Im Projekt wird geprüft, ob sich die Lasertechnik in Verbindung mit automatisierter Bilderkennung für den Vorratsschutz eignet. Die per Kamera gewonnenen Bildinformationen der Oberflächen werden mit zuvor in einer Datenbank gespeicherten Merkmalen von Schädlingen aus Referenzbildern verglichen. Im Ergebnis des dann vorliegenden Bildvergleichs kann das Auftreten des Schädlings mit einem Wahrscheinlichkeitswert angegeben werden. Ergänzend wird überprüft, ob eine Einzelbekämpfung auftretender Schädlinge mittels Laserstrahl möglich ist. Die transformierten Koordinaten der Kameraüberwachung werden an einen Schwingspiegel weitergegeben und dieser entsprechend angesteuert. Nach Positionierung des Spiegels wird ein Laserimpuls ausgelöst, wobei der Schädling durch die Strahlenleistung (größer als 500mW) und die damit einhergehende schnelle Temperaturerhöhung (größer als 80 Grad Celsius) abgetötet wird. Dabei gilt es, durch kurze Impulsdauer und hohe Leistung des Lasers eine Schädigung der darunterliegenden Vorräte oder Oberflächen zu vermeiden.
Im Projekt wird geprüft, ob sich die Lasertechnik in Verbindung mit automatisierter Bilderkennung für den Vorratsschutz eignet. Die per Kamera gewonnenen Bildinformationen der Oberflächen werden mit zuvor in einer Datenbank gespeicherten Merkmalen von Schädlingen aus Referenzbildern verglichen. Im Ergebnis des dann vorliegenden Bildvergleichs kann das Auftreten des Schädlings mit einem Wahrscheinlichkeitswert angegeben werden. Ergänzend wird überprüft, ob eine Einzelbekämpfung auftretender Schädlinge mittels Laserstrahl möglich ist. Die transformierten Koordinaten der Kameraüberwachung werden an einen Schwingspiegel weitergegeben und dieser entsprechend angesteuert. Nach Positionierung des Spiegels wird ein Laserimpuls ausgelöst, wobei der Schädling durch die Strahlenleistung (größer als 500 mW) und die damit einhergehende schnelle Temperaturerhöhung (größer als 80 Grad Celsius) abgetötet wird. Dabei gilt es, durch kurze Impulsdauer und hohe Leistung des Lasers eine Schädigung der darunterliegenden Vorräte oder Oberflächen zu vermeiden.
Da zunehmend nachhaltige Bekämpfungsstrategien zur Bekämpfung von Vorratsschädlingen fehlen und sich die wärmeliebende Dörrobstmotte Plodia interpunctella zu einem neuen Problemschädling in Getreidelagern entwickelt hat, soll mit dem vorliegenden Vorhaben der Einsatz ihrer biologischen Gegenspieler optimiert werden. Als Voraussetzung für einen wirksamen Einsatz von Vorratsnützlingen müssen Maßnahmen zur Befallsvermeidung und geeignete Monitoringmethoden in den Betrieben angepasst und etabliert werden. Sie ermöglichen eine Früherkennung des Schädlings und einen präventiven Nützlingseinsatz. In fünf Arbeitspaketen werden die vorhandenen Nützlingssysteme vom Labor bis hin zum Praxisversuch verbessert. Es soll zunächst die Früherkennung der auftretenden Motten optimiert werden. In Laboruntersuchungen werden Trichogramma-Zuchtlinien hinsichtlich einer besonderen Eignung zur Bekämpfung der Eier der Dörrobstmotte und ihrer Temperaturtoleranz für die Anwendung unter heißen Lagerbedingungen im Sommer selektiert. Im Lager wird die Applikationstechnik für Vorratsnützlinge neu angepasst, d.h. sowohl die Ausbringungseinheit als auch die Anwendungsempfehlung (Dosierung, Einsatztermine und räumliche Verteilung). Im Rahmen der Lagerversuche werden neue Schlupfwespen gesucht auf ihre Eignung im biologischen Vorratsschutz getestet. Schließlich werden in zwei Praxisversuchen in Langzeit-Getreidelagern die optimierten Nützlingsprodukte eingesetzt und ihre verbesserte Wirksamkeit überprüft.
Da zunehmend nachhaltige Bekämpfungsstrategien zur Bekämpfung von Vorratsschädlingen fehlen und sich die wärmeliebende Dörrobstmotte Plodia interpunctella zu einem neuen Problemschädling in Getreidelagern entwickelt hat, soll mit dem vorliegenden Vorhaben der Einsatz ihrer biologischen Gegenspieler optimiert werden. Als Voraussetzung für einen wirksamen Einsatz von Vorratsnützlingen müssen Maßnahmen zur Befallsvermeidung und geeignete Monitoringmethoden in den Betrieben angepasst und etabliert werden. Sie ermöglichen eine Früherkennung des Schädlings und einen präventiven Nützlingseinsatz. In fünf Arbeitspaketen werden die vorhandenen Nützlingssysteme vom Labor bis hin zum Praxisversuch verbessert. Es soll zunächst die Früherkennung der auftretenden Motten optimiert werden. In Laboruntersuchungen werden Trichogramma-Zuchtlinien hinsichtlich einer besonderen Eignung zur Bekämpfung der Eier der Dörrobstmotte und ihrer Temperaturtoleranz für die Anwendung unter heißen Lagerbedingungen im Sommer selektiert. Im Lager wird die Applikationstechnik für Vorratsnützlinge neu angepasst, d.h. sowohl die Ausbringungseinheit als auch die Anwendungsempfehlung (Dosierung, Einsatztermine und räumliche Verteilung). Im Rahmen der Lagerversuche werden neue Schlupfwespen gesucht auf ihre Eignung im biologischen Vorratsschutz getestet. Schließlich werden in zwei Praxisversuchen in Langzeit-Getreidelagern die optimierten Nützlingsprodukte eingesetzt und ihre verbesserte Wirksamkeit überprüft.
Im Projekt wird geprüft, ob sich die Lasertechnik in Verbindung mit automatisierter Bilderkennung für den Vorratsschutz eignet. Die per Kamera gewonnenen Bildinformationen der Oberflächen werden mit zuvor in einer Datenbank gespeicherten Merkmalen von Schädlingen aus Referenzbildern verglichen. Im Ergebnis des dann vorliegenden Bildvergleichs kann das Auftreten des Schädlings mit einem Wahrscheinlichkeitswert angegeben werden. Ergänzend wird überprüft, ob eine Einzelbekämpfung auftretender Schädlinge mittels Laserstrahl möglich ist. Die transformierten Koordinaten der Kameraüberwachung werden an einen Schwingspiegel weitergegeben und dieser entsprechend angesteuert. Nach Positionierung des Spiegels wird ein Laserimpuls ausgelöst, wobei der Schädling durch die Strahlenleistung (größer als 500 mW) und die damit einhergehende schnelle Temperaturerhöhung (größer als 80 Grad Celsius) abgetötet wird. Dabei gilt es, durch kurze Impulsdauer und hohe Leistung des Lasers eine Schädigung der darunterliegenden Vorräte oder Oberflächen zu vermeiden.
Post-Harvest Losses (PHL) destroy between 20 and 60% of the East-African food production, thus heavily contributing to the devastating nutritional situation. They represent an unacceptable waste of scarce resources (soil, water, labour, seeds, fertilizers), and aggravate rural poverty, as they impede income generation along the food value chain. RELOAD proposes to establish a development oriented inter- and transdisciplinary African-German Research Network in Kenya, Uganda, and Ethiopia, to address reduction of PHL and enhancing value addition. The applying consortium comprises 3 German and 6 African universities, research institutions and private sector representatives (SME). RELOADs integrated approach addresses the whole food value chain, including scientific base, capacity building, handling and processing at smallholder level, transport, storage, processing and market access. The referring target groups comprise East-African scientific networks, administrations, SMEs, farmers and civil society actors. The simultaneous treatment of agricultural, technological, economic and social issues allows for an efficient and sustainable improvement of the East African food system.
| Origin | Count |
|---|---|
| Bund | 31 |
| Type | Count |
|---|---|
| Förderprogramm | 31 |
| License | Count |
|---|---|
| offen | 31 |
| Language | Count |
|---|---|
| Deutsch | 29 |
| Englisch | 2 |
| Resource type | Count |
|---|---|
| Keine | 13 |
| Webseite | 18 |
| Topic | Count |
|---|---|
| Boden | 13 |
| Lebewesen und Lebensräume | 27 |
| Luft | 11 |
| Mensch und Umwelt | 31 |
| Wasser | 13 |
| Weitere | 31 |