API src

Found 3858 results.

Related terms

Sonderforschungsbereich (SFB) 924: Molekulare Mechanismen der Ertragsbildung und Ertragssicherung bei Pflanzen; Molecular Mechanisms Regulating Yield and Yield Stability in Plants, Schwerpunktprogramm SFB 924: Molekulare Mechanismen der Ertragsbildung und Ertragssicherung bei Pflanzen - Teilprojekt A06: Molekulare Funktion der VACUOLAR FUSION DEFECTIVE Proteine im intrazellulären Protein Trafficking und der Vakuolenbiogenese

Vakuolen dienen als Hauptspeicherorgan der Pflanzen, und sie sind für die Samenreifung, die Fruchtbildung und die Rhizomentwicklung wichtig. Vakuolen sind auch essentiell für das Pflanzenwachstum, da sie zum Streckungswachstum der Zellen beitragen. Trotz ihrer Wichtigkeit für Pflanzen sind die Vakuolenbiogenese und Erhaltung nicht gut erforscht und verstanden. Im beantragten Projekt möchten wir den molekularen Mechanismus der Biogenese und Erhaltung dieses dynamischen Organells aufklären, indem wir vacuole fusion defective-Mutanten und die kleine GTPase RAB7:G von Arabidopsis analysieren.

Einsatz von phototrophen Biofilmen im Agrarsektor zur Verbesserung des Pflanzenwachstums

Im Jahr 2018 wurden in Deutschland rund 866 Millionen Tonnen Treibhausgase produziert, wobei weltweit 10-12 % der anthropogenen Treibhausemissionen der Landwirtschaft zuzuordnen sind. Während der Austausch an CO2 durch die gleichzeitige CO2 Fixierung in organische Masse fast ausgeglichen ist, beträgt der Anteil der Landwirtschaft bei Methan 50 % und Lachgas sogar 60 % aller Emissionen. Dies ist vor allem auf den Einsatz mineralischer und organischer Düngemittel zurückzuführen. Ohne ein aktives Gegensteuern wird eine Steigerung der Lachgasemissionen um 30-65 % bis 2030 in der Agrarwirtschaft erwartet. Um das gesetzte klimapolitische Ziel einer weitgehenden Treibhausgas-Neutralität bis 2050 zu erreichen, stellt ein klimaschonender Anbau von nachwachsenden Rohstoffen in der Landwirtschaft eine wichtige Strategie dar. Ein zentraler Teilaspekt dieser Strategie könnte die Ansiedlung der gegenüber biotischen und abiotischen Bedingungen toleranten terrestrischen Cyanobakterien sein, die in der Lage sind Luftstickstoff zu fixieren und in - für andere Organismen verwertbaren - Stickstoff umzuwandeln und an die Umgebung abzugeben. Zusätzlich dazu wachsen terrestrische Cyanobakterien eingebettet in einer Matrix aus extrazellulären polymeren Substanzen was zu einer wünschenswerten Bodenstabilisierung und damit zum Schutz vor Bodenerosion sowie zur Förderung der Wasserspeicherung im Boden beitragen könnte. Hierzu sollen stickstofffixierende Cyanobakterien, die aus der kühlgemäßigten Klimazone isoliert wurden, eingesetzt werden. Geeignete Stämme müssen die Stickstofffixierung räumlich durch die Ausbildung von Heterozysten vom Photosyntheseapparat getrennt haben und den bioverfügbaren Stickstoff an die Umgebung abgeben. Co-Kultivierungen von Cyanobakterien mit Arabidopsis thaliana (Acker-Schmalwand) sowie Triticum aestivum (Weizen) sollen zeigen, ob eine künstlich induzierte Symbiose möglich ist. Neben der Agrarpflanze Weizen wurde A. thaliana ausgewählt, da es sich hierbei um eine schnellwachsende und gut charakterisierte Modellpflanze handelt und sie zur selben Familie wie die Nutzpflanzen Kohl, Brokkoli und Meerrettich zählt. Zur Ausbringung der Biofilme in die Agrarwirtschaft sollen diese auf einem biologisch abbaubaren Trägermaterial immobilisiert werden. Hierfür soll ein Aerosolreaktor konzipiert und charakterisiert sowie ein Animpf- und Ernteverfahren etabliert werden. Zusätzlich dazu soll der Wasserrückhalt der Biofilme durch Variation der Prozessparameter optimiert werden. Abschließend soll die Co-Kultivierung von immobilisierten Cyanobakterien auf dem Trägermaterial und Pflanzen in Pflanzsubstraten in Abhängigkeit der Temperatur untersucht werden. Hier soll die Frage beantwortet werden, ob ein periodisches Ausbringen der Cyanobakterien notwendig ist, oder ob eine dauerhafte Implementierung von Biofilmen im Boden möglich ist.

Pruefung einer geeigneten Wiederverwertung des thermisch gereinigten Bodens aus der Altlastensanierung Konz

Durch Beimischung von Klaerschlamm zum thermisch gereinigten Boden werden dem inerten Material wichtige Organismen und Naehrstoffe zugefuehrt, welche den Einsatz des Bodens als Rekultivierungsschicht ermoeglichen. Ein negativer Aspekt dieses Verfahrens ist allerdings die haeufig sehr hohe Schadstoffbelastung (insbesondere Schwermetalle) des Klaerschlamms. Wesentlich ist hierbei die Mobilitaet der Schadstoffe, dh, ob diese pflanzenverfuegbar sind bzw ins Grundwasser ausgewaschen werden koennen. Eine eventuelle Festlegung an den Bodenmineralen wird in Laboruntersuchungen studiert.

Radikalbildung durch Kupferausbringung in landwirtschaftlich relevanten tonreichen Böden und ihre ökotoxikologischen Folgen

Nachhaltige Landwirtschaft agiert in einem Spannungsfeld zwischen Produktivität und Erhalt der Bodengesundheit. Kupfer wird in großem Umfang als Fungizid und Düngemittel eingesetzt, hat jedoch auch negative Auswirkungen auf die Bodengemeinschaft. Kupfertoxizität wird in der Regel durch Adsorption im Boden und Aufnahme durch Organismen erklärt, aber die Möglichkeit anderer toxischer Pfade, z. B. die Bildung von Radikalen, wird noch nicht in Betracht gezogen. Die Relevanz von Radikalen im Boden wurde zuvor in unseren Studien gezeigt, in denen Nanopartikel auf Kupferbasis bei sehr niedrigen, umweltrelevanten Konzentrationen negative Effekte auf Bodenorganismen hatten, einschließlich Reaktionen in deren antioxidativem System. Überraschenderweise war dies nur bei stark adsorbierenden, tonreichen Böden der Fall, die für die Landwirtschaft sehr relevant sind. Die Kombination von Kupfer und Ton in Böden ist in der Lage, reaktive Sauerstoffspezies (ROS) zu bilden oder weit verbreitete polyaromatische Schadstoffe in umweltbeständige freie Radikale (EPFR) umzuwandeln, die negative Folgen für Bodenorganismen, aber auch für die menschliche Gesundheit haben können. Die Bildung dieser Radikale beruht auf Elektronentransferprozessen, bei denen Übergangsmetalle wie Kupfer oder Eisen (insbesondere in nanopartikulärer Form), Tonminerale und organische Stoffe als Quelle und/oder Transporteur von überschüssigen Elektronen dienen. Alle diese Stoffgruppen kommen natürlich im Boden vor, werden aber auch durch landwirtschaftliche Aktivitäten eingebracht. In diesem Projekt werde ich mehrere repräsentative Stoffgruppen kombinieren, die ein landwirtschaftliches Bodensystem simulieren und für die Radikalbildung relevant sind. Das radikalbildende Potenzial sowohl natürlicher als auch anthropogener Stoffe, d.h. verschiedener Arten von Ton- und Eisenmineralen, organischer Substanz und anthropogenem Kupfer, wird einzeln und in Kombination ermittelt. Die Radikalbildung wird chemisch untersucht, indem die ROS- und EPFR-Bildung in künstlichen Bodenlösungen und Böden gemessen wird, aber auch biochemisch und ökologisch anhand der antioxidativen und Fitness-Reaktion von Springschwänzen (Folsomia candida). Um die Laborergebnisse auf die Freilandsituation zu übertragen, werden die Faktoren, die im Labor als am auffälligsten identifiziert wurden, zur Identifizierung potenzieller radikalbildender Hotspots im Feld verwendet; dabei werden Podsole mit Fluvisolen (schwankendere Redoxbedingungen aufgrund ihrer Nähe zu Flüssen) im Hinblick auf die Korrelation zwischen ihren Bodeneigenschaften und dem Auftreten von ROS und EPFR verglichen. Die Identifizierung der Bodenfaktoren für die Radikalbildung im Labor und auf dem Feld wird Auswirkungen auf den Bodenschutz, die Risikobewertung von Nanopestiziden und die landwirtschaftliche Bewirtschaftung haben und direkte Empfehlungen für eine nachhaltige Bewirtschaftung des Bodens mit Hinblick auf deren Potenzial zur Radikalbildung ermöglichen.

GRK 2000: Die deutsche Ostseeküste als terrestrisch-marine Schnittstelle für Wasser- und Stoffflüsse - Baltic Transcoast

Baltic TRANSCOAST erforscht die physikalischen, chemischen und biologischen Prozesse am Übergang zwischen Land und Meer. Der landseitige Küstenzonenbereich ist global der am stärksten von Menschen gestaltete und genutzte Raum. Ein fundamentales Verständnis tief gelegener Küstenbereiche, welche vielfältigen Einflüssen des angrenzenden Meeres unterliegen, ist essentiell für zukünftige Nutzungs- und Management-Strategien. Im terrestrisch-marinen Übergangsbereich werden neben der Strömungsdynamik insbesondere Stoffflüsse und Organismen wechselseitig beeinflusst und gesteuert. Von besonderem Forschungsinteresse sind Küstenmoore, deren Oberfläche auf Höhe des Meeresspiegels liegt. Diese stellen in degradiertem Zustand eine Quelle für gelöste und gasförmige Stoffe dar. Baltic TRANSCOAST untersucht in interdisziplinären Forschungsthemen die Wasser- und Stoffflüsse im strandnahen Küstenmoor und im angrenzenden Flachwasser der Ostsee sowie deren Auswirkungen auf die Biota. Rostock ist für das Graduiertenkolleg prädestiniert denn hier können Biologen und Biologinnen, Chemiker und Chemikerinnen, Physiker und Physikerinnen und Umweltforscher und Umweltforscherinnen aus drei Fakultäten der Universität Rostock (UR) und dem Leibniz-Institut für Ostseeforschung Warnemünde (IOW) ihre Stärken bündeln und interdisziplinär die Küstenregion bearbeiten. Das Department Maritime' Systeme' (MTS) der Interdisziplinären Fakultät (INF) der UR, unter dessen Dach alle beteiligten Wissenschaftler und Wissenschaftlerinnen seit sechs Jahren zusammenarbeiten, trägt das Graduiertenkolleg. Die Konzentration auf ein gemeinsames Untersuchungsgebiet, das Hütelmoor bei Rostock, ermöglicht eine echte interdisziplinäre Zusammenarbeit. Der am Standort Rostock neu etablierte Leibniz-Wissenschaftscampus Phosphor ist ebenfalls ein Garant für interdisziplinäre Forschungsarbeiten. Baltic TRANSCOAST bildet mit einem umfassenden innovativen Qualifizierungskonzept Nachwuchswissenschaftler und Nachwuchswissenschaftlerinnen mit breiter und interdisziplinärer Expertise in der Küstenforschung aus. Die Gewinnung von hochqualifizierten Kandidaten und Kandidatinnen, erfolgt im Rahmen von Workshops. Das Studienprogramm ist in sechs Blöcke gegliedert, mit einem sukzessiv steigenden Engagement der Promovierenden. Zwei der Studienblöcke finden bei baltischen Partnern in Stockholm und Oulu statt. Zusätzlich ist eine Session auf einer internationalen Tagung als Ausbildungselement vorgesehen.

Entwicklung von monoklonalen Antikoerpern zum Nachweis von Regenbogenforellen Vitellogenin

Vitellogenin ist bei oviparen Vertebraten und sehr vielen Invertebraten die Vorstufe der Dotterproteine. Es kommt in weiblichen Tieren in ihrer reproduktiven Phase in sehr hohen Konzentrationen vor. In Maennchen fehlt es dagegen fast gaenzlich. Die Vitellogeninsynthese erfolgt in der Leber unter der Kontrolle von Oestrogenen. Vitellogenin wird schliesslich von der Leber ueber den Blutkreislauf in das Ovar transportiert, wo es in den Oocyten in die entsprechenden Dotterproteine Lipovitellin und Phosvitin gespalten wird. Durch exogen appliziertes Oestrogen laesst sich auch in maennlichen Organismen eine nennenswerte Vitellogeninsynthese beobachten (mg/mL-Bereich). Der Vitellogeningehalt im Plasma maennlicher Organismen kann daher zum Biomonitoring von oestrogen wirksamen Verbindungen in der Umwelt genutzt werden. Mit Hilfe der Hybridomatechnologie wurden Antikoerper gegen Vitellogenin der Regenbogenforelle hergestellt. Die Antikoerper zeichnen sich durch ihre Nachweisgrenze von 250 myg/L Vitellogenin und ihre hohe Selektivitaet aus. Die Technologie rekombinanter Antikoerper soll es in Zukunft ermoeglichen, massgeschneiderte Antikoerper gegen Vitellogenin anderer Spezies auf sehr schnelle und kosteneffektive Weise zu erhalten.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten

Das Schwerpunktprogramm ist multidisziplinär aufgebaut mit den interdisziplinär verwobenen Schwerpunkten:-- Physik und Chemie von Ozean, Eis und Atmosphäre -- Geowissenschaften -- Biowissenschaften. Die Polarregionen sind von großer Bedeutung für moderne Umweltforschung sowie für die Beurteilung von zukünftigen Klimaänderungen und ihren Folgen. Da die Reaktionen in den Polargebieten schneller erfolgen als in temperierten oder tropischen Zonen, gelten sie als Schlüsselgebiete der Erde. Dies gilt auch für die Lithosphärenforschung sowie für die Erforschung von globalen Klimaereignissen, Ozeanen und der Ökologie. Zudem beeinflussen sie das globale Wettergeschehen und den Wärmehaushalt. Während der letzten 45 Millionen Jahre ist Antarktika durch die Plattentektonik klimatisch und ozeanografisch isoliert worden. Der daraus resultierende Klimaeinfluss schuf den antarktischen Zirkumpolarstrom und die Vereisung beider Pole. Dieser Zirkumpolarstrom bildet das größte Zirkulationssystem der Erde. Er beeinflusst die Bildung von antarktischem Tiefenwasser und ist die Heimat für produktive Meereslebensgemeinschaften, die sich an die Extrembedingungen angepasst haben. Im Weddell- und Rossmeer schieben sich die Schelfeise hunderte Kilometer in das Meer hinaus, wobei die physikalischen und biologischen Prozesse unter ihnen unerforscht sind. Das Wasser unter dem Schelfeis besitzt hohe Dichten und fließt den Hang hinunter, um sich in die Tiefsee zu ergießen, wo es wiederum alle Weltmeere durchströmt. Die natürlichen Schwankungen des Erdklimas sind in marinen Sedimenten und in Eiskernen Grönlands und Antarktikas gespeichert. Überraschende Ergebnisse deutscher Forscher zeigten, dass Klimaumschwünge in Zeitskalen von nur Jahren oder Dekaden erfolgten. Ein anderer Aspekt der Klimaforschung betrachtet die Abnahme des polaren Ozons. Kontinuierliche Messungen belegen, dass die Ozonabnahme einhergeht mit einer Zunahme des schädlichen UV-B. Bedingt durch ihre Geschichte und Lage haben sich gerade an den Polen spezielle Habitate ausgebildet, die besonders empfindlich auf solche Störungen reagieren. Deshalb können Klimaänderungen und ihre Auswirkungen hier eher erkannt werden als in anderen Ökosystemen. Zusätzlich stellt die Antarktis mit ihren Organismen einen wichtigen Anteil der Biodiversität. Polarforschung muss deshalb eine Sonderrolle zukommen bei Themen wie z.B. Kontinententstehung und -zerfall, Klimaarchiv und Sensitivität gegenüber Umweltveränderungen.

Funktionalität in einem trpoischen Bergregenwald Südecuadors: Diversität, dynamische Prozesse und Nutzungspotentiale unter ökosystemaren Gesichtspunkten

Die Bergwälder der Ostanden gehören zu den artenreichsten terrestrischen Ökosystemen der Erde, zugleich stehen sie unter immensem Nutzungsdruck (Abholzung, Umwandlung in Weideland). In einem multidiszilinären Ansatz aus Bio-, Geo-, Forst- und Agrarwissenschaften - von der Ebene des Organismus ausgehend bis hin zur Landschaftsebene - wollen wir an einem ausgewählten, für Forschungen zugänglichen ostandinen Bergwald in Südecuador ein solches Ökosystem, sowie seine gebietstypischen, durch menschliches Wirtschaften entstandenen Ersatzformationen beispielhaft analysieren. Dabei gilt es im ersten Schritt wichtige geowissenschaftliche und biologische Eigenschaften des Systems (Klima, Boden, Verfügbarkeit von Wasser und Nährelementen, Struktur und Artenzusammensetzung der Vegetation sowie Vorkommen und Vielfalt tierischer und pilzlicher Schlüsselorganismen: Pollinatoren, Samenverbreiter, Herbivore und Destruenten) zu erfassen. Im zweiten Schritt wird die Funktionsweise wichtiger Teilsystem erschlossen (Stoffflüsse zwischen wichtigen Kompartimenten, Dynamik und Regenrationspotentiale der Vegetation in Wechselwirkung mit der Fauna und den abiotischen Randbedingungen). Darauf aufbauend wollen wir drittens Optionen entwickeln bzw. überprüfen für eine nachhaltige Nutzung, Erhaltung und - soweit möglich - Rehabilitation des Waldes. Diese Erkenntnisse werden über das Untersuchungsgebiet hinaus für das ökosystemare Verständnis und Management tropischer Bergwälder von genereller Bedeutung.

Erstellung Bestimmungsschlüssel

Bestimmungsschlüssel typischer Gewässerorganismen für Kinder/Jugendarbeit des NP

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: anthoDiv - Organismische und genetische Diversität von Blüten-Mikrobiomen verknüpft mit Ökosystem- und funktionalen Pflanzeneigenschaften

Bakterielle Gemeinschaften die mit oberirdischen Pflanzenteilen assoziiert sind spielen eine entscheidende Rolle für die Gesundheit der Wirtspflanze. Es wird vermutet, dass die Zusammensetzung dieser zu einem großen Teil durch das Ursprungsmaterial für Besiedelung (z.B. Erde) determiniert wird, aber auch dass Pflanzen-Charakteristika wie die Verfügbarkeit von Stickstoff und Kohlenstoff, sowie Sekundärmetabolite entscheidend sind. Obwohl Blüten direkt an die Gesundheit und Reproduktion von Pflanzen gekoppelt sind, sind die bakteriellen Kolonisierer der Anthosphäre derzeit deutlich weniger charakterisiert und verstanden als Blatt-assoziierte Bakterien. Dies betrifft auch deren ökologische Rolle und wie sich Umgebungsgradienten, wie z.B. Landnutzung auf Zusammensetzung und Funktion dieser Organismen auswirken. Wir planen mit Hilfe des hierarchischen Designs der Exploratorien organismische und genetische alpha-, beta- und gamma-Diversität von Blüten-Microbiomen zu erfassen. Wir zielen darauf hin, diese in Zusammenhang mit Landnutzung, Pflanzendiversität sowie Blütencharakteristika (Düfte, C- und N-Verfügbarkeit) zu bringen und die Verknüpfung der verschiedenen Biodiversitäts-Ebenen untereinander zu verstehen. Diese Daten werden uns erlauben, die jeweilige Bedeutung von Umgebungs- und Pflanzenfaktoren abzuschätzen. Damit werden die Ergebnisse eine neue Perspektive auf die Assoziation von Bakterien und Blüten ermöglichen und auch die Einflüsse anthropogener Veränderungen auf deren organismische und genetische Diversität zu verstehen.

1 2 3 4 5384 385 386