Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Fernerkundung des Gesundheitszustandes und des Jagderfolgs von Kaiserpinguinkolonien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Bewältigung der Auswirkungen anthropogener Veränderungen auf die Biodiversität ist eine der drängendsten wissenschaftlichen Herausforderungen, mit denen wir heute konfrontiert sind. Die Untersuchung der Auswirkungen des Klimawandels auf die marinen Ökosysteme ist jedoch trotz seiner wirtschaftlichen und gesellschaftlichen Bedeutung stark unterfinanziert. Während bestimmte physikalische Parameter (Salzgehalt, Temperatur, etc.) relativ einfach und kontinuierlich per Fernerkundung gemessen werden können, ist die Überwachung durch ozeanographische Kampagnen logistisch ungleich aufwändiger. Vor allem das empfindliche Ökosystem der Antarktis ist besonders gefährdet und gleichzeitig nur schwer zu untersuchen. Daher besteht die Notwendigkeit, bessere Methoden zur Überwachung des Zustands von marinen Ökosystemen, insbesondere der Produktivität höherer trophischer Ebenen, in und um die Antarktis zu entwickeln. Ein effektiver Ansatz zur Untersuchung der Auswirkungen des Klimawandels auf marine Ökosysteme ist die Überwachung von Raubtier-Populationen. Raubtiere sind hochsensible Bioindikatoren, da sie von einer Kaskade von Einflussfaktoren betroffen sind, die sich entlang des Nahrungsnetzes aufsummieren. Kaiserpinguine regieren auf die Klimaerwärmung besonders empfindlich, da sie zur Nahrungssuche Tausende von Kilometern zurücklegen und dabei große Teile des Ozeans beproben. Zudem kehren sie immer wieder zur selben Kolonie zurück, wo sie relativ einfach untersucht werden können. Daher sind diese Tiere besonders geeignete Bioindikatoren.Wir haben kürzlich gezeigt, dass das "huddling" Verhalten von Kaiserpinguinen als Phasenübergang von einem flüssigen in einen festen Zustand beschrieben werden kann. Dieser Phasenübergang hängt von der gefühlten Temperatur ab, die neben der Umgebungstemperatur auch von der Windgeschwindigkeit, der Sonneneinstrahlung und der relativer Luftfeuchtigkeit beeinflusst wird. Kaiserpinguine ändern ihr Huddlingverhalten als Reaktion auf diese gefühlte Temperatur und durchlaufen bei einer bestimmten Übergangstemperatur einen Phasenübergang. Diese Phasen-Übergangstemperatur hängt in erster Linie von der Fettisolierung der Tiere ab. In diesem Projekt werden wir die Hypothese testen, dass wir durch die Beobachtung der Phasen-Übergangstemperatur die durchschnittlichen Energiereserven (Fettisolation) einer ganzen Pinguinkolonie abschätzen und zeitlich verfolgen können. Außerdem wollen wir nachweisen, dass sich aus der Phasen-Übergangstemperatur zu Beginn der Brutsaison (wenn die Tiere über die größten Fettreserven verfügen) sowohl der Jagderfolg als auch die Nahrungsversorgung eines großen Teils des Südozeans abschätzen lässt, da sich der Jagdradius der Kaiserpinguine über 300-500 km um die Kolonie erstreckt. Falls sich unsere Hypothese bestätigt, wäre dies ein wichtiger Meilenstein für eine nicht-invasive Fernerkundung des Zustands von Kaiserpinguinkolonien und damit des marinen Ökosystems großer Teile des Südozeans.
This product shows globally the daily snow cover extent (SCE). The snow cover extent is the result of the Global SnowPack processor's interpolation steps and all data gaps have been filled. Snow cover extent is updated daily and processed in near real time (3 days lag). In addition to the near real-time product (NRT_SCE), the entire annual data set is processed again after the end of a calendar year in order to close data gaps etc. and the result is made available as a quality-tested SCE product. There is also a quality layer for each day (SCE_Accuracy), which reflects the quality of the snow determination based on the time interval to the next "cloud-free" day, the time of year and the topographical/geographical location. The “Global SnowPack” is derived from daily, operational MODIS snow cover product for each day since February 2000. Data gaps due to polar night and cloud cover are filled in several processing steps, which provides a unique global data set characterized by its high accuracy, spatial resolution of 500 meters and continuous future expansion. It consists of the two main elements daily snow cover extent (SCE) and seasonal snow cover duration (SCD; full and for early and late season). Both parameters have been designated by the WMO as essential climate variables, the accurate determination of which is important in order to be able to record the effects of climate change. Changes in the largest part of the cryosphere in terms of area have drastic effects on people and the environment. For more information please also refer to: Dietz, A.J., Kuenzer, C., Conrad, C., 2013. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing 34, 3879–3902. https://doi.org/10.1080/01431161.2013.767480 Dietz, A.J., Kuenzer, C., Dech, S., 2015. Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sensing Letters 6, 844–853. https://doi.org/10.1080/2150704X.2015.1084551 Dietz, A.J., Wohner, C., Kuenzer, C., 2012. European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sensing 4. https://doi.org/10.3390/rs4082432 Dietz, J.A., Conrad, C., Kuenzer, C., Gesell, G., Dech, S., 2014. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing 6. https://doi.org/10.3390/rs61212752 Rößler, S., Witt, M.S., Ikonen, J., Brown, I.A., Dietz, A.J., 2021. Remote Sensing of Snow Cover Variability and Its Influence on the Runoff of Sápmi’s Rivers. Geosciences 11, 130. https://doi.org/10.3390/geosciences11030130
Das Projekt "WP1.3 Der Aufbau von Eisschilden - Simulation und Untersuchung des Beginns der letzten Eiszeit mit MPI-ESM" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.
Das Projekt "Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Ozeanischer Einfluss auf den grönländischen 79°N Gletscher" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut für Polar- und Meeresforschung, Fachbereich Klimawissenschaften, Sektion Physikalische Ozeanographie der Polarmeere.Die Wechselwirkung zwischen der Kryosphäre und dem Ozean bildet eine der Hauptursachen für lokale und globale Veränderungen des Meeresspiegels. Das Schmelzen des grönländischen Eisschildes trägt derzeit zu rund einem Drittel zum globalen Meeresspiegelanstieg bei, und der Massenverlust des Eisschildes und damit der Transport von Eis aus dem Eisschild in den Ozean beschleunigen sich weiter. Bis vor kurzem schien es, als sei die Beschleunigung der abfließenden Eisströme auf Grönlands Westküste und die Fjorde im Südosten beschränkt, während die Gletscher im Nordosten als weitgehend stabil galten. Einer dieser scheinbar stabilen Gletscher ist der Nioghalvfjerdsbrae oder 79°Nord Gletscher, der größere zweier Gletscher, die aus dem nordostgrönländischen Eisstrom gespeist werden und direkt ins Meer münden. Wegen der Existenz einer Kaverne unter der schwimmenden Eiszunge analog zu den Schelfeisen der Antarktis ist der 79°Nord Gletscher für Studien der Eis Ozean Wechselwirkung sehr interessant, besonders da das Einzugsgebiet des nordostgrönländischen Eisstroms mehr als 15% der Fläche des grönländischen Eisschildes erfasst. Aktuelle Studien weist nun auf eine Beschleunigung des Eisstromes und eine Abnahme der Eisdicke entlang der Küste von Nordostgrönland hin. Gleichzeitig wurde eine Erwärmung und eine Zunahme des Volumens des Atlantikwassers in der Ostgrönlandsee und der Framstraße beobachtet. Unser Projekt hat zum Ziel, (1) die Mechanismen zu verstehen, mit denen der Ozean Wärme aus der Framstraße und vom Kontinentalhang Nordostgrönlands in die Kaverne unter dem schwimmenden 79°N Gletscher transportiert, (2) die Rolle externer Variabilität relativ zu Prozessen innerhalb der Kaverne hinsichtlich ihres Einflusses auf das Schmelzen an der Eisunterseite zu untersuchen und (3) die wichtigsten Sensitivitäten innerhalb dieses gekoppelten Systems aus Eis und Ozean zu identifizieren. Wir verfolgen dieses Ziel durch eine Kombination von gezielter Beobachtung und innovativer hochauflösender Modellierung. Im Rahmen zweier Forschungsreisen mit dem Eisbrecher FS Polarstern werden Strömungsgeschwindigkeiten, Hydrographie und Mikrostruktur sowohl mit gefierten als auch mit verankerten Instrumenten gemessen. Diese Beobachtungen werden durch den Einsatz eines autonomen Unterwasserfahrzeugs ergänzt. Zur Modellierung nutzen wir das Finite Element Sea ice Ocean Model (FESOM), das um eine Schelfeiskomponente erweitert wurde und in einer Konfiguration betrieben wird, die mit hoher Auflösung die kleinskaligen Prozesse auf dem Kontinentalschelf vor Nordostgrönland und in der Kaverne unter dem 79°N Gletscher in einem globalen Kontext wiedergibt. Zusammen mit den Beiträgen unserer Kooperationspartner aus der Glaziologie und der Tracerozeanographie entwickelt sich aus der Synthese dieser beiden Komponenten ein detailliertes Bild der Prozesse auf dem Kontinentalschelf Nordostgrönlands, einer Schlüsselregion für zukünftige Veränderungen des globalen Meeresspiegels.
Das Projekt "Detection and Attribution des Klimawandels im Hochgebirge anhand der Kryosphäre: Auflösung der Prozessebene" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Erlangen-Nürnberg, Institut für Geographie.Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Einflüsse von Schnee auf antarktisches Meereis (SCASI)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.Die Ausdehnung des antarktischen Meereises nahm im Laufe der letzten Jahre zu und steht damit im Gegensatz zur Abnahme in der Arktis. Die Gründe hierfür sind Gegenstand aktueller Forschungsprojekte. Wechselwirkungen mit der Atmosphäre und dem Ozean spielen sicherlich eine wesentliche Rolle, aber auch die dicke und heterogene Schneeauflage des Meereises hat einen große Einfluss auf das Meereis und seine Rolle im globalen Klima und Wettergeschehen. Zugleich erschwert die Schneeauflage flugzeug- und satellitenbasierte Messungen über Meereis, da sie die Oberflächeneigenschaften bestimmt und zu großen Unsicherheiten beiträgt. Entsprechend ist eine bessere Kenntnis der Schneeverteilung auf Meereis dringend erforderlich, um Veränderungen besser verstehen und simulieren zu können. Ziel des Projektes ist es die Menge und Verteilung von Schnee auf antarktischem Meereis sowie dessen physikalische Eigenschaften und deren zeitliche Variabilität zu quantifizieren. Die Entwicklung eines neuen und konsistenten Datenprodukts für Schnee auf antarktischem Meereis steht im Vordergrund des Projektes. Dieses soll die hohe Variabilität über unterschiedliche Größenskalen und Jahreszeiten abbilden. Mithilfe dieses Produktes sind wir dann in der Lage Fernerkundungsalgorithmen und Modellsimulationen zu verbessern und zu validieren. Schließlich wird unser Projekt das Gesamtverständnis der Massenbilanz und Dynamik antarktischen Meereises verbessern, und leistet so einen wichtigen Beitrag für die biologische und geochemische Erforschung des eisbedeckten Südozeans. Um diese Ziele zu erreichen, werden hochaufgelöste Modelle betrieben, die durch Feld- und Fernerkundungsdaten von antarktischem Schnee auf Meereis gestützt und geleitet werden. Im Rahmen einer neuen deutsch-schweizer Zusammenarbeit (D-A-CH Programm) werden die Meereisexpertisen aus Feldmessungen und Fernerkundung der deutschen Partner mit der Schneeexpertise aus Feldmessungen und Modellierung der Schweizer Partner kombiniert. Die Projektpartner verfügen über detaillierte Schneemessungen mehrerer erfolgreicher Feldkampagnen auf antarktischem Meereis, die durch autonome Messungen ergänzt werden. Daten der Satelliten AMSR-2, SMOS und CryoSat-2 sind verfügbar und werden genutzt, um neue Algorithmen für die Bestimmung von Schneeeigenschaften auf Meereis zu entwickeln. Diese Algorithmen und daraus resultierende Datensätze werden durch Beobachtungen validiert und verbessert. Durch die Kopplung der numerischen Schneemodelle SNOWPACK und MEMLS werden Schneedicke, -temperatur, -dichte und Mikrowellenemissivität simuliert. Das Projekt ist darauf ausgelegt drei junge Wissenschaftler für Ihre Arbeit in der Meereisforschung zu finanzieren. Zwei erfahrene Post-Doktoranden sind vorgesehen. Beide haben bereits ähnliche Methoden und Datensätze im Rahmen ihren Doktorarbeiten bearbeitet. Ein Doktorand wird dieses Projekt zur Promotion nutzen.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Untersuchungen zur trophischen Bedeutung und Metapopulationsstruktur von Arten des gelatinösen Zooplanktons im Südpolarmeer über DNA-Metabarcoding" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Gelatinöses Zooplankton (GZP), darunter pelagische Ctenophoren, Nesseltiere und Salpen, gelten als Gewinner des Klimawandels. In mehreren marinen Ökosystemen weltweit hat ihre Zahl in den letzten Jahrzehnten erheblich zugenommen. Diese so genannte "Gelierung" gilt auch für die sich erwärmende Region des Südpolarmeers mit ihrer bekannten Verschiebung von einem krillbasierten zu einem salpenbasierten Ökosystem. Abgesehen von den Salpen werden andere gelatinöse Zooplankter der Antarktis kaum untersucht, da diese schwer erfassbaren Vertreter des pelagischen Lebensraums aufgrund methodischer Beschränkungen mit den traditionellen Netzbeprobungen nicht bzw. kaum nachweisbar sind. Entsprechend wird die Vielfalt des GZPs bislang nicht erhoben, ihre Biodiversität und Abundanz unterschätzt. Wenn man bedenkt, dass das GZP einen großen Teil der pelagischen Biomasse ausmacht und noch zentraler im Kontext der Ozeanerwärmung wird, könnte ihre ökosystemare Bedeutung als Nahrungsressource für höhere tropische Ebene zunehmen. Bis vor kurzem galt GZP allerdings als "trophische Sackgasse". Diese klassische Sichtweise ist darin begründet, dass durch die schnelle Verdauung des wässrigen, weichen Gewebes von GZP, diese - ebenso wie in den Netzfängen - nicht mehr in den Verdauungsorganen von Beutetieren nachweisbar sind. Erste neuere Studien haben jedoch gezeigt, dass viele Taxa routinemäßig GZP im gesamten Weltozean konsumieren. Mit diesem DFG-Antrag wollen wir diesen Paradigmenwechsel für pelagische und demersale Ökosysteme des Südpolarmeers validieren. Zu diesem Zweck werden wir die räumlich-zeitliche Variation in der Nahrungszusammensetzung und das Auftreten von GZP-Räubern für Amphipoden- und Fischarten mit Hilfe eines DNA-Metabarcoding-Ansatzes untersuchen.Anschliessend wollen wir auf der Grundlage der Millionen von DNA-Messwerten, die mit dieser Methode und bioinformatischer Entrauschung gewonnen wurden, eine metaphylogeographische Studie durchführen. Damit wollen wir die genetische Struktur und die Populationskonnektivität der sonst schwer zu beprobenden gallertartigen Zooplanktonarten untersuchen.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Untersuchungen von Änderungen der Klimavariabilität während der letzten 130 000 Jahre basierend auf einem Eisbohrkern von Skytrain Ice Rise, Westantarktis (CliVarSky130)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die Westantarktis ist eine der Regionen der Erde, die am sensibelsten auf den aktuellen Klimawandel reagiert. Ein Zusammenbruch dieses Eisschildes in einem wärmeren Klima würde dramatische Folgen für den globalen Meeresspiegelanstieg haben. Dabei spielt nicht nur der Anstieg der globalen Mitteltemperatur eine Rolle, sondern in gleichem Maße auch Veränderungen der Klimavariabilität. Diese Veränderungen können das labile westantarktische System an Kipppunkte bringen, die wiederum zu unwiderruflichen eisdynamischen Prozessen führen. Um diese zum Teil abrupten Veränderungen in Zukunft besser einschätzen zu können, müssen diesbezügliche Modellprojektionen auf einer soliden Datenbasis stehen. Paläoklimatische Zeitreihen, in diesem Fall aus Eisbohrkernen, bieten solch eine Datengrundlage. Besonders interessant sind hierbei Zeitreihen, die zurückreichen in das letzte Glazial, oder idealerweise in die davorliegende letzte natürliche Warmzeit (ca. 110 000 - 130 000 Jahre vor heute). Solche langen Zeitreihen aus der Westantarktis sind allerdings bisher nur spärlich vorhanden. Im Rahmen des WACSWAIN Projekts (WArm Climate Stability of the West-Antarctic Ice sheet in the last iNterglacial) wurde kürzlich ein neuer Eiskern auf Skytrain Ice Rise gebohrt, der einen Zeitraum bis 126 000 Jahre vor heute abdeckt. Umfassende kontinuierliche Datensätze der stabilen Wasserisotope, der chemischen Spurenstoffe und der physikalischen Parameter wurden im Rahmen von WACSWAIN erhoben und stehen nun für weitere Analysen zur Verfügung. Außerdem wurden zum ersten Mal parallel zu den kontinuierlichen Messungen ausschnittweise Abschnitte des Kerns mit der ultra-hochauflösenden Methode der Laser Ablation (LA-ICP-MS) auf ihren Spurenstoffgehalt untersucht. Dies erlaubt die Analyse von Veränderungen in bisher nicht verfügbarer Detailliertheit. Das Ziel des hier vorgestellten Projektes ist es diese hochaufgelösten Signale zusammen mit den kontinuierlichen zu nutzen, um die Veränderungen der Klimavariabilität in dieser Region der Westantarktis in beispielloser Genauigkeit für den letzten glazialen Zyklus statistisch zu analysieren. Ein besonderer Fokus wird dabei auf Phasen mit abrupten Änderungen in den Temperatur- und Eisbedeckungsproxies, wie zum Beispiel einem signifikanten Anstieg der marinen Ionenkonzentration und der Wasserisotope im frühen Holozän, liegen. Die statistischen Analysen der vergangenen Klimavariabilität (Varianz, Amplitude, Skalierungsfaktoren) werden im Folgenden genutzt, um die aktuell zu beobachtenden Veränderungen in der Westantarktis besser verstehen zu können. Dies wird zusätzlich unterstützt durch das Testen der wissenschaftlichen Hypothesen über die Ursachen der Veränderungen mittels spezifischer, isotopengetriebener globaler Zirkulationsmodelle, sowie chemischer Transportmodelle atmosphärischer Spurenstoffe. Dieses Projekt wird somit einen wichtigen Beitrag zum Verständnis der westantarktischen Klimasystems in der Vergangenheit und Zukunft leisten.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Zirkum-Antarktische Auftrittsfrequenz von Meereis-Rinnen und regionale Verteilung aus Satellitendaten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Trier, Fachbereich VI Raum- und Umweltwissenschaften, Fach Umweltmeteorologie.Ziel dieses Projektvorhabens ist es, einen Einblick in die räumliche und zeitliche Variabilität des Auftretens von Meereisrinnen im Antarktischen Meereis während der Wintermonate zu erhalten. Meereis-Rinnen zeichnen sich dadurch aus, dass es in ihrem Einflussbereich zu einem starken Austausch von Wärme, Feuchte und Impuls zwischen dem relativ warmen Ozean und der kalten Atmosphäre kommt. In Meereis-Rinnen bildet sich demnach neues, dünnes Eis und trägt damit zur Meereis-Massenbilanz bei. Wir beabsichtigen auf einer Methode aufzubauen, die entwickelt wurde, um Eisrinnen in der Arktis automatisch aus Thermal-Infrarot Satellitendaten zu identifizieren. Diese Methode muss für eine Anwendung auf Satellitendaten der Antarktis neu implementiert und erweitert werden. In diesem Rahmen gilt es auch, hemisphärische Besonderheiten in den Meereiseigenschaften und atmosphärischen Einflüssen zu berücksichtigen. Darum werden Anpassungen im ursprünglichen Algorithmus mit Hilfe detaillierter Fallstudien vorzunehmen sein. Als Ergebnis erwarten wir umfangreiche Erkenntnisse darüber, wann und wo Meereis-Rinnen gehäuft in der Antarktis auftreten, und wie diese Auftrittsmuster durch atmosphärische und ozeanische Antriebe gesteuert werden.
Das Projekt "Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Algivore Cercozoa prägen die Zusammensetzung der Gemeinschaft von Bodenkrusten, der dominanten Vegetation in Polarregionen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Räuber-Beute-Beziehungen zwischen Bakterien und ihren eukaryotischen Räubern werden seit langem in der terrestrischen Ökologie untersucht, jedoch werden die Interkationen zwischen Mikroeukaryoten oft vernachlässigt. Mikroalgen nehmen eine Schlüsselposition als phototrophe Organismen in den marinen und Süßwasserökosystemen der Antarktis und Arktis ein; die meiste Energie und die meisten Nährstoffe werden durch diese zu höheren trophischen Ebenen kanalisiert. In diesem Kontext fehlen Studien in den terrestrischen Ökosystemen der Antarktis. Die terrestrische Vegetation der Antarktis wird dominiert durch kryptogamen Bewuchs mit einer Vielzahl und hoher Abundanz von Mikroalgen. Bis zu 55% des eisfreien Bodens der antarktischen Halbinsel und bis zu 70% im arktischen Spitzbergen werden von biologischen Bodenkrusten (Biokrusten) bedeckt. Diese Zahlen werden zukünftig auf Grund des Klimawandels und der daraus folgenden Erwärmung der Polarregionen steigen (“Arctic Greening”). Man kann daher annehmen, dass ein großer Anteil der Primärproduktion in den Polarregionen durch Mikroalgen in Biokrusten realisiert wird. Dennoch fehlt die Verbindung zu höheren trophischen Ebenen; insbesondere, wenn man bedenkt, dass in der Antarktis algenfressende Metazoen selten und artenarm sind. Cercozoa sind eine der häufigsten algenkonsumierenden einzelligen Eukaryoten (Protisten) in terrestrischen Systemen; vorläufige Ergebnisse zeigen: algenkonsumierende Cercozoa dominieren die mikrobielle Gemeinschaft in den Biokrusten der Polarregionen. Wir werden zum ersten Mal die Räuber-Beute-Beziehung in Biokrusten zwischen den Algen als Primärproduzenten und den wichtigsten Algenkonsumenten erforschen, um so ein vollständigeres Bild des terrestrischen Nahrungsnetzes in den beiden Polarregionen zu erhalten. Um das zu erreichen, kombinieren wir einen Barcode-basierten Hochdurchsatz-Illumina Ansatz mit klassischen Kulturexperimenten, welche Aufschluss über ökologische Funktionen der einzelnen Organismen liefern. Damit erhalten wir erstmalig ein umfassendes Bild der Räuber-Beute-Beziehung zwischen Mikroalgen und ihren Räubern, den Cercozoa, für das terrestrische Ökosystem in Arktis und Antarktis. Diese Daten werden zur Beantwortung der folgenden Fragen beitragen: Wie wichtig ist das terrestrische Nahrungsnetz in den Polarregionen? Und hat die Klimaerwärmung das Potential diese Interaktionen zu verändern?
Origin | Count |
---|---|
Bund | 148 |
Land | 7 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 138 |
Text | 9 |
unbekannt | 7 |
License | Count |
---|---|
geschlossen | 11 |
offen | 143 |
Language | Count |
---|---|
Deutsch | 127 |
Englisch | 90 |
Resource type | Count |
---|---|
Bild | 2 |
Dokument | 3 |
Keine | 89 |
Unbekannt | 1 |
Webseite | 62 |
Topic | Count |
---|---|
Boden | 135 |
Lebewesen & Lebensräume | 138 |
Luft | 132 |
Mensch & Umwelt | 154 |
Wasser | 154 |
Weitere | 153 |