Innerhalb dieses Vorhabens soll ein in-situ Sensorsystem erforscht und entwickelt werden, das sowohl Methan (CH4) und Kohlendioxid (CO2) als auch Schwefelwasserstoff (H2S) hochgenau detektieren kann. Dazu ist die Integration verschiedener Technologien in ein einziges Messgerät notwendig, das der hochkorrosiven Umgebung einer Biogasanlage widerstehen kann. Um eine kostengünstige Lösung zu ermöglichen kommen innovative, neuartige Lösungsansätze zum Einsatz, deren Leistungsfähigkeit mindestens den zurzeit verwendeten Geräten entspricht. Gleichwohl sollen die Kosten aber um ein Vielfaches geringer sein. Durch eine solche Lösung wird eine großflächige, hochaufgelöste Überwachung der Gaszusammensetzung aller Prozessschritte der Biogasprozesskette möglich. Hierbei soll für die Detektion von CH4 und CO2 ein kostengünstiges optisches Verfahren erforscht werden. Damit auch H2S kostengünstig und genau gemessen werden kann, soll eine konzeptionell neue, metalloxid-basierte Messmethode erforscht werden. An dem Vorhaben sollen die Gassensorgruppe des Instituts für Mikrosystemtechnik (IMTEK) der Universität Freiburg und das KMU J.Dittrich Elektronics GmbH & Co. KG beteiligt sein. Dabei wird das IMTEK die grundlagenwissenschaftlichen Fragenstellungen bearbeiten, die sich auf die Bereiche Spektroskopie, Oberflächenphysik und Mikrosystemtechnik erstrecken. Die nachfolgenden Arbeitsschritte beschreiben den geplanten Weg die inkjetgedruckten gassensitiven CuO-Schichten und die dazugehörigen Substrate zur Anwendertauglichkeit zu verbessern: Materialentwicklung - Stabile druckbare Suspensionen Fertigungsverfahren - Herstellung der sensitiven Schichten mittels InkjetDesign / Layout / Charakterisierung Sensorelement. Analog zum Schwelwasserstoffsensor werden hier die Schritte beschrieben, die auf dem Weg zu einem anwendungsfähigen, photoakustikbasierten CH4/CO2 Sensor notwendig sind.
Ziel dieses Teilvorhabens ist die Realisierung CIGS-basierter (engl.: Copper-Indium-Gallium-Selenide) Dünnschichtsolarzellen als Alternative zu konventionellen Siliziumsolarzellen. Vorteile CIGS-basierter Solarzellen bestehen einerseits in der kostengünstigeren Fertigung und andererseits in der Möglichkeit druckbare und flexible Solarmodule aufzubauen. Vor diesem Hintergrund sollen in diesem Teilvorhaben Nanopartikel als neuartige Precursoren für CIGS-Solarzellen synthesiert werden. Auf diesem Wege soll eine vereinfachte und kostengünstigere Herstellung druckfähiger Solarmodule mit hohem Wirkungsgrad erreicht werden. Konkret handelt es sich um die Flüssigphasensynthese nanoskaliger Metallpartikel (Cu, In, Ga), nanoskaliger Metalloxide (Cu2O, CuO, In2O3, Ga2O3, CulnO2, CuGaO2) und nanoskaliger Metallselenide (Cu2Se, CuSe, ln2Se3, Ga2Se3,CulnSe2, CuGaSe2). Die dargestellten Nanopartikel werden zunächst hinsichtlich ihrer chemischen Zusammensetzung und ihrer kolloidalen Eigenschaften mit geeigneten Methoden charakterisiert. Ausgewählte Proben werden an die Verbundpartner zwecks Prüfung und Bewertung in Testsolarzellen weitergegeben.
Pflanzlicher und tierischer Aufwuchs (Biofouling) ist ein allgegenwärtiger Vorgang in aquatischen Lebensräumen, der auch in der Marikultur bekannt ist. Um den Aufwuchs zu unterdrücken, werden Netze in der konventionellen Fischzucht mit Kupfer-haltigen Tauchbeschichtungen imprägniert. Dies führt beispielsweise im Berichtsgebiet der OSPAR Kommission (2009) zu jährlichen Emissionen von mindestens 454 metrischen Tonnen (MT) Kupferoxid. Anderseits können ungeschützte und nicht gereinigte Netze eine Biomasse zwischen 2-8 kg/m2 Netzfläche an sich binden. Gegenstand des Projektes 'Biozid-freier Bewuchsschutz für die Marikultur' ist es deshalb, neue Biozid-freie Beschichtungsmaterialien in Kombination mit einer mechanischen Reinigung zu erzeugen. Dies ermöglicht einen Vergleich des Biozid-freien Bewuchsschutz in der Marikultur unter dem Gesichtspunkt der Eutrophierung gegenüber einer organischen und einer Kupferbasierten Aquakultur. Anhand der Ergebnisse wird diskutiert, unter welchen Umständen kleinere Farmbetriebe auf einen Biozid-freien Bewuchsschutz umsteigen könnten, um die Umwelt zu entlasten und sich ein Wechsel zur Produktion von 'Biofisch' unterstützen lässt.
Ziel dieses Vorhabens ist die Reduktion von Tierversuchen im Bereich der akuten Inhalationstoxikologie durch Einsatz einer standardisierten in vitro Direktexpositionsmethode zur Untersuchung partikelhaltiger Atmosphären und Bestimmung des zytotoxischen und inflammatorischen Potentials der betreffenden Teststäube. Die Daten werden zur Beurteilung der Intra- und Inter-Laboratoriumsvariabilität herangezogen und müssen sowohl Aufschluss über deren Reproduzierbarkeit, Robustheit und Stabilität geben, als auch die Grundlage für die Prävalidierung der Methode liefern. Zu Projektbeginn werden die experimentellen Voraussetzungen geschaffen, um die unter den prüfungsspezifischen Bedingungen notwendigen Anforderungen an das In-vitro-System zu realisieren. Gleichzeitig werden Methoden etabliert und evaluiert, die zur Exposition der kultivierten Zellen mit Partikeln, der Charakterisierung der Expositionsatmosphäre sowie der Bestimmung der biologischen Endpunkte notwendig sind. Im nächsten Schritt werden Expositionen mit ausgewählten Partikeln (DQ12, TiO2-P25, CB14, ZnO, BaSO4, ALOOH I, CeO2, ZrO2, CuO nano und CuO micro) in den 3 Expositionslaboratorien durchgeführt. Die Auswahl der Stoffe richtet sich nach deren Toxizität, Verfügbarkeit, dem Handling und ihrem Status als Referenzsubstanzen für inhalationstoxikologische Untersuchungen. Abschließend erfolgt anhand der ermittelten Datenlage eine Bewertung der In-vitro-Methode (Prävalidierung) und die Erstellung eines Prädiktionsmodells.
Ziel dieses Vorhabens ist die Reduktion von Tierversuchen im Bereich der akuten Inhalationstoxikologie mittels einer standardisierten in vitro Direktexpositionsmethode zur Untersuchung partikelhaltiger Atmosphären. Bestimmung des zytotoxischen und inflammatorischen Potentials der Teststäube. Die Daten werden zur Beurteilung der Intra- & Inter-Laboratoriumsvariabilität herangezogen und müssen Aufschluss über deren Reproduzierbarkeit, Robustheit und Stabilität geben sowie die Grundlage für die Prävalidierung der Methode liefern. Die Daten fließen in ein Prädiktionsmodell ein, das Aufschluss über die In-vitro-/In-vivo-Korrelation gibt. Zu Projektbeginn werden die experimentellen Voraussetzungen geschaffen, um die prüfungsspezifischen Anforderungen an das In-vitro-System zu realisieren. Gleichzeitig werden Methoden etabliert, die zur Exposition der kultivierten Zellen, der Charakterisierung der Expositionsatmosphäre sowie der Bestimmung der biologischen Endpunkte notwendig sind. Dann werden Expositionen mit ausgewählten Partikeln (DQ12, TiO2-P25, CB14, ZnO, BaSO4, ALOOH I, CeO2, ZrO2, CuO nano und CuO micro) in den 3 Expositionslaboratorien durchgeführt. Die Auswahl der Stoffe richtet sich nach deren Toxizität, Verfügbarkeit, dem Handling und ihrem Status als Referenzsubstanzen für inhalationstoxikologische Untersuchungen. Abschließend erfolgt anhand der ermittelten Datenlage eine Bewertung der In-vitro-Methode (Prävalidierung) und die Erstellung eines Prädiktionsmodells. Im Bereich der Industriechemikalien, aber auch bei Verbraucherprodukten und Umweltstoffen besteht ein erhebliches Interesse an einfachen, aber dennoch aussagekräftigen JPrüfmethoden zur Beurteilung des zytotoxischen Potentialsluftgetragener Substanzen (Partikeln). Hier bieten sich In-vitro-Methoden mit Zellen des Respirationstraktes vom Menschen an, die aufgrund neuer innovativer Expositionstechniken direkt mit den Stoffen im Kontakt gebracht werden und analog zur In-vivo-Situation ihre biologischen Wirkung entfalten können. Unter der Voraussetzung einer positiven Prävalidierung mit sich anschließender Validierungsphase, kann ein solches Verfahren in andere Laboratorien transferiert und der Industie zur Erhebung toxikologisch anerkannter Ergebnisse angeboten werden.