API src

Found 2688 results.

Similar terms

s/lagen/Magen/gi

Entwicklung biologisch abbaubarer Saatleinen für die (Makro-)Algenzucht und einer angepassten Aufzuchttechnologie in offener, mariner, küstennaher Aquakultur, Teilprojekt A

Konzepte zur Sanierung konventioneller Munitionsaltlasten in Nord- und Ostsee, Vorhaben: Effekte von marinen Munitionsaltlasten auf Fische

Vergleichende wirkungsbezogene Untersuchungen zur Toxizitaet von Einzelsubstanzen und Substanzkombinationen an Wirbeltieren, Wirbellosen, Algen und Bakterien

Wassergefaehrdende Stoffe werden mit Bakterien-, Algen-, Daphnien- und Fischtests auf ihre akute Toxizitaet hin untersucht.

Taxonomie ausgewaehlter Algengruppen sowie Algenflora und -vegetation unterschiedlicher Lebensraeume in Abhaengigkeit von Umweltfaktoren

Untersuchungen ueber Algenflora und -vegetation von ausgewaehlten, unterschiedlichen Lebensraeumen Europas, die bisher meist nur unvollstaendig bekannt sind, liefern u.a. auch die Voraussetzungen, um Veraenderungen in den Biozoenosen (insbesondere bei anthropogener Beeinflussung der Standorte) sicherer zu beurteilen und entsprechende Massnahmen zu begruenden (z.B. im Hinblick auf die Verbesserung der Wasserqualitaet, die Erhaltung von Schutzgebieten). Ein Teil der Untersuchungen beruecksichtigt besonders die Feinstruktur von Diatomeenschalen in Abhaengigkeit von den Standortfaktoren. Damit soll u.a. ein Beitrag zur genaueren Kenntnis von Indikatorarten (z.B. fuer die Wasserverschmutzung) geleistet werden.

Aktivität und Stoffumsatz mikrobieller Nahrungsnetze im arktischen und antarktischen Meereis

Das Meereis ist ein einzigartiger Lebensraum für eine Gemeinschaft aus Pflanzen und Tieren, die ein im Meereis ausgebildetes Solekanalsystem besiedeln. Während ein guter Kenntnisstand über die mesoskalige Verteilung (ca. 10 cm) und die Zusammensetzung dieser Gemeinschaften vorliegt, ist die kleinskalige Verteilung (1 cm) und die Interaktionen der Organismen dieser Gemeinschaften nur wenig bekannt. Das Ziel des beantragten Forschungsvorhabens ist die Untersuchung der kleinskaligen Verteilung der Organismen und der Struktur des Nahrungsnetzes, das von ihnen gebildet wird. Dabei soll insbesondere der Einfluß der inneren Oberfläche des Meereises auf den Aufbau des Nahrungsnetzes berücksichtigt werden. Von der Vermutung ausgehend, dass ein großer Anteil der eisassoziierten Bakterien- und Algenbiomasse in Form von Biofilmen vorliegt, soll die Biomasse und Aktivität an Oberflächen gebundener Bakterien und Algen mit der von frei in der Sole lebenden Organismen verglichen werden. Ein weiterer Schwerpunkt liegt in der Untersuchung von bakterien- und algenfressenden Protozoen und der Quantifizierung ihrer Bedeutung für den Stoffumsatz im Meereis.

Steuerung benthischer Algenbiomasse durch Weidegänger: Die Rolle der Nahrungsqualität auf unterschiedlichen räumlichen Skalen

In Nahrungsnetzen kontrollieren sowohl bottom-up (Ressourcen) als auch top-down Faktoren (Fraß durch höhere trophische Ebenen) die Biomasse intermediärer Stufen wie z. B. benthischer Algen (Periphyton). Die Wichtigkeit beider Mechanismen konnte gezeigt werden; allerdings scheint die Stärke der top-down Kontrolle in verschiedenen natürlichen Systemen stark zu variieren und die Faktoren, welche die Stärke der top-down Kontrolle bestimmen, sind bisher nur unzureichend verstanden. Die zentrale Hypothese dieses Projekts ist, dass die Stärke der top-down Kontrolle durch die Nahrungsqualität der Algen bestimmt wird, die ihrerseits durch die Allokation essentieller Ressourcen (wie Licht und Nährstoffe) beeinflusst wird. Insbesondere in räumlich gegliederten Gemeinschaften wie Periphyton zeigt die Nahrungsqualität eine große räumliche Heterogenität. Zusammen mit davon abhängigen dynamischen Verhaltensanpassungen der Herbivoren ist dies vermutlich besonders wichtig für die Kontrolle der Biomasseentwicklung des Periphytons, wenngleich diese Faktoren bisher nicht ausreichend untersucht wurden. In diesem Projekt untersuchen wir diese Hypothese auf verschiedenen Skalen und Komplexitätsstufen, sowohl in hochkontrollierten Laborexperimenten, als auch in freilandnahen Mesokosmosexperimenten. Dies umfasst die lokale, homogene Patchgröße, die komplexere Multi-Patch-Ebene mit räumlicher Heterogenität und der Möglichkeit zur Futterwahl für die Herbivoren bis hin zu hochkomplexen Szenarien unter Berücksichtigung von Wachstum und Migrationsverhalten der Herbivoren in Mesokosmosexperimenten. Auf diesen Komplexitätsstufen wird die Ressourcenverfügbarkeit (des limitierenden Nährstoffs P und Lichtenergie) experimentell manipuliert und die Kontrolle der Periphytonbiomasse durch Herbivorie auf zwei Wegen quantifiziert: a) als Biomasseflux zwischen Algen und Herbivoren und b) als Reduktion der Periphytonbiomasse durch Weidegänger im Vergleich zu konsumentenfreien Kontrollansätzen. Insgesamt wird dieses Projekt zeigen, welche Mechanismen die Stärke der top-down Kontrolle auf das Periphyton regulieren und wird dazu beitragen, die Kontrolle der Eutrophierung natürlicher Oberflächengewässer besser zu verstehen.

Rolle von Epoxyden und Nitrosaminen bei der Tumorgenese des menschlichen Gastrointestinaltraktes und der Leber

Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Die Effekte von Variation in Nährstoffstöchiometrie in Algen auf Herbivorengemeinschaften

Schwankungen in der Verfügbarkeit von Licht und Nährstoffen im Phytoplankton führen zu Unterschiede in der Nährstoffstöchiometrie der Algen. Diese Variabilität wird weiter beeinflusst durch Wachstumsratender Algen. In den meisten Fällen führt schnelles Wachstum zu einem bestimmten optimalen Nährstoffgehalt in Algen, während Algen die langsamer wachsen eine viel größere Variabilität in Nährstoffzusammensetzung vorweisen. Diese Muster wurden bis jetzt vor allem auf Populationsebene nachgewiesen, und bis jetzt ist es unklar, ob dies auch gilt innerhalb von Populationen, zwischen einzelnen Algenzellen. So ist es eine offene Frage, ob der Zusammenhang zwischen Wachstumsrate und Nährstoff Stöchiometrie von Algen eine Populationsresponse oder auch eine Response einzelner Zellen ist. Zooplankton verzeichnet in der Regel eine deutlich konstantere Nährstoffstöchiometrie als Algen und damit ein stärkeres Maß an Homöostase. Verschiedene Lebensstadien der gleichen Spezies können jedoch völlig unterschiedliche Ernährungsbedürfnisse haben. Zum Beispiel haben die schnellere wachsende Nauplien in Copepoden, einen höheren Bedarf an Phosphor als ältere Stadien. Infolgedessen, hat eine von jüngeren Stadien dominierte Population eine unterschiedliche optimale Nahrung als wenn die Population von älteren Stadien dominiert wird. In dieser Studie werden wir prüfen ob Variation in Populationswachstum in Mikroalgen zu Änderungen in der Nährstoffstöchiometrie der Algen führt, sowohl zwischen Populationen als auch zwischen Individuen innerhalb von Populationen. Wir untersuchen dann den Effekt dieser durch unterschiedliche Wachstumsraten induzierten Veränderungen in Nährstoffzusammensetzung auf das Wachstum und die Dynamik der Weidegänger. Wenn die Variation in Nährstoffstöchiometrie mit langsamer Algenwachstum zunimmt, dann entsteht hier durch potentiell ein Gradient verschiedener Nahrungsqualitäten. Wir wissen, dass viele Herbivoren ihre Nahrung sehr selektiv zu sich nehmen. Also, wenn langsameres Wachstum ein breiteres Spektrum an verschiedenen Nährstoffstöchiometrie in den Algen als Konsequenz hat, entstehen hier durch potentiell mehrere Nischen für unterschiedliche Arten oder Lebensstadien. Im Idealfall würde im Falle der Copepoden, die Nauplien hohe P-Algen aus der Population aufnehmen, während die älteren Stadien selektiv die Algen fressen würden die mehr Stickstoff enthalten. So würde die Konkurrenz für eine Ressource eingeschränkt werden, da es innerhalb einer langsam wachsenden Population mehr als eine Ressource geben würde. Letztlich könnte dies bedeuten, dass Systeme mit langsamer wachsenden Primärproduzenten eine höhere Vielfalt von Sekundärproduzenzen aufrechterhalten könnte als jene in dem Algenwachstum höher ist.

Ermittlung des Potenzials schädlicher Phytoplankton-Massenentwicklungen in Bundeswasserstraßen

Veranlassung Die aktuellen, trockenen Jahre haben gezeigt, dass an den Bundeswasserstraßen im Binnenland und den Ästuaren in Zeiten des Klimawandels wieder vermehrt mit Eutrophierungs-Phänomenen zu rechnen ist. Das Fischsterben in der Oder, ausgelöst durch das verstärkte Wachstum der Alge Prymnesium parvum und der von ihr gebildeten Toxine, die mittlerweile regelmäßig auftretenden Cyanobakterienblüten an der Mosel oder auch die wieder verstärkt auftretende Sauerstoffproblematik in vielen Fließgewässern wie z. B. der Elbe sind die prominentesten Beispiele dieser Entwicklung (Abb. 1). Nicht nur in den Medien, der Öffentlichkeit und in der nationalen und internationalen Politik, auch bei den verwaltenden Behörden wie den Landesämtern oder der Wasserstraßen und Schifffahrtsverwaltung des Bundes erregt dieses Thema große Aufmerksamkeit und Besorgnis. Eutrophierung ist eines der zentralen Wasserqualitätsprobleme, die in der Nationalen Wasserstrategie der Bundesregierung benannt werden. Ihre Vermeidung, insbesondere im Ästuar- und Küstenbereich, ist „Vision“ der Nationalen Wasserstrategie und entspricht dem nationalen Umweltziel 1 aus der Umsetzung der Europäischen Meeresstrategie-Rahmenrichtlinie. Die Gründe für diese Eutrophierungsphänomene liegen in den ungewöhnlich langen, trockenen und warmen Wetterperioden in den Frühjahrs- und Sommermonaten der vergangenen Jahre. Diese führen nicht nur zu einem Anstieg der Wassertemperatur und ausreichender Lichtverfügbarkeit, auch der Abfluss in den Bundeswasserstraßen nimmt ab, während die Aufenthaltszeit des Wassers gerade in staugeregelten Bereichen ansteigt. All diese Faktoren sind wachstumsfördernd für Algen und Cyanobakterien. Durch den geringen Abfluss werden zudem eingeleitete Substanzen nicht mehr ausreichend verdünnt. Im Falle der Oder führten durch den Bergbau eingeleitete Salze erst dazu, dass die Brackwasseralge Prymnesium parvum ein ideales Habitat vorfand. Es besteht daher starker Bedarf, solche Kipppunkte von Gewässern frühzeitig zu erkennen und über ein Monitoringprogramm im Krisenfall die Handlungsfähigkeit der zuständigen Behörden zu verbessern. Dazu ist es zunächst notwendig, das Potenzial der Bundeswasserstraßen für die Massenentwicklung von schädlichen Algen und Cyanobakterien zu evaluieren und damit zu klären, an welchen Bundeswasserstraßen das Risiko für schädliche Algenblüten besteht. Es gibt verschiedene Algen, andere Protisten und Cyanobakterien, die das Potenzial schädlicher Auswirkungen auf das Ökosystem und die menschliche Gesundheit haben. Die Nischen oder Habitate, in denen diese Arten vorkommen sind zwar begrenzt, es ist jedoch nachgewiesen, dass durch den Menschen verursachte Phänomene (Klimawandel, Einleitung von Nährstoffen und Salzen) die Ausbreitung schädlicher Algen befördern und es dadurch zu massenhaften Entwicklungen dieser kommt. Es ist nicht bekannt, in welchen der Bundeswasserstraßen mögliche Habitate für diese schädlichen Organismen derzeit bestehen oder auch in Zukunft unter einem Klimawandelszenario entstehen könnten. Diese Lücke soll in diesem Projekt geschlossen werden. Ziele - Identifizierung der TOP10 HABs (engl. „Harmful Algae Blooms“ = schädliche Algenblüten), also der 10 Arten, die am wahrscheinlichsten in großen Fließgewässern eine schädliche Algenblüte bilden und Charakterisierung ihrer Umweltanforderungen - Erstellung und Veröffentlichung von Steckbriefen der TOP10 HABs - Zusammenstellung von Umweltdaten für eine Risikoanalyse schädlicher Phytoplankton-Massenentwicklungen - Analyse des trophischen Potenzials der Bundeswasserstraßen, d. h. der theoretischen Möglichkeit für eine Phytoplankton-Massenentwicklung in den Bundeswasserstraßen.

Aktionsprogramm Natürlicher Klimaschutz (ANK), Stärkung des Kohlenstoffspeicherpotenzials von Nord- und Ostsee - Fokus Guter Umweltzustand Eutrophierung

Die EU-Meeresstrategie-Rahmenrichtlinie (MSRL) und die EU-Wasserrahmenrichtlinie (WRRL) erfordern die Erreichung bzw. Erhaltung des guten Umweltzustands von Nord- und Ostsee. Grundsätzlich wird davon ausgegangen, dass ein effektiver Meeresschutz einen wichtigen Beitrag zum Klimaschutz leistet. Dahinter steckt die Annahme, dass gesunde Küsten- und Meeresökosysteme mehr Kohlendioxid und Nährstoffe speichern können als anthropogen beeinträchtige Systeme. So führt z.B. die Eutrophierung zu vermehrtem Algenwachstum und einer Trübung des Wassers, die die Ausbreitung von Seegraswiesen beeinträchtigt, die größere Mengen an Kohlenstoff speichern. Andere Zusammenhänge sind weniger gut erforscht. So könnte es z.B. durch die Reduktion der Nährstoffeinträge und des in Folge abnehmenden Algenwachstums zu einer Reduktion des Transports von Kohlenstoff in die Meeressedimente kommen. Der gute Umweltzustand gemäß MSRL und der gute ökologische/ chemische Zustand gemäß WRRL sind anhand ausgewählter Indikatoren und ihrer Schwellenwerte klar definiert. Ziel des Vorhabens ist es, das Kohlenstoffs- und Nährstoffspeicherpotential im gegenwärtigen Zustand und im guten Umweltzustand auf der Basis von Monitoringdaten und Literaturstudien zu quantifizieren und zu vergleichen. Dies soll an ausgewählten, gut untersuchten Modellgebieten jeweils in den Küsten- und Meeresgewässern und in Nord- und Ostsee erfolgen. Der Fokus liegt zunächst auf der Eutrophierung, es sollen aber soweit auf der Basis der Datenlage möglich auch andere relevante Belastungen wie Schadstoffe und Baggergutentnahme untersucht werden. Auf der Basis der Untersuchungen der Modellgebiete soll eine Prognose des Kohlenstoffs- und des Nährstoffspeicherpotenzials für die gesamte Nord- und Ostsee im aktuellen und im guten Umweltzustand erarbeitet werden. Das Vorhaben soll darüber hinaus Empfehlungen erarbeiten, durch welche Maßnahmen sich das Kohlenstoffspeicherpotential von Nord- und Ostsee weiter stärken lässt.

1 2 3 4 5267 268 269