API src

Found 1119 results.

Similar terms

s/laststeuerung/Laststeue­rung/gi

Abschätzung der Bedeutung des Einspeisemanagements nach EEG 2009 - Auswirkungen auf die Windenergieerzeugung in den Jahren 2009 und 2010

Die Abschaltung von Windenergieanlagen aufgrund von Netzengpässen ist im Vergleich zum Vorjahr um bis zu 69 Prozent gestiegen. Zu diesem Ergebnis kommt die Ecofys Studie 'Abschätzungen der Bedeutung des Einspeisemanagements nach EEG 2009', die im Auftrag des Bundesverbandes WindEnergie e.V. (BWE) erstellt wurde. Im Jahr 2010 sind bis zu 150 Gigawattstunden Windstrom verloren gegangen, weil die Netzbetreiber Anlagen abgeschaltet haben. Auch zahlenmäßig nahmen diese als Einspeisemanagement (EinsMan) im Erneuerbaren Energien Gesetz geregelten Abschaltungen massiv zu. Gab es 2009 noch 285 sogenannte EinsMan-Maßnahmen, waren es 2010 bereits 1085. Der durch Abschaltungen verlorengegangen Strom entspricht dabei einem Anteil von bis zu 0,4 Prozent an der in Deutschland im Jahr 2010 insgesamt eingespeisten Windenergie. Ursachen für EinsMan waren im Jahr 2010 überwiegend Überlastungen im 110 kVHochspannungsnetz und an Hochspannungs-/ Mittelspannungs-Umspannwerken, selten auch im Mittelspannungsnetz. In den nächsten Jahren ist von einem weiteren Anstieg der Ausfallarbeit bei Windenergieanlagen auszugehen, insbesondere weil sowohl 2009 mit 86Prozent als auch 2010 mit nur 74Prozent vergleichsweise sehr schlechte Windjahre gewesen sind. Mit dem Ziel, die Transparenz der EinsMan-Maßnahmen und deren Auswirkungen auf die Einspeisung aus Windenergieanlagen und anderer Anlagen zur Erzeugung von Strom aus Erneuerbaren Energien zu verbessern, sollte für jeden Einsatz von EinsMan ex-post im Internet in einem einheitlichen Datenformat aufgeschlüsselt nach Energieträgern - der Zeitpunkt und die Dauer, - die betroffene Netzregion inklusive der installierten und zum Zeitpunkt tatsächlich eingespeisten Leistung, die maximale Reduzierung je -Std. Zeitraum sowie - die Netzregion übergreifenden Korrekturfaktor, Ausfallarbeit und Entschädigungszahlungen und - der Grund für die Maßnahme veröffentlicht werden.

Entwicklung und Erprobung eines dynamischen Lademanagements für Niederspannungsortsnetze, Teilvorhaben: EFR GmbH

Energieoptimierte Produktion mit grünen Digitalen Zwillingen

BHKW-Wärmespeicher mit makrogekapselter PCM-Schüttung

Blockheizkraftwerke (BHKW) eignen sich besonders für dezentrale Strom- und Wärmekonzepte und bilden eine effiziente Regelenergiequelle für virtuelle Kraftwerke. Es ist daher notwendig, die Erzeugung von Strom und Wärme durch geeignete Speichersysteme im Tageslastgang weitestgehend zu entkoppeln. Latentwärmespeicher (LWS) ermöglichen im Vergleich zu Wasserspeicher höhere Speicherdichten, kommen aber aufgrund hoher Kosten bislang kaum zum Einsatz. Für kompakte Systemlösungen aus Klein-BHKW und Speicher wären jedoch höhere Speicherdichten jedoch wünschenswert. Zielstellung des Projektes ist daher die Untersuchung von Makroverkapselungen für Latentspeichermedien (PCM) auf der Basis von Beutelverpackungen, mit denen die Speicherkosten reduziert werden können. Durch eine modulare Bauweise des Speichers wird zudem eine Anpassung an verschiedene Anwendungsfälle ermöglicht.

EnOB: Skalierbares Anlagenmonitoring in großen Liegenschaften, Teilvorhaben: Smarte Datenbasis für digitale Services mit automatischen Selbstkonfigurationsfunktionen

Digital surface model of the watercourses Elbe and Lower Havel (Germany), DGM-W Elbe project, DOM Elbe 2022

The high-resolution digital surface model (DSM1, DOM1) of the watercourses Elbe and Lower Havel is based on the airborne laser scanning data, undertaken from 06 January 2022 to 18 March 2022 in the Elbe area and from 20 to 22 December 2021 in the Havel area. It was produced and published by Germany’s Federal Institute of Hydrology (BfG), on behalf of the River Basin Community Elbe (RBC Elbe, FGG Elbe). The work was supported by the German Federal Waterways and Shipping Administration (WSV) and the surveying offices and water management administrations of six German states - Saxony, Saxony-Anhalt, Brandenburg, Lower Saxony, Mecklenburg-Vorpommern and Schleswig-Holstein. The data cover both the area around the inland water stretches of the Elbe from the Czech-German border to the village of Zollenspieker (part of the city of Hamburg) and the Lower Havel waterway from the town of Rathenow to its confluence with the Elbe. Since the dataset has a large coverage of 4,043 km², it is split into 62 sections. They were either labelled *HW in case of flood relevant areas (in German: “hochwasser-relevante Gebiete”) or *AU in case of historical floodplains (in German: “Altauengebiete”). Financing was divided according to these categories: In the HW areas, the project was co-funded by BfG, the WSV and the federal states, while in the AU areas, BfG covered all project costs. For each section we provide hillshade (*HS) and height maps (*NHN). The data are available in a raster resolution of 1 meter in GeoTiff format; Coordinate reference frame: ETRS89.DREF91.R16; Coordinate projection: UTM Zone 33N; EPSG-Code: 25833; Height reference system: DHHN2016, national vertical reference frame in Germany (2022). For further information please contact us. Citation short: BfG et al. / i.A. FGG Elbe (2025)

Digitalisierte Wärmespeicher für die Energiewende, Teilvorhaben: Optimierung Sensorhaut zur großflächigen Temperaturerfassung an Wärmespeichern

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Digitalisierte Wärmespeicher für die Energiewende

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Digitalisierte Wärmespeicher für die Energiewende, Teilvorhaben: Integration einer Sensorhaut zur Effizienzsteigerung von Wärmespeichern

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2-Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Digitalisierte Wärmespeicher für die Energiewende, Teilvorhaben: Optimierung Sensorhaut zur großflächigen Temperaturerfassung an Wärmespeichern

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2-Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

1 2 3 4 5110 111 112