator für Klimaentwicklungen nutzen zu können. Die Arbeit nutzt modernste Analyseverfahren der Infrarotspektroskopie sowie fortgeschrittene statistische Verfahren. Sie basiert auf der Zusammenarbeit mit anderen Instituten durch Wissensaustausch und gemeinsame Feldarbeiten. Das Projekt wird wesentliche Verbesserungen beim Verständnis der Prozesse ermöglichen, welche die Isotopensignale in Eisbohrkernen prägen.

1 2 3 4 515 16 17