Neben den natürlichen Bodenfunktionen ist die Kenntnis der thermischen Eigenschaften der Böden eine wichtige Kenngröße für die Nutzung der Böden, z. B. für die oberflächennahe Geothermie. Die Wärmeverteilung wird maßgeblich davon bestimmt, wie schnell der Boden Energie in Form von Wärme leitet. Wie stark dies geschieht, drückt sich in der Eigenschaft der thermischen Leitfähigkeit aus. Die thermische Leitfähigkeit wird in der Einheit W/(m*K) angegeben. Neben der stofflichen Zusammensetzung des Bodens ist dabei der Wasser- und Lufthaushalt entscheidend. Für den vorliegenden Datensatz wurden die Leitbodenprofile der BÜK1000N nach der Methodendokumentation Bodenkunde der AG Boden ausgewertet. Als Eingangsdaten dienten die Bodenart, die Trockenrohdichte sowie der aktuelle Wassergehalt, der indirekt durch die Ableitung der Bodenfeuchte aus Feldkapazität und Trockenrohdichte ermittelt wird. Bei G-Horizonten wird zudem das Gesamtporenvolumen, bei Torfen nur die Feldkapazität berücksichtigt. Diese Daten gehen in bodenartspezifische Gleichungen ein, die die jeweiligen Eigenschaften von Sand-, Ton-, Schluff und Lehmböden sowie die von Torfböden berücksichtigen. Für Festgesteine werden die gesteinsspezifischen Kennwerte der thermischen Leitfähigkeit aus Tabellen entnommen. Die Kennwerte werden dabei horizontweise ermittelt. Der vorliegende Datensatz gibt für jede Legendeneinheit der BÜK1000N einen Minimal- und Maximalwert, den Median sowie einen abhängig von der Horizontmächtigkeit gewichteten Mittelwert der thermischen Leitfähigkeit an. Nicht bewertet werden Siedlungs-, Tagebau- und Wattflächen sowie die Flächen von Deponien, Feuchtgebieten und Gewässern.
Altersklassenwald (schlagweiser Hochwald): In Mitteleuropa dominierende Betriebsart mit räumlich voneinander getrennten Altersklassen und bestandesweiser Nutzung und Verjüngung. Kennzeichnend ist eine flächige Differenzierung nach Altersklassen (Jungwuchs, Dickung, Stangenholz, Baumholz, Altholz) und eine deutliche Zäsur durch flächigen Verjüngungshieb. In einem A. finden Pflanzen und Tiere wegen der unterschiedlichen Biotopqualität der einzelnen Altersklassen nur in der ihnen zusagenden Altersphase günstige Lebensbedingungen. Wegen der Gleichaltrigkeit innerhalb der Altersklassen finden Schädlinge optimale Lebensbedingungen. Das macht ihn anfällig. Ihm gegenüber steht der → Dauerwald. Altholz: (Alter) Waldbestand, dessen Bäume die Zielstärke erreicht haben und genutzt werden können. Dauerwald: Waldgefüge, in dem trotz forstlicher Nutzung ein geschlossener Bestand ständig erhalten bleibt. Durch Einzelstammentnahme entstehende Lichtungen im Oberstand werden durch Lichtungszuwächse des Mittel- und Unterstandes sofort wieder geschlossen (Plenterbetrieb). Der Begriff Dauerwald erlangte in Brandenburg erstmals in den 20er Jahren große Bedeutung, als A. MÖLLER (1922) als Reaktion auf den Kiefern-Kahlschlagbetrieb den naturnahen Plenterbetrieb propagierte. Seinen Ausdruck fand der Dauerwaldgedanke damals in dem Fläming-Revier Bärenthoren. Dauerwaldvertrag: Im Jahre 1915 geschlossener Kaufvertrag zwischen dem Kommunalen Zweckverband Groß-Berlin und dem Preußischen Staat über die ehemaligen Domänenforsten in der näheren Umgebung Berlins. Der Zweckverband wurde 1920 in die Einheitsgemeinde Groß-Berlin umgewandelt. Berlin gelangte damit zu einem großen Waldbesitz. Die Bezeichnung Dauerwald steht nicht in Verbindung mit der von Möller (1922) vertretenen naturnahen Bewirtschaftungsform. Sie beinhaltet vielmehr die vertraglich festgeschriebene Verpflichtung des Zweckverbandes bzw. Berlins als Rechtsnachfolger, den Wald nicht als Bauland zu veräußern. FSC, Forest Stewardship Council: Er wurde 1993 in Folge des Umweltgipfels von Rio ins Leben gerufen. Der FSC ist eine nichtstaatliche, gemeinnützige Organisation, die sich für eine ökologische und sozial verantwortliche Nutzung der Wälder einsetzt. Die Organisation wird weltweit von Umweltorganisationen, Gewerkschaften, Interessenvertretern indigener Völker sowie zahlreichen Unternehmen aus der Forst- und Holzwirtschaft unterstützt. Ihr Ziel ist es, einen Beitrag zur Verbesserung der Waldbewirtschaftung weltweit zu leisten. Es werden Standards entwickelt und Mechanismen für die Vermarktung von entsprechend erzeugten Waldprodukten abgeleitet. Wichtigstes Merkmal des FSC ist die Schaffung eines Interessenausgleichs zwischen der Umweltinteressen, sozialen Belangen und wirtschaftlichen Ansprüchen an den Wald. Es werden ökologische Mindeststandards definiert, die garantieren, dass die ökologischen Grundfunktionen des Waldökosystems langfristig gewährleistet werden können; → Naturland. Forsteinrichtung: In periodischen Abständen (10 Jahre) durchgeführte Erfassung des Waldzustandes und Erfolgskontrolle. Verbunden mit der Erfassung wird die mittelfristige Betriebsplanung für den nächsten Einrichtungszeitraum erstellt. Holzproduktion: Sie ist ein wichtiger Zweig der Urproduktion. Die jährliche Nutzung von Holz (Rohholzeinschlag) beträgt in Deutschland ca. 31 Mio. qm (39,3 Mio. 1995), wobei der Zuwachs um einige Mio. höher liegt. Die deutschen Wälder bieten ein nachhaltig nutzbares Potential von jährlich ca. 57 Mio. qm. Hutewälder: Etwa vom Mittelalter an bis weit in die Neuzeit hinein Wälder, in denen weiträumig großkronige alte Eichen und Buchen standen, mit einer Bodendecke aus Gras, Heide oder Heidelbeere. Der Hutewald diente u.a. der Waldweide und der Mastnutzung. Auf Grund eines Hüterechtes musste der Waldeigentümer das Eintreiben von Vieh dulden. Durch den intensiven Vieheintrieb wurden die Wälder aber ihrer natürlichen Regenerationsfähigkeit beraubt, natürliche Verjüngung konnte nicht aufkommen. So verödeten diese Wälder immer mehr. Sie haben noch im 18. Jahrhundert erhebliche Flächen eingenommen. Kyoto-Protokoll: Ist ein internationales Abkommen zum Klimaschutz der UN-Organisation UNFCCC. Es schreibt verbindliche Ziele für die Verringerung des Ausstoßes von Treibhausgasen fest. Das Protokoll wurde in Kyoto 1997 verabschiedet. Es tritt erst in Kraft, wenn 55 Staaten, welche mehr als 55 % der Kohlendioxid-Emissionen (bezogen auf 1990) verursachen, das Abkommen ratifiziert haben. Deutschland hat das Protokoll am 26. April 2003, alle anderen EU-Staaten am 31. Mai 2003 ratifiziert. Derzeit (Stand 05. September 2003) liegt die Zahl der Staaten, die das Protokoll ratifiziert haben bei 117. Das entspricht etwas über 44 %. Sollte Russland, das für 17,4 % der Emissionen von 1990 verantwortlich war, die Ratifizierung abschließen, wäre die Grenze von 55 % überschritten und das Kyoto Protokoll würde in Kraft treten. Die USA und Australien haben als wichtige Industrienationen das Kyoto-Protokoll nicht ratifiziert. Läuterung: Forstliche Pflegemaßnahme in jungen Waldbeständen zur Stammzahlreduktion, zur Regelung der Konkurrenzsituation und der Baumartenmischung. Es fällt noch kein verwertbares Holz an. Melioration: Bodenmelioration ist allgemein die Bezeichnung für Maßnahmen zur Bodenverbesserung. Im Bereich der ehemaligen Rieselfelder erfolgt dies durch Einarbeitung von mergeligem Lehmboden zur pH-Wert-Stabilisierung und damit Festlegung von Schwermetallen. Naturgemäße Waldwirtschaft: Als Alternative zur schlagweisen Wirtschaft propagiert die n. W. einen naturgemäßen Wald aus standortgerechten Mischbeständen zur bestmöglichen Ausnutzung und gleichzeitigen Pflege des Standortes. Substanzielle Elemente sind: Dauerbestockung mit standortgemäßem Mischwald, Holzproduktion mit hoher Wertschöpfung und reduzierter Arbeitsintensität. Dabei steht der Wunsch nach Stabilität, nach voller dauernder Ausschöpfung der Produktionskräfte unter Wahrung des Waldinnenklimas im Vordergrund. Diesen Zielen sollen dienen: Modifizierung der bestandsweisen Wirtschaft zu mehr Ungleichaltrigkeit und Stufigkeit des Waldgefüges und an der Wertentwicklung der Einzelbäume orientierte Nutzung über die ganze Fläche. Verzicht auf Kahlschläge und Verschiebung des zeitlichen Nacheinanders von Ernte und Kultur zugunsten eines gleichzeitigen Miteinanders. Verlegung der Verjüngung unter den Schirm der Altbäume. Förderung des Mischwaldgedankens. Stetigkeit der Waldpflege durch häufigere Wiederkehr der Pflegeeingriffe. Bei der n. W. schützt der Wald seinen eigenen Standort, hat eine artenreiche Flora und Fauna und ist damit insgesamt widerstandsfähiger gegen Schäden. Die kleinflächige Mischung und der ungleichaltrige Aufbau machen gleichzeitig einzelstammweise Nutzung, Pflege und Verjüngung möglich. Durch n. W. ist eine Kontinuität des Ökosystems Wald einschließlich der Stoffkreisläufe auf kleinster Fläche gewährleistet, werden die Funktionen des Waldes dauernd erfüllt, wird Naturverjüngung und damit die Erhaltung der forstlichen Genressourcen gewährleistet. Um stabile und gesunde Wälder auf Bundesebene bemüht sich schon seit 50 Jahren die Arbeitsgemeinschaft Naturgemäße Waldwirtschaft (ANW). Als europaweite Arbeitsgemeinschaft wurde Pro Silva gegründet. Naturland: Der Naturland-Verband hat 1996 mit großen Naturschutzorganisationen wie Greenpeace, dem BUND und Robin Wood seine Richtlinien für eine ökologische Waldnutzung entwickelt. Einige deutsche Städte wie z.B. der Lübecker-, Göttinger- und Hannoversche Stadtwald haben sich entschieden, neben den anspruchsvollen FSC-Richtlinien (→ FSC) auch die ergänzenden Anforderungen des Naturland-Zertifikates zu akzeptieren. Auch das Land Berlin verpflichtet sich zur Einhaltung dieser Richtlinien. Unvereinbar mit einer ökologischen Waldnutzung sind insbesondere: Kahlschläge Anpflanzungen von Monokulturen Ansiedlung von nicht heimischen sowie gentechnisch veränderten Baumarten Einsatz von Giften, Mineraldüngern, Gülle, Klärschlämmen Bearbeiten oder Verdichten des Bodens Flächiges Abräumen oder Verbrennen von Biomasse Entwässerung von Feuchtgebieten Störende Arbeiten während ökologisch sensibler Jahreszeiten Fütterung von Wildtieren. Ein wesentlicher Bestandteil der Zertifizierung sind darüber hinaus die so genannten Referenzflächen, auf denen die Waldbewirtschaftung eingestellt und der Wald seiner natürlichen Entwicklung überlassen wird. Daraus können wiederum Rückschlüsse für die sinnvollste Art der Bewirtschaftung im übrigen Wald abgeleitet werden. In den Berliner Wäldern werden die genannten Anforderungen bereits seit vielen Jahren zum großen Teil erfüllt. Natürliche Waldgesellschaft: Je nach Standort haben sich ohne Einwirkung des Menschen unterschiedliche nat. Waldgesellschaften gebildet, d.h. Waldtypen, die an das spezielle Klima und Boden angepasst sind. Die verschiedenen nat. W. werden aufgrund ihrer sehr ähnlichen Kombinationen der Charakterarten ausgeschieden. Unter bestimmten Standortbedingungen kann sich nur eine bestimmte Kombination von Pflanzengesellschaften ansiedeln und halten. Im Berliner Raum dominieren die Eichen-Hainbuchenwälder, bodensauren Eichenwälder, Eichen-Kiefernwälder und Kiefernwälder trockenwarmer Standorte. Neophyten: Gezielt gepflanzte oder zufällig eingeschleppte Pflanzen aus weit entfernten Lebensräumen oder anderen Kontinenten, die nicht Bestandteil der natürlich vorkommenden Artenzusammensetzung sind. N. können einheimische Pflanzen auch verdrängen, wie z. B. die Spätblühende Traubenkirsche (Prunus serotina) (→ Spätblühende Traubenkirsche) und die Schneebeere (Symphoricarpos albus). In Brandenburg ist besonders die Robinie problematisch. Sie dringt in Magerrasen ein und verändert deren Lebensgemeinschaften durch Beschattung und Stickstoffanreicherung. Ordnungsgemäße Forstwirtschaft: „Ordnungsgemäße Forstwirtschaft” beschreibt die sich aus der Summe aller gesellschaftlichen Ansprüche an den Wald ergebenden Mindestanforderungskriterien an die multifunktionale Forstwirtschaft, also neben den naturschutzfachlichen Anforderungen auch Anforderungen zur Gewährleistung der Erholungsfunktion, ressourcenökonomische Anforderungen oder Anforderungen des Waldschutzes usw. (Institut für Forstpolitik der Albert-Ludwigs-Universität Freiburg; Forschungsauftrag durch das Bundesamt für Naturschutz) Provenienzen: Eine autochthone oder nicht autochthone Population von Bäumen, die an einem bestimmten, abgegrenzten Ort wächst und bestimmte charakteristische und genetisch fixierte Eigenschaften aufweist. Die P. wird mit dem Namen des Ortes belegt, z.B. Westdeutsches Bergland und Oberrheingraben. Referenzflächen: Für den wiederkehrenden Vergleich mit den bewirtschafteten Flächen werden unbewirtschaftete Referenzflächen ausgewiesen, welche die wichtigsten Bestandestypen des Waldbetriebes repräsentieren. Ziel ist es, lokale und standörtliche Informationen über die natürliche Waldentwicklung und damit für die ökologische Waldnutzung zu erhalten. Reparationshiebe: Nach dem 1. und 2. Weltkrieg tätigten die Alliierten Einschläge in den deutschen Wäldern, überproportional im Staatswald, die als Reparationsleistungen gedacht waren. Dabei wurden die Grundsätze der Nachhaltigkeit nicht beachtet. Der erkennbare Raubbau führte – nach 1945 zusammen mit den UNRRA-Hieben (Brennholzhiebe u.a. zur Versorgung der über 1 Mio. „Displaced Persons“ und anderer notleidender Personenkreise in Deutschland) durch die United Nations Reconstruction and Rehabilitation Administration – zu Bürgerprotesten und schließlich auch zur Gründung der Schutzgemeinschaft Deutscher Wald. Schlussgrad, Beschirmungsgrad: Bezeichnung für das Maß an Überschirmung (Überdeckung) des Waldbodens durch die Kronen aller Bestockungsglieder eines Bestandes. Spätblühende Traubenkirsche (lat. Prunus serotina): Aus Nordamerika stammende Gehölzart. Einführungszeit in Deutschland 1685 zunächst als Zierbaum in Gärten und Parks, in Berlin – Brandenburg erst in der 2. Hälfte des 18. Jahrhunderts, von 1900 bis ca. 1950 auch planmäßige forstliche Anbauten zur Standortverbesserung . Sie wird in Berlin aus ökologischen und waldbaulichen Gründen seit 1986 durch Rodung aus den Beständen verdrängt, damit sich die heimischen Wälder natürlich entwickeln können. Standortkartierung: Methode, bei der alle für das Waldwachstum wichtigen natürlichen und ökologischen Bedingungen als Grundlage für eine standortgerechte leistungsfähige Waldwirtschaft erhoben werden. Darauf aufbauend wird eine Beschreibung und kartenmäßige Darstellung von Standorttypen, bzw. Standorteinheiten angefertigt. Das sind forstökologische Grundeinheiten mit annähernd gleichen waldbaulichen Möglichkeiten und Gefährdungen sowie mit einer annähernd gleichen Ertragsfähigkeit. Die S. dient in erster Linie als Grundlage für die Baumartenwahl und die Bestimmung des Bestandesaufbaus. Totholz: Stehende und liegende Bäume oder Teile davon, die abgestorben sind. Totholz entsteht u.a. in überreifen Naturwäldern aber auch durch Krankheit (z.B. Insekten- und Pilzbefall), durch Wind- und Schneebruch und Feuer. Sich zersetzendes Holz wird von einer großen Menge von Pilzen (darunter viele gefährdete Großpilze), Käfern (für mehr als die Hälfte aller Arten ist Holz die Lebensgrundlage), Holzwespen, Wildbienen, Ameisen und einer Reihe weiterer Tierarten bewohnt. Totholz trägt ganz entscheidend zur Erhaltung der Artenvielfalt im Wald bei. Verjüngung: Begründung eines neuen Waldbestandes durch Natur- oder Kunstverjüngung. Bei der Naturverjüngung sorgt der Bestand selbst durch Samenausstreuung in der Nähe stehender Mutterbäume oder durch vegetative Vermehrung für den Nachwuchs. Das spart Arbeit und Kosten. Bei der Kunstverjüngung werden auf einer bestimmten Fläche die gewünschten Baumarten durch Saat oder Pflanzung nachgezogen. Waldaufbauformen: Der Aufbau des Waldes hat je nach Betriebsart unterschiedliche Formen. Der Niederwald ist gleichaltrig, einschichtig und gemischt. Der Mittelwald ist ungleichaltrig, mehrschichtig und einzel- bis gruppenweise gemischt. Der schlagweise Hochwald ist gleichaltrig bis ungleichaltrig, ein- oder mehrschichtig und stufig aufgebaut, als Reinbestand oder einzel- bis gruppenweise gemischt. Der Plenterwald ist ungleichaltrig, mehrschichtig und stufig aufgebaut, einzel- bis gruppenweise gemischt. Waldbiotopkartierung: Kartierung von Biotopen, wie z.B. Beständen mit seltenen einheimischen Tier- und Pflanzenarten, Lebensgemeinschaften, ehemaligen Hutewäldern, Naturwaldrelikten, besonderen Naturgebilden und Bodendenkmalen, aber auch Bruch-, Schlucht -, Moorrand- und Trockenwäldern sowie Sukzessionsflächen. Ziel einer Waldbiotopkartierung ist die naturraumbezogene Erfassung und Beurteilung des ökologischen Zustandes und des Naturschutzwertes von Biotopen in Waldgebieten, um damit die Grundlage für eine Abstimmung zwischen den ökologischen Bedingungen der Wälder und den vielfältigen Zielen einer nachhaltigen Forstwirtschaft zu schaffen. Zwei Arten der W. werden unterschieden: 1. die flächendeckende und 2. die selektive. Z-Baum, Zukunftsbaum, Auslesebaum: Ein besonders ausgesuchter und gut gewachsener Baum, der hinsichtlich Wachstum, Stabilität, Erscheinungsform und Gesundheitszustand gute Massen- und Wertleistung verspricht, d.h. den Zielvorstellungen des Waldbaues weitgehend nachkommt. Ein Z-Baum wird durch die Wegnahme von Konkurrenzbäumen, die sein Wachstum einengen, gefördert. Zertifizierung: Die Versuche einer umweltorientierten, von den Verbrauchern anerkannten Kennzeichnung von Holzprodukten aus nachhaltiger Forstwirtschaft und der nachhaltigen Forstwirtschaft. Sie beruhen auf dem UNCED-Kongress in Rio de Janeiro (1992) und auf ihre Folgekonferenzen. Dort haben die teilnehmenden Staaten das Ziel bejaht, einheitliche Kriterien und Indikatoren für eine nachhaltige Bewirtschaftung der Wälder festzulegen. 1993 wurden in Helsinki, bzw. 1998 in Lissabon, von allen westeuropäischen Industriestaaten „Allgemeine Richtlinien für eine nachhaltige Bewirtschaftung der Wälder“ und „Allgemeine Richtlinien zur Erhaltung der biologischen Vielfalt“ verabschiedet. Dabei wird die Nachhaltigkeit sowohl aus der Sicht der Holzproduktion, der Vielfalt der Waldnatur als auch der Nutzung der Wälder unter wirtschaftlichen und sozialen Gesichtspunkten betrachtet. In Deutschland gab es 1996 vier Ansätze für Zertifizierungs-Systeme: Die weltweit operierende Normierungsinstitution ISO mit den Standards ISO 9000 u. ISO 14000. Der Forest Stewardship Council FSC in Mexico setzt Mindeststandards fest, die schon bei Erteilung erfüllt sein müssen. Greenpeace erarbeitete 1995 auf Erfahrungen im Stadtwald Lübeck aufbauend ein Konzept mit einer Liste verbotener Maßnahmen. Der Nabu hat 1996 das Gütesiegel eco-timber vorgestellt. Die wichtigsten internationalen Initiativen sind: „Rainforest Alliance“ „Scientific Certification Systems“ “Soil Association“ „Lembaga Ecolabelling“ “Initiative Tropenwald“ und „Forest Stewardship Council“. Zielstärkennutzung: Mindestdurchmesser, an dem die Endnutzung der verschiedenen Baumarten im naturnahen Betrieb einsetzen darf. Diese Regelung ersetzt in Berlin seit 1992 die bis dahin gültigen festen Umtriebszeiten.
Altersklassenwald (schlagweiser Hochwald): In Mitteleuropa dominierende Betriebsart mit räumlich voneinander getrennten Altersklassen und bestandesweiser Nutzung und Verjüngung. Kennzeichnend sind eine flächige Differenzierung nach Altersklassen (Jungwuchs, Dickung, Stangenholz, Baumholz, Altholz) und eine deutliche Zäsur durch flächigen Verjüngungshieb. In einem Altersklassenwald finden Pflanzen und Tiere wegen der unterschiedlichen Biotopqualität der einzelnen Altersklassen nur in der ihnen zusagenden Altersphase günstige Lebensbedingungen. Wegen der Gleichaltrigkeit innerhalb der Altersklassen finden Schädlinge optimale Lebensbedingungen. Das macht ihn anfällig. Ihm gegenüber steht der → Dauerwald. Altholz: (Alter) Waldbestand, dessen Bäume die Zielstärke erreicht haben und genutzt werden können. Dauerwald: Waldgefüge, in dem trotz forstlicher Nutzung ein geschlossener Bestand ständig erhalten bleibt. Durch Einzelstammentnahme entstehende Lichtungen im Oberstand werden durch Lichtungszuwächse des Mittel- und Unterstandes sofort wieder geschlossen (Plenterbetrieb). Der Begriff Dauerwald erlangte in Brandenburg erstmals in den 20er Jahren große Bedeutung, als A. Möller (1922) als Reaktion auf den Kiefern-Kahlschlagbetrieb den naturnahen Plenterbetrieb propagierte. Seinen Ausdruck fand der Dauerwaldgedanke damals in dem Fläming-Revier Bärenthoren. Dauerwaldvertrag: Im Jahre 1915 geschlossener Kaufvertrag zwischen dem Kommunalen Zweckverband Groß-Berlin und dem Preußischen Staat über die ehemaligen Domänenforsten in der näheren Umgebung Berlins. Der Zweckverband wurde 1920 in die Einheitsgemeinde Groß-Berlin umgewandelt. Berlin gelangte damit zu einem großen Waldbesitz. Die Bezeichnung Dauerwald steht nicht in Verbindung mit der von Möller (1922) vertretenen naturnahen Bewirtschaftungsform. Sie beinhaltet vielmehr die vertraglich festgeschriebene Verpflichtung des Zweckverbandes bzw. Berlins als Rechtsnachfolger, den Wald nicht als Bauland zu veräußern. FSC, Forest Stewardship Council: Er wurde 1993 in Folge des Umweltgipfels von Rio ins Leben gerufen. Der FSC ist eine nichtstaatliche, gemeinnützige Organisation, die sich für eine ökologische und sozial verantwortliche Nutzung der Wälder einsetzt. Die Organisation wird weltweit von Umweltorganisationen, Gewerkschaften, Interessenvertretern indigener Völker sowie zahlreichen Unternehmen aus der Forst- und Holzwirtschaft unterstützt. Ihr Ziel ist es, einen Beitrag zur Verbesserung der Waldbewirtschaftung weltweit zu leisten. Es werden Standards entwickelt und Mechanismen für die Vermarktung von entsprechend erzeugten Waldprodukten abgeleitet. Wichtigstes Merkmal des FSC ist die Schaffung eines Interessenausgleichs zwischen den Umweltinteressen, sozialen Belangen und wirtschaftlichen Ansprüchen an den Wald. Es werden ökologische Mindeststandards definiert, die garantieren, dass die ökologischen Grundfunktionen des Waldökosystems langfristig gewährleistet werden können; → Naturland. Forsteinrichtung: In periodischen Abständen (10 Jahre) durchgeführte Erfassung des Waldzustandes und Erfolgskontrolle. Verbunden mit der Erfassung wird die mittelfristige Betriebsplanung für den nächsten Einrichtungszeitraum erstellt. Holzproduktion: Sie ist ein wichtiger Zweig der Urproduktion. Die jährliche Nutzung von Holz (Rohholzeinschlag) beträgt in Deutschland ca. 31 Mio. qm (39,3 Mio. 1995), wobei der Zuwachs um einige Mio. höher liegt. Die deutschen Wälder bieten ein nachhaltig nutzbares Potential von jährlich ca. 57 Mio. qm. Hutewälder: Etwa vom Mittelalter an bis weit in die Neuzeit hinein Wälder, in denen weiträumig großkronige alte Eichen und Buchen standen, mit einer Bodendecke aus Gras, Heide oder Heidelbeere. Der Hutewald diente u.a. der Waldweide und der Mastnutzung. Auf Grund eines Hüterechtes musste der Waldeigentümer das Eintreiben von Vieh dulden. Durch den intensiven Vieheintrieb wurden die Wälder aber ihrer natürlichen Regenerationsfähigkeit beraubt, natürliche Verjüngung konnte nicht aufkommen. So verödeten diese Wälder immer mehr. Sie haben noch im 18. Jahrhundert erhebliche Flächen eingenommen. Läuterung: Forstliche Pflegemaßnahme in jungen Waldbeständen zur Stammzahlreduktion, zur Regelung der Konkurrenzsituation und der Baumartenmischung. Es fällt noch kein verwertbares Holz an. Melioration: Bodenmelioration ist allgemein die Bezeichnung für Maßnahmen zur Bodenverbesserung. Im Bereich der ehemaligen Rieselfelder erfolgt dies durch Einarbeitung von mergeligem Lehmboden zur pH-Wert-Stabilisierung und damit Festlegung von Schwermetallen. Naturgemäße Waldwirtschaft: Als Alternative zur schlagweisen Wirtschaft propagiert die n. W. einen naturgemäßen Wald aus standortgerechten Mischbeständen zur bestmöglichen Ausnutzung und gleichzeitigen Pflege des Standortes. Substanzielle Elemente sind: Dauerbestockung mit standortgemäßem Mischwald, Holzproduktion mit hoher Wertschöpfung und reduzierter Arbeitsintensität. Dabei steht der Wunsch nach Stabilität, nach voller dauernder Ausschöpfung der Produktionskräfte unter Wahrung des Waldinnenklimas im Vordergrund. Diesen Zielen sollen dienen: Modifizierung der bestandsweisen Wirtschaft zu mehr Ungleichaltrigkeit und Stufigkeit des Waldgefüges und an der Wertentwicklung der Einzelbäume orientierte Nutzung über die ganze Fläche. Verzicht auf Kahlschläge und Verschiebung des zeitlichen Nacheinanders von Ernte und Kultur zugunsten eines gleichzeitigen Miteinanders. Verlegung der Verjüngung unter dem Schirm der Altbäume. Förderung des Mischwaldgedankens. Stetigkeit der Waldpflege durch häufigere Wiederkehr der Pflegeeingriffe. Bei der n. W. schützt der Wald seinen eigenen Standort, hat eine artenreiche Flora und Fauna und ist damit insgesamt widerstandsfähiger gegen Schäden. Die kleinflächige Mischung und der ungleichaltrige Aufbau machen gleichzeitig einzelstammweise Nutzung, Pflege und Verjüngung möglich. Durch n. W. ist eine Kontinuität des Ökosystems Wald einschließlich der Stoffkreisläufe auf kleinster Fläche gewährleistet, werden die Funktionen des Waldes dauernd erfüllt, wird Naturverjüngung und damit die Erhaltung der forstlichen Genressourcen gewährleistet. Um stabile und gesunde Wälder auf Bundesebene bemüht sich schon seit 50 Jahren die Arbeitsgemeinschaft Naturgemäße Waldwirtschaft (ANW). Als europaweite Arbeitsgemeinschaft wurde Pro Silva gegründet. Naturland: Der Naturland-Verband hat 1996 mit großen Naturschutzorganisationen wie Greenpeace, dem BUND und Robin Wood seine Richtlinien für eine ökologische Waldnutzung entwickelt. Einige deutsche Städte wie z.B. der Lübecker-, Göttinger- und Hannoversche Stadtwald haben sich entschieden, neben den anspruchsvollen FSC-Richtlinien (→ FSC) auch die ergänzenden Anforderungen des Naturland-Zertifikates zu akzeptieren. Auch das Land Berlin verpflichtet sich zur Einhaltung dieser Richtlinien. Unvereinbar mit einer ökologischen Waldnutzung sind insbesondere: Kahlschläge Anpflanzungen von Monokulturen Ansiedlung von nicht heimischen sowie gentechnisch veränderten Baumarten Einsatz von Giften, Mineraldüngern, Gülle, Klärschlämmen Bearbeiten oder Verdichten des Bodens Flächiges Abräumen oder Verbrennen von Biomasse Entwässerung von Feuchtgebieten Störende Arbeiten während ökologisch sensibler Jahreszeiten Fütterung von Wildtieren. Ein wesentlicher Bestandteil der Zertifizierung sind darüber hinaus die so genannten Referenzflächen, auf denen die Waldbewirtschaftung eingestellt und der Wald seiner natürlichen Entwicklung überlassen wird. Daraus können wiederum Rückschlüsse für die sinnvollste Art der Bewirtschaftung im übrigen Wald abgeleitet werden. In den Berliner Wäldern werden die genannten Anforderungen bereits seit vielen Jahren zum großen Teil erfüllt. Natürliche Waldgesellschaft: Je nach Standort haben sich ohne Einwirkung des Menschen unterschiedliche nat. Waldgesellschaften gebildet, d.h. Waldtypen, die an das spezielle Klima und Boden angepasst sind. Die verschiedenen nat. W. werden aufgrund ihrer sehr ähnlichen Kombinationen der Charakterarten ausgeschieden. Unter bestimmten Standortbedingungen kann sich nur eine bestimmte Kombination von Pflanzengesellschaften ansiedeln und halten. Im Berliner Raum dominieren die Eichen-Hainbuchenwälder, bodensauren Eichenwälder, Eichen-Kiefernwälder und Kiefernwälder trockenwarmer Standorte. Neophyten: Gezielt gepflanzte oder zufällig eingeschleppte Pflanzen aus weit entfernten Lebensräumen oder anderen Kontinenten, die nicht Bestandteil der natürlich vorkommenden Artenzusammensetzung sind. N. können einheimische Pflanzen auch verdrängen, wie z. B. die Spätblühende Traubenkirsche (_Prunus serotina_) (→ Spätblühende Traubenkirsche) und die Schneebeere (_Symphoricarpos albus_). In Brandenburg ist besonders die Robinie problematisch. Sie dringt in Magerrasen ein und verändert deren Lebensgemeinschaften durch Beschattung und Stickstoffanreicherung. Ordnungsgemäße Forstwirtschaft: „Ordnungsgemäße Forstwirtschaft" beschreibt die sich aus der Summe aller gesellschaftlichen Ansprüche an den Wald ergebenden Mindestanforderungskriterien an die multifunktionale Forstwirtschaft, also neben den naturschutzfachlichen Anforderungen auch Anforderungen zur Gewährleistung der Erholungsfunktion, ressourcenökonomische Anforderungen oder Anforderungen des Waldschutzes usw. (Winkel 2006). Provenienzen: Eine autochthone oder nicht autochthone Population von Bäumen, die an einem bestimmten, abgegrenzten Ort wächst und bestimmte charakteristische und genetisch fixierte Eigenschaften aufweist. Die P. wird mit dem Namen des Ortes belegt, z.B. Westdeutsches Bergland und Oberrheingraben. Referenzflächen: Für den wiederkehrenden Vergleich mit den bewirtschafteten Flächen werden unbewirtschaftete Referenzflächen ausgewiesen, welche die wichtigsten Bestandestypen des Waldbetriebes repräsentieren. Ziel ist es, lokale und standörtliche Informationen über die natürliche Waldentwicklung und damit für die ökologische Waldnutzung zu erhalten. Reparationshiebe: Nach dem 1. und 2. Weltkrieg tätigten die Alliierten Einschläge in den deutschen Wäldern, überproportional im Staatswald, die als Reparationsleistungen gedacht waren. Dabei wurden die Grundsätze der Nachhaltigkeit nicht beachtet. Der erkennbare Raubbau führte - nach 1945 zusammen mit den UNRRA-Hieben (Brennholzhiebe u.a. zur Versorgung der über 1 Mio. „Displaced Persons" und anderer notleidender Personenkreise in Deutschland) durch die United Nations Reconstruction and Rehabilitation Administration - zu Bürgerprotesten und schließlich auch zur Gründung der Schutzgemeinschaft Deutscher Wald. Schlussgrad, Beschirmungsgrad: Bezeichnung für das Maß an Überschirmung (Überdeckung) des Waldbodens durch die Kronen aller Bestockungsglieder eines Bestandes. Spätblühende Traubenkirsche (*lat. _Prunus serotina_) :* Aus Nordamerika stammende Gehölzart. Einführungszeit in Deutschland 1685 zunächst als Zierbaum in Gärten und Parks, in Berlin - Brandenburg erst in der 2. Hälfte des 18. Jahrhunderts, von 1900 bis ca. 1950 auch planmäßige forstliche Anbauten zur Standortverbesserung . Sie wird in Berlin aus ökologischen und waldbaulichen Gründen seit 1986 durch Rodung aus den Beständen verdrängt, damit sich die heimischen Wälder natürlich entwickeln können. Standortkartierung: Methode, bei der alle für das Waldwachstum wichtigen natürlichen und ökologischen Bedingungen als Grundlage für eine standortgerechte leistungsfähige Waldwirtschaft erhoben werden. Darauf aufbauend wird eine Beschreibung und kartenmäßige Darstellung von Standorttypen, bzw. Standorteinheiten angefertigt. Das sind forstökologische Grundeinheiten mit annähernd gleichen waldbaulichen Möglichkeiten und Gefährdungen sowie mit einer annähernd gleichen Ertragsfähigkeit. Die S. dient in erster Linie als Grundlage für die Baumartenwahl und die Bestimmung des Bestandesaufbaus. Totholz: Stehende und liegende Bäume oder Teile davon, die abgestorben sind. Totholz entsteht u.a. in überreifen Naturwäldern, aber auch durch Krankheit (z.B. Insekten- und Pilzbefall), durch Wind- und Schneebruch und Feuer. Sich zersetzendes Holz wird von einer großen Menge von Pilzen (darunter viele gefährdete Großpilze), Käfern (für mehr als die Hälfte aller Arten ist Holz die Lebensgrundlage), Holzwespen, Wildbienen, Ameisen und einer Reihe weiterer Tierarten bewohnt. Totholz trägt ganz entscheidend zur Erhaltung der Artenvielfalt im Wald bei. Umtriebszeit: Mit Umtriebszeit bezeichnet der Forstwirt die durchschnittliche Dauer von der Begründung eines Waldes bis hin zu seiner Ernte. Diese ist je nach Baumart und Standort unterschiedlich. Verjüngung: Begründung eines neuen Waldbestandes durch Natur- oder Kunstverjüngung. Bei der Naturverjüngung sorgt der Bestand selbst durch Samenausstreuung in der Nähe stehender Mutterbäume oder durch vegetative Vermehrung für den Nachwuchs. Das spart Arbeit und Kosten. Bei der Kunstverjüngung werden auf einer bestimmten Fläche die gewünschten Baumarten durch Saat oder Pflanzung nachgezogen. Waldaufbauformen: Der Aufbau des Waldes hat je nach Betriebsart unterschiedliche Formen. Der Niederwald ist gleichaltrig, einschichtig und gemischt. Der Mittelwald ist ungleichaltrig, mehrschichtig und einzel- bis gruppenweise gemischt. Der schlagweise Hochwald ist gleichaltrig bis ungleichaltrig, ein- oder mehrschichtig und stufig aufgebaut, als Reinbestand oder einzel- bis gruppenweise gemischt. Der Plenterwald ist ungleichaltrig, mehrschichtig und stufig aufgebaut, einzel- bis gruppenweise gemischt. Waldbiotopkartierung: Kartierung von Biotopen, wie z.B. Beständen mit seltenen einheimischen Tier- und Pflanzenarten, Lebensgemeinschaften, ehemaligen Hutewäldern, Naturwaldrelikten, besonderen Naturgebilden und Bodendenkmalen, aber auch Bruch-, Schlucht -, Moorrand- und Trockenwäldern sowie Sukzessionsflächen. Ziel einer Waldbiotopkartierung ist die naturraumbezogene Erfassung und Beurteilung des ökologischen Zustandes und des Naturschutzwertes von Biotopen in Waldgebieten, um damit die Grundlage für eine Abstimmung zwischen den ökologischen Bedingungen der Wälder und den vielfältigen Zielen einer nachhaltigen Forstwirtschaft zu schaffen. Zwei Arten der W. werden unterschieden: 1. die flächendeckende und 2. die selektive. Z-Baum, Zukunftsbaum, Auslesebaum: Ein besonders ausgesuchter und gut gewachsener Baum, der hinsichtlich Wachstum, Stabilität, Erscheinungsform und Gesundheitszustand gute Massen- und Wertleistung verspricht, d.h. den Zielvorstellungen des Waldbaues weitgehend nachkommt. Ein Z-Baum wird durch die Wegnahme von Konkurrenzbäumen, die sein Wachstum einengen, gefördert. Zertifizierung: Nachweissystem für eine umweltorientierte, von den Verbrauchern anerkannte Kennzeichnung von Holzprodukten aus nachhaltiger Forstwirtschaft. Sie beruhen auf dem UNCED-Kongress in Rio de Janeiro (1992) und auf ihre Folgekonferenzen. Dort haben die teilnehmenden Staaten das Ziel bejaht, einheitliche Kriterien und Indikatoren für eine nachhaltige Bewirtschaftung der Wälder festzulegen. 1993 wurden in Helsinki, bzw. 1998 in Lissabon, von allen westeuropäischen Industriestaaten „Allgemeine Richtlinien für eine nachhaltige Bewirtschaftung der Wälder" und „Allgemeine Richtlinien zur Erhaltung der biologische Vielfalt" verabschiedet. Dabei wird die Nachhaltigkeit sowohl aus der Sicht der Holzproduktion, der Vielfalt der Waldnatur als auch der Nutzung der Wälder unter wirtschaftlichen und sozialen Gesichtspunkten betrachtet. Die Berliner Wälder sind seit Juni 2002 nach den Kriterien von FSC-Forest Stewardship Council und Naturland zertifiziert. Zielstärkennutzung: Mindestdurchmesser, an dem die Endnutzung der verschiedenen Baumarten im naturnahen Betrieb einsetzen darf. Diese Regelung ersetzt in Berlin seit 1992 die bis dahin gültigen festen Umtriebszeiten. Bezeichnungen der vorhandenen Baumarten Kürzel Wissenschaftlich Deutsch Englisch AHS Acer Ahorn Maple AS Populus tremula Aspe Common Aspen BPA Populus balsamifera Balsampappel Balsam Poplar SBW Salix Baumweiden Willow BAH Acer pseudoplatanus Bergahorn Sycamore Maple BRU Ulmus glabra Bergrüster Wych Elm BIS Betula Birke Birch Blö Blöße bareness BWE Salix fragilis Bruchweide Crack Willow BUS Fagus Buche Beech DGS Pseudotsuga menziesii Douglasie Douglas Fir EB Sorbus aucuparia Eberesche Rowan EIB Taxus baccata Eibe Yew Ei Quercus x Eiche Oak ELS Sorbus torminalis Elsbeere Wild Service Tree ESS Fraxinus Esche Ash EAH Acer negundo Eschenblättriger Ahorn Ashleaf Maple EK Castanea sativa Eßkastanie Sweet Chestnut ELA Larix decidua Europäische Lärche European Larch SPA Populus nigra Europäische Schwarzpappel Black Poplar FAH Acer campestre Feldahorn Field Maple FRU Ulmus minor Feldrüster Field Elm WRU Ulmus laevis Flatterrüster European White Elm GBI Betula pendula Gemeine Birke Silver Birch GES Fraxinus excelsior Gemeine Esche Common Ash GFI Picea abies Gemeine Fichte Norway Spruce GKI Pinus sylvestris Gemeine Kiefer Scots Pine GSB Symphoricarpos albus Gemeine Schneebeere Common Snowberry GTK Prunus padus Gewöhnliche Traubenkirsche Bird Cherry WER Alnus incana Grauerle Grey Alder GPA Populus canescens Graupappel Grey Poplar HBU Carpinus betulus Hainbuche Common Hornbeam HAS Corylus Hasel Hazel JLA Larix kaempferi Japanische Lärche Japanese Larch KTA Abies grandis Küstentanne Grand Fir MEH Sorbus Mehlbeere Whitebeam MBI Betula pubescens Moorbirke Moor Birch PAS Populus Pappel Poplar RO Robinia pseudoacacia Robinie Black Locust RKA Aesculus hippocastanum Roßkastanie Horse-chestnut RBU Fagus sylvatica Rotbuche European Beech REI Quercus rubra Roteiche Northern Red Oak RER Alnus glutinosa Roterle Common Alder RUS Ulmus Rüster Elm SKI Pinus nigra Schwarzkiefer Black Pine WWE Salix alba Silberweide White Willow SLI Tilia platyphyllos Sommerlinde Large-leaved Lime EIS Quercus sonstige Eichen other Oaks FIS Picea sonstige Fichten other Spruces HLS Sonstige Hartlaubbaumarten other Sclerophyll KIS Pinus sonstige Kiefern other Pines NHS Sonstige Nadelbaumarten other Conifers TAS Abies Sonstige Tanne other Firs WLS Sonstige Weichlaubbaumarten other Softwoods STK Prunus serotina Spätblühende Traubenkirsche Black Cherry SPE Sorbus domestica Speierling Service Tree SAH Acer platanoides Spitzahorn Norway Maple SEI Quercus robur Stieleiche English Oak TEI Quercus petraea Traubeneiche Sessile Oak VKB Prunus avium Vogelkirsche (-baum) Wild Cherry WTA Abies alba Weißtanne European Silver Fir WKI Pinus strobus Weymouthskiefer Eastern White Pine WLI Tilia cordata Winterlinde Small-leaved Lime
In the view of the Bundesgesellschaft für Endlagerung (BGE), the question as to whether the subsoil in the “Kuhlager” is fundamentally suitable for the construction of a waste treatment plant and an interim storage facility can be answered in the affirmative. The BGE has now published the geotechnical report, which provides insights into the weight-bearing capacity of the site, as well as its characteristics. Moreover, the report also serves as an important basis for planning the buildings needed for retrieving radioactive waste from the Asse mine. Complex results The results show that the subsoil at the site is fundamentally suitable for building the planned installations, and the following insights have emerged for consideration in further planning: In the area of the planned building for the waste treatment plant and interim storage facility, the ground has sufficient weight-bearing capacity. The uppermost layers of the subsoil are composed of geologically young rocks, principally consisting of various types of clay and loam. The solid rock is mainly composed of clay stone, which is highly weather- and frost-sensitive and tends to shrink and swell in alternating wet and dry periods. These properties do not represent an obstacle to construction but must be taken into account during planning. The risk of subsidence cannot be completely ruled out. Such a scenario would lead to a disruption of load transfer via the baseplate at that location, in what experts refer to as a “bedding failure”. For safety reasons, it is therefore recommended that this be taken into account in the design of the foundations and baseplate in order to ensure safe load transfer at all times. In addition to the actual buildings, current plans also envisage a road running around the buildings. Investigations show that, in this area, it is necessary either to replace the soil with a mineral mixture that can be readily compacted or to stabilise the soil with a binder. No subsidence measurements were carried out at ground level as part of the geotechnical report. Such measurements can only be recorded over very long periods of time by monitoring the measuring points at ground level. Corresponding measurements and predictions of subsidence at ground level are available and will also be taken into account during building planning. Complex groundwater flows in the Asse – further exploration needed The expert report also revealed complex groundwater conditions in the area of the planned installations. Among other things, this is due to the closely alternating aquifers and areas of low water permeability, as well as the steep strata and fault zones. Water has occasionally been encountered in the geotechnical investigations. This is presumably surface water that accumulates above an impermeable layer. Further investigations are to be carried out to determine whether the water encountered is predominantly stratum water or groundwater. Given that the water cannot percolate to greater depths and moves down towards the valley as a result of the topography, the construction plans must include water drainage that takes account of heavy rainfall and long periods of precipitation. Bearing in mind that, to some extent, precipitation can also lead to stratum and seepage water above the groundwater level and up to the surface, the BGE will equip the respective structures with seals and drainage. A more precise investigation of the groundwater revealed that the water does not attack the concrete within the structures. The geotechnical report recommends detailed hydrogeological exploration. The BGE will follow this recommendation and set up groundwater measuring points in selected boreholes. More-detailed insights into the water flow will be vital when it comes to carrying out construction work. The full geotechnical report can be found here (German only). Background to the geotechnical investigations The geotechnical investigations were carried out from 17 May to 1 August 2022 and included almost 70 soundings and borings in various designs and at various depths. The boreholes had a maximum depth of 30 metres. Soil samples were taken, and their soil mechanical properties were investigated. These analyses were supplemented with geophysical measurements that provide an insight into the 3D structure of the subsoil. About the BGE The BGE is a federally owned company within the portfolio of the Federal Environment Ministry. On 25 April 2017, the BGE assumed responsibility from the Federal Office for Radiation Protection as the operator of the Asse II mine and the Konrad and Morsleben repositories. Its other tasks include searching for a repository site for the disposal of high-level radioactive waste produced in Germany on the basis of the Repository Site Selection Act, which entered into force in May 2017. The managing directors are Stefan Studt (Chair), Steffen Kanitz (Deputy Chair) and Dr Thomas Lautsch (Technical Managing Director).
01.06.1 Bodenarten Beschreibung Die Bodenart eines Bodens wird durch die Korngrößenzusammensetzung ihrer mineralischen Bestandteile bestimmt. Dabei werden der Grobboden (Korndurchmesser > 2 mm) und der Feinboden (Korndurchmesser 2 mm sind. Der Anteil des Grobbodens wirkt sich auf die Wasserdurchlässigkeit, den Luft- und Nährstoffhaushalt und das Bindungsvermögen für Nähr- und Schadstoffe aus. Je höher der Anteil des Grobbodens ist, desto durchlässiger ist ein Boden aufgrund der großen Poren, während Bindungsvermögen und Nährstoffsituation von der Art des Feinbodens abhängen. Torfart Torfe entstehen im wassergesättigten Milieu durch Ansammlung unvollständig zersetzten Pflanzenmaterials. Sie zeichnen sich durch ein hohes Wasserspeichervermögen und eine sehr hohe Kationenaustauschkapazität aus. Entsprechend der Art der Pflanzenreste und der Entstehungsbedingungen werden unterschiedliche Torfarten differenziert. Niedermoortorfe sind basen- und nährstoffreich, teilweise sogar carbonatreich. Übergangsmoortorfe weisen Pflanzenreste sowohl von nährstoffarmen als auch von nährstoffreichen Standorten auf. Methode Die Bodenarten des Feinbodens, des Grobbodens und der Torfarten jeweils differenziert nach Ober- (0 – 10 cm Tiefe) und Unterboden (90 – 100 cm Tiefe) wurden für jede Bodengesellschaft bestimmt. Die Angaben wurden im Wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden. Die kartierten Bodenarten des Feinbodens sind in Tab. 1 zusammengefasst. Da die Bodenarten im Ober- und Unterboden aufgrund des Ausgangsmaterials der Bodenbildung, der Bodenentwicklung und der Nutzung z. T. unterschiedlich sind, werden diese differenziert betrachtet. Außerdem werden innerhalb einer Bodengesellschaft häufig auftretende Bodenarten als Hauptbodenart und selten vorkommende Bodenarten als Nebenbodenart unterschieden. Durch Kombination der Bodenarten des Oberbodens mit den Bodenarten des Unterbodens wurden 14 Bodenartengruppen des Feinbodens (< 2 mm) gebildet, welche die Legendeneinheiten der Karte darstellen. Die Zuordnung von Bodenartengruppen erfolgte lediglich deshalb, um eine lesbare Karte mit einer überschaubaren Anzahl von Legendeneinheiten zu erzeugen. Für genauere Angaben oder weitere Berechnungen liegen differenziertere Daten vor. Es treten Bodengesellschaften auf, die sowohl im Oberboden als auch im Unterboden aus den gleichen Bodenarten bestehen. Die Mehrzahl der Bodengesellschaften unterscheidet sich jedoch hinsichtlich der Bodenarten im Ober- und Unterboden. Die Bodengesellschaften einer Bodenartengruppe können sich jedoch innerhalb dieser Gruppe hinsichtlich Torf- bzw. Steingehalt (Bodenskelett, Grobboden > 2 mm) des Ober- und Unterbodens unterscheiden, weshalb diese durch zusätzliche Signaturen dargestellt wurden. Die in den Böden Berlins vorkommenden Grobbodenarten sind in Tab. 2 zusammengestellt. Zwischen dem Vorkommen im Ober- bzw. Unterboden wird unterschieden. Die in Berlin vorkommenden Torfarten sind in Tab. 3 zusammengestellt. Zur Darstellung der ökologischen Eigenschaften und Ermittlung der Kennwerte wird unterschieden, ob Torf im Ober- und/oder im Unterboden vorkommt. Beschreibung Die nutzbare Feldkapazität (nFK) ist die Wassermenge in l/m² bzw. mm, die der Boden festzuhalten vermag und die für Pflanzen nutzbar ist. Dieser Teil des Wassers wird in den Porenräumen des Bodens gegen die Schwerkraft festgehalten und steht den Pflanzen zur Verfügung. Die nFK ist von der Bodenart, dem Humusgehalt, der Lagerungsdichte und dem Steingehalt abhängig. Feinkörnige Böden können über längere Zeiträume wesentlich mehr Wasser speichern als grobkörnige, sodass bei Letzteren das Niederschlagswasser rascher versickert und nicht für die Wasserversorgung der Pflanzen zur Verfügung steht. Hohe Humusgehalte und Torfanteile begünstigen die Wasserspeicherung. Methode Die nFK-Werte der Bodengesellschaften wurden nach der Vorgehensweise der Bodenkundlichen Kartieranleitung KA6 (2024) in Abhängigkeit von der Fein- und Grobbodenart (Tab. 1 und 2), dem Grobbodenanteil (Tab. 2) und dem Humusgehalt (Tab. 3) bestimmt. Dabei wird in eine Flachwurzelzone (0 – 30 cm) und eine Tiefwurzelzone (0 – 150 cm) unterschieden. Zusätzlich wurde die minimale nFK für die Flach- und Tiefwurzelzone aus der Bodenart der Bodengesellschaft, die die niedrigste nFK aufweist, berechnet. Als Karte dargestellt ist hier der durchschnittliche nFK-Wert der Flachwurzelzone. Diese berechnet sich nach nachfolgenden Gleichungen: GL.1: nFK Flachwurzelzone = nFK Oberboden * 0.1 + nFK Unterboden * 0.2 Gl. 2: nFk Oberboden = nFk Hb * 0.7 + nFk Nb * 0.3) * (1 – Sg Oberboden /100) + H real * 0.1 Gl. 3: nFk Unterboden = nFk Hb * 0.7 + nFk Nb * 0.3) *( 1 – Sg Unterboden /100) + H real * H dm – 0.1) mit nFk Oberboden = nFK des Oberbodens je dm in Abhängigkeit der Bodenart, Torfanteil und Grobbodenanteil nach KA6 in mm/dm mit nFk Unterboden = nFK des Unterbodens je dm in Abhängigkeit der Bodenart, Torfanteil und Grobbodenanteil nach KA6 in mm/dm mit nFk Hb = nFK der Hauptbodenart je dm in Abhängigkeit der Bodenart nach KA6 in mm/dm mit nFk Nb = nFK der Nebenbodenart je dm in Abhängigkeit der Bodenart nach KA6 in mm/dm mit Sg Oberboden = maximaler Grobbodenanteil in Vol.-% im Oberboden in Abhängigkeit der Grobbodenart nach KA6 mit Sg Unterboden = maximaler Grobbodenanteil in Vol.-% im Unterboden in Abhängigkeit der Grobbodenart nach KA6 mit H real = nFK-Zuschlag in Abhängigeit vom Humusgehalt des Bodens nach KA6 in Vol.-% mit H dm = Mächtigkeit der Humusschicht in dm Die Ergebnisse werden in sechs Stufen nach Grenzius (1987) zusammengefasst (Tab. 4), da in der 6. Bodenkundlichen Kartieranleitung KA6 (2024) keine Stufung in Bezug auf die Flach- und Tiefwurzelzone aufgeführt ist. Beschreibung Die Beurteilung des Wasserhaushalts über die nutzbare Feldkapazität im effektiven Wurzelraum (nFK We ) ergibt eine differenzierte Betrachtung des pflanzenverfügbaren Wassers für den jeweiligen Standort. Dabei werden entsprechend der Bodenart und der Nutzung die unterschiedlichen Durchwurzelungstiefen und Wurzelräume berücksichtigt. So haben Wald- und Baumstandorte einen wesentlich größeren Wurzelraum als zum Beispiel Ackernutzungen. In Sandböden ist der effektive Wurzelraum geringer als in Lehmböden, sodass das Niederschlagswasser in Lehmböden länger gespeichert werden kann als in Sandböden. Hinsichtlich des Wasser- und Nährstoffhaushalts ist es für die Pflanzenwurzeln in lehmigen Substraten daher lohnend, sich einen etwas größeren Wurzelraum zu erschließen als in sandigen Substraten. Bei den moorigen Böden reicht der effektive Wurzelraum nur bis zu den grundwasserbeeinflussten Horizonten, sodass meist nur die obersten 20 – 30 cm als Wurzelraum dienen. Ursache für den geringen Wurzelraum ist der Luftmangel in den ständig wassergesättigten Horizonten. Die Pflanzenwurzeln, mit Ausnahme einiger Spezialisten, beschränken sich daher auf die oberen Horizonte, die sowohl ausreichend Luft als auch Wasser führen. Die zusätzliche Wasserversorgung der Pflanzen aus dem kapillaren Aufstieg des Grundwassers, die die nFK We bei geringen Flurabständen in der Vegetationszeit entscheidend beeinflusst, wurde hier bei der Ermittlung nicht berücksichtigt. Methode Die Grundlage für die Berechnung des nFKWe stellen die in Abhängigkeit von der Bodenart, dem Humusgehalt und des Grobbodenanteils berechnete nFK-Werte je dm für den Ober- und den Unterboden dar. Die Berechnung der nFK erfolgt basierend auf der Bodenkundlichen Kartieranleitung KA6 (2024). Zur Umrechnung von der nFK auf die nFK We werden die nFK-Werte aus Ober- und Unterboden entsprechend der Mächtigkeit des effektiven Wurzelraums aufsummiert. Der effektive Wurzelraum wird für Berliner Standorte in Abhängigkeit unterschiedlicher Nutzungen nach Plath/Dreetz (1988) aus Tabelle 1 entnommen. Die nFK We berechnet sich nach nachfolgender Gleichung: Gl. 1: nFK We [mm] = nFK Oberboden [mm/dm] * 0.1 [dm] + nFK Unterboden [mm/dm] * (We [dm] – 0.1 [dm]) mit nFK Oberboden = nFK des Oberbodens je dm in Abhängigkeit der Bodenart, Torfanteil und Grobbodenanteil nach KA6 mit nFK Unterboden = nFK des Unterbodens je dm in Abhängigkeit der Bodenart, Torfanteil und Grobbodenanteil nach KA6 mit We = Mächtigkeit effektiver Wurzelraum nach Platz/Dreetz (1988) in Abhängigkeit der Nutzung in dm Die Ergebnisse werden analog zur nutzbaren Feldkapazität für Flachwurzler und Tiefwurzler in sechs Stufen zusammengefasst (Tab. 2). Beschreibung Humus bezeichnet die Gesamtheit der organischen Substanz von abgestorbenen Pflanzen und Tieren im Boden und setzt sich unter anderem aus Streu und Huminstoffen zusammen. Das hohe Sorptionsvermögen der Huminstoffe, der hohe Anteil pflanzenverfügbarer Nährstoffe und die günstigen Eigenschaften für den Wasserhaushalt wirken prägend für viele Bodenfunktionen. Die Humusgehalte mineralischer Böden sind bestimmt durch die Bodengenese, den Wassergehalt und die Nutzung. Durch Nutzungen wie Gartenbau mit Einarbeitung von Kompost oder intensiver Grünlandwirtschaft wird die Humusanreicherung begünstigt, während bei anderen Nutzungen ein deutlich geringerer Gehalt an organischer Substanz zu erwarten ist (vgl. Tab. 1). Nasse Vegetationsstandorte, z.B. Auenböden und Moore haben eine hohe Biomasseproduktion, aber einen geringen Humusabbau. Die angereicherte organische Substanz liegt in Form von Torfen mit unterschiedlichem Zersetzungsgrad vor. Die An- und Niedermoore besitzen in Abhängigkeit von der Nutzung und dem Zersetzungsgrad der Torfe einen Gehalt an org. Substanz von 15 – 80 %. Voraussetzung für hohe Gehalte an organischer Substanz ist eine stetige Vernässung bis in den Oberboden, die eine Mineralisierung hemmt oder unterbindet, sowie eine naturnahe Nutzung, wie zum Beispiel extensive Wiesennutzung. Die Humusmenge stellt die Menge an abgestorbener organischer Substanz dar, die an einem Standort für eine definierte Bodenfläche in Abhängigkeit vom Bodentyp und der Flächennutzung vorliegt. Die Humusmenge ist vor allem ein Zeiger für den Stickstoffvorrat und den leicht mobilisierbaren Stickstoffanteil. Aber auch andere wichtige Nährstoffe wie Kalium, Calcium, Magnesium und Phosphor werden durch die Zersetzung und Humifizierung der organischen Substanz freigesetzt und für die Pflanzen verfügbar gemacht. Neben der Bereitstellung und der Speicherung von Nährstoffen ermöglicht der Humus auch eine Erhöhung der Wasser- und Schadstoffspeicherkapazität. Die Humusmenge eines Bodens ergibt sich aus dem Humusgehalt und der Mächtigkeit der humosen Horizonte und hängt vom Bodentyp und der Nutzung ab. So weisen z.B. feuchte, moorige Standorte mit einer hohen Biomasseproduktion und einer geringen Zersetzung eine hohe Humusmenge und sandige, trockene Böden mit geringer Vegetationsdecke eine niedrige Humusmenge auf. Methode Die durchschnittlichen aus der Nutzung zu erwartenden Humusgehalte der Mineralböden in Abhängigkeit von Bodentyp und Nutzung wurden durch Untersuchungen von Grenzius (1987) und Bodenuntersuchungen im Rahmen des Schwermetalluntersuchungsprogramms (1986, 1987) hergeleitet. Diese Daten wurden zunächst von Fahrenhorst et al. (1990) ausgewertet und die durchschnittlichen Humusgehalte für den charakteristischen Bodentyp der verschiedenen Bodengesellschaften unter unterschiedlichen Nutzungen ermittelt. Eine Erweiterung der Datenbasis unter Verwendung verschiedener Einzelkartierungen erfolgte 1993 (Aey 1993). Überarbeitet wurden die Eingangsdaten von Kaufmann-Boll et al. (2023) auf Basis der Untersuchungen im Rahmen des NatKoS- und des UEP-Projekts. Dabei erfolgte eine relative Erhöhung der bestehenden Werte bei den durch das NatKoS-Projekt besonders gut repräsentierten Nutzungen und Fallgestaltungen. Eine rein nutzungsabhängige grobe Orientierung ist in Tab. 1 zusammengestellt. Die Humusgehalte von Torfen, die sich auf nassen Standorten bilden, werden bei den Mineralböden nicht berücksichtigt, sie gehen gesondert mit ihren Gehalten und mit ihren Mächtigkeiten in die Ermittlung der Humusmenge ein. Die Humusmenge wurde aus dem Humusgehalt der Humusschicht unter Berücksichtigung des Torfanteils [Masse-%] und der effektiven Lagerungsdichte sowie der Mächtigkeit der organischen Horizonte ermittelt. Die ermittelten Humusmengen für die unterschiedlichen Standorte werden entsprechend Tab. 2 in sechs Stufen unterteilt. Beschreibung Die abgestorbene organische Substanz (Humus) im Boden besteht etwa zu 50 % aus organischem Kohlenstoff und ist für den Nährstoff- und Wasserhaushalt des Bodens von elementarer Bedeutung. Durch die Anreicherung, Speicherung und Freisetzung von organischer Substanz, und damit von organischem Kohlenstoff, spielen Böden eine zentrale Rolle im globalen Kohlenstoffkreislauf. Böden sind der größte terrestrische Kohlenstoffspeicher und somit neben den Ozeanen die größten Kohlenstoffspeicher der Erde (IPCC 2000). Große Auswirkungen auf die Kohlenstoffdynamik im Boden hat die Landnutzung. Böden in urbanen Gebieten unterliegen einem besonders hohen Nutzungsdruck und sind sehr stark anthropogen geprägt. Dadurch kommt es auf der einen Seite, beispielsweise durch gärtnerische Nutzung, zu höheren organischen Kohlenstoffgehalten als in natürlichen Systemen. Auf der anderen Seite wird durch die teilweise komplette Zerstörung der natürlichen Bodenfunktionen der Abbau bzw. die Mineralisierung des Humus und somit die Freisetzung von Kohlendioxid (CO 2 ) in die Atmosphäre verstärkt. Dies ist vor allem langfristig von besonderer klimatischer Bedeutung, da die Anreicherung von Humus und damit die klimawirksame Kohlenstoffbindung in Böden sehr lange Zeiträume in Anspruch nimmt. Böden haben als sogenannte Kohlenstoffsenken eine besondere Bedeutung im globalen Kohlenstoffkreislauf. Auch in urbanen Gebieten sind solche Kohlenstoffsenken zu finden. Dabei spielen vor allem hydromorphe Böden wie Moore eine besondere Bedeutung. Moore speichern potentiell bis zu zehnmal so viel Kohlenstoff wie andere Ökosysteme (Batjes 1996). Durch den veränderten Wasserhaushalt in Folge von Meliorationsmaßnahmen, wie Grundwasserabsenkungen landwirtschaftlich genutzter Flächen, emittieren viele Moore heute CO 2 und CH 4 (Methan). Daher ist Moorschutz für den lokalen, regionalen und globalen Klimaschutz von großer Bedeutung. Die Bedeutung der Moorböden – in Berlin nur der Nieder- und Übergangsmoorböden – wird daran deutlich, dass sie bei einem Flächenanteil von nur rund 7 % etwa 65 % des gesamten in den Böden Berlins gespeicherten organischen Kohlenstoffs enthalten. Aber auch Kleingärten und Standorte mit einer langen Bodenentwicklung, wie Friedhöfe, alte Waldbestände und Parkanlagen, sind wertvolle Kohlenstoffsenken, da sie als langfristige Kohlenstoffspeicher dienen. Durch die Funktion als Kohlenstoffsenke haben Böden eine wichtige Klimaschutzfunktion, die auch bei Planungs- und Genehmigungsverfahren Beachtung finden sollte (Dahlmann et al. 2012). Demnach ist es sinnvoll, kohlenstoffreiche Böden möglichst von negativ beeinflussender Nutzung, wie dem Überbauen von bisher unversiegelten Flächen, freizuhalten und die Rekultivierung von vorhandenen Strukturen, gerade von Mooren, zu fördern. Daher wird das Puffervermögen im organischen Kohlenstoffhaushalt auch bei der Bewertung der Puffer- und Filterfunktion (vgl. Karte 01.12.3 ) berücksichtigt. Die Berechnungen auf der Grundlage dieser Karte ergeben, dass in den Böden Berlins insgesamt 7,03 Millionen Tonnen Kohlenstoff gespeichert sind. Dies entspricht einem Äquivalent von 25,8 Millionen Tonnen CO 2 . Die Gesamt-CO 2 -Emissionen in Berlin betrugen ca. 14,6 Millionen Tonnen im Jahr 2020 (Amt für Statistik Berlin-Brandenburg 2022). Somit speichert der Boden mehr Kohlenstoff als in Berlin im gesamten Jahr 2020 durch den Primärenergieverbrauch ausgestoßen wurde. Methode Die Berechnung der organischen Kohlenstoffvorräte für Berlin wurde auf Grundlage der in der Berliner Bodendatenbank enthaltenen Humusmengen [kg/m 2 ] vorgenommen (vgl. Karte 01.06.5 Humusmenge ). Aufbauend auf den Ergebnissen des Forschungsvorhabens “Berliner Moorböden im Klimawandel” (Klingenfuß et al. 2015) wurde die Berechnung der organischen Kohlenstoffvorräte aus den Humusmengen 2015 zunächst in Anlehnung an die Bodenkundliche Kartieranleitung KA5 (2005) berechnet und in der vorliegenden Überarbeitung in Anlehnung an die Bodenkundliche Kartieranleitung KA6 (2024) auf den Umrechnungsfaktor 2 vereinheitlicht. Der Umrechnungsfaktor gilt bei Bodengesellschaften mit und ohne Torf. Um die organischen Kohlenstoffvorräte für ganz Berlin zu berechnen, wurden die Kohlenstoffmengen mit den Flächengrößen der Blöcke multipliziert. Die ermittelten organischen Kohlenstoffvorräte der Böden sind als Schätzung zu betrachten und methodisch bedingt z. T. relativ ungenau, da die in der Blockstruktur dargestellten Humusmengen auf einer Bodengesellschaftskarte basieren, die teilweise nur Konzeptcharakter hat (vgl. Karte 01.01 ). Zudem sind die Humusgehalte und die Mächtigkeiten der mineralischen humushaltigen Horizonte und der Torfauflagen sowie der Lagerungsdichten zum Teil abgeschätzt. Durch die Einarbeitung der Ergebnisse des Forschungsvorhabens “Berliner Moorböden im Klimawandel” (Klingenfuß et al. 2015) im Jahr 2014 und der Ergebnisse des NatKoS- und UEP-Projekts im Rahmen des NatKEV-Projekts im Jahr 2022/23 (Kaufmann-Boll et al. 2023) wurden Daten zur Lage, Ausdehnung, Torfmächtigkeit, Lagerungsdichte und zum Verhältnis Humusmenge / Kohlenstoffmenge von Mooren erheblich verbessert. Trotzdem kann die Karte 01.06.6 Organischer Kohlenstoffvorrat nur näherungsweise die Realität abbilden. Die ermittelten organischen Kohlenstoffvorräte werden entsprechend der Tab. 1 in sechs Stufen unterteilt. Beschreibung Der pH-Wert (negativer dekadischer Logarithmus der Wasserstoffionenkonzentration) beeinflusst die chemischen, physikalischen und biologischen Eigenschaften des Bodens (Bodenreaktion). Er wirkt sich auf die Verfügbarkeit von Nähr- und Schadstoffen aus und gibt Auskunft über die Fähigkeit des Bodens, Säuren oder Basen zu neutralisieren. Er ist bedeutend für die Filter- und Pufferpotentiale der Böden. Bei niedrigen pH-Werten können im Boden keine Säuren neutralisiert werden, die Schwermetallverbindungen gehen zunehmend in Lösung und die verfügbaren Nährstoffe sind weitgehend ausgewaschen. Methode Die pH-Werte wurden für die Bodengesellschaften unter Berücksichtigung der Flächennutzung aus vorhandenen Unterlagen abgeleitet. Die Angaben wurden im Wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden, meist unter Verwendung einer Vielzahl verschiedener bodenkundlicher Gutachten. Lagen keine Messwerte vor, wurden die Werte unter Verwendung von Daten vergleichbarer Nutzungen oder vergleichbarer Bodengesellschaften abgeschätzt. Zusätzlich zu den repräsentativen Werten (typische pH-Werte) für den Ober- und Unterboden wurden noch die jeweiligen Maximal- und Minimalwerte bestimmt. In der Karte wurde nur der pH-Wert für den Oberboden dargestellt; dieser hat für die Funktionsbewertung der Böden (vgl. Karten 01.12 ) eine höhere Bedeutung als der pH-Wert des Unterbodens und weist auch eine größere, meist nutzungsbedingte Differenzierung auf. Die Stufung der pH-Werte erfolgte nach der Bodenkundlichen Kartieranleitung KA6 (2024) in den Stufen 1 bis 13 von äußerst alkalisch bis äußerst sauer (vgl. Tab. 1). Über die Stufung kann die Bodenreaktion entsprechend ihrer Alkalinität oder Azidität differenziert werden. Beschreibung Die austauschbaren Kationen eines Bodens werden üblicherweise in saure und basische Kationen unterteilt. Zu ersteren gehören neben den Wasserstoff-Ionen (H + -Ionen) auch solche, die beim Austritt in die Bodenlösung eine Hydrolyse hervorrufen und damit H+-Ionen freisetzen, wie vor allem Aluminium Ionen (Al3 + ). Ihre Summe wird H-Wert genannt. Die basischen Kationen sind in erster Linie Calcium-Ionen (Ca 2+ ), Kalium-Ionen (K + ), Magnesium-Ionen (Mg 2+ ) und Natrium-Ionen (Na+), in Kulturböden (nach einer Düngung) auch Ammonium-Ionen NH 4 + (wobei Calcium-Ionen (Ca 2+ ) meist mit mehr als 80 % dominieren). Die Summe der basisch wirkenden Kationen bildet den S-Wert. Ihre Konzentration kann in cmol c /kg, die Menge in molc/m² angegeben werden. Der %-Anteil des S-Werts an den Austauschkationen insgesamt wird als Basensättigung bezeichnet. Der S-Wert beschreibt somit die Menge der vom Boden zur Verfügung gestellten und für die Pflanzenernährung relevanten Kationen und ist somit ein wichtiges Maß der Bodenfruchtbarkeit. Methode Die Menge der basisch wirkenden austauschbaren Ionen (S-Wert) für den Oberboden (hier: 0 – 30 cm Tiefe) wird durch Multiplikation der effektiven Kationenaustauschkapazität (KAK eff ) mit der Basensättigung (BS) unter Einbeziehung der Lagerungsdichte und des Grobbodenanteils berechnet. Die Berechnung der effektiven Kationenaustauschkapazität wird in der Karte 01.06.9 dargestellt. Die Basensättigung kann vom pH-Wert (in Calciumchlorid, CaCl 2 gemessen) abgeleitet werden. Zur Ermittlung wird der für den Standort typische pH-Wert des Oberbodens (vgl. Karte 01.06.7 ) herangezogen und nach Tab. 1 die Basensättigung bestimmt. Zwischen den pH-Stufen dieser Tabelle wird linear interpoliert. Die Stufung des S-Wertes erfolgt in den Stufen 1 – 10 (extrem gering bis sehr hoch) nach Tab. 2. Die Einteilung der geringen Werte erfolgt in sehr engen Stufen, um die für die Bewertung der Funktion „Lebensraum für naturnahe und seltene Pflanzengesellschaften“ ( vgl. Karte 01.12.1 ) notwendige feine Abstufung nährstoffarmer Böden zu erkennen. Beschreibung Die effektive Kationenaustauschkapazität (KAK eff ) stellt die Menge der an Bodenkolloide gebundenen Kationen unter Berücksichtigung der stark vom pH-Wert abhängigen Ladung der organischen Substanz dar. Dabei sind die austauschbaren Kationen an Tonminerale und Humuskolloide gebunden. In neutralen bis schwach sauren Böden dominieren Calcium (Ca 2+ ), Magnesium (Mg 2+ ), Kalium (K+) und Natrium (Na + ) den Sorptionskomplex, in sauren Böden, z. B. Kiefer- und Heidestandorten Aluminium (Al 3+ ), Wasserstoff (H + ) und Eisen (Fe 2+ / 3+ ). Das Bindungsvermögen der organischen Substanz ist deutlich höher als das der Tonminerale. Die Stärke der Bindung an die organische Substanz ist vom pH-Wert abhängig, während die Bindung an die Tonminerale unabhängig vom pH-Wert ist. So sinkt mit abnehmendem pH-Wert das Bindungsvermögen des Humus. Ton- und humusreiche Böden mit neutraler Bodenreaktion können daher wesentlich mehr Nähr- und Schadstoffe binden und eine Auswaschung dieser Stoffe in das Grundwasser verhindern als sandige humusarme Standorte. Die effektive Kationenaustauschkapazität ist daher geeignet, die Nähr- und Schadstoffbindungspotentiale von Böden zu beschreiben. Methode Die KAK eff der Bodengesellschaften wird aus der Hauptbodenart der Oberböden und Unterböden abgeleitet (Tab. 1). Für den Oberboden wird eine Tiefe von 0 – 30 cm angenommen, für den Unterboden 30 – 150 cm. Zu der ermittelten KAK der Hauptbodenart wird die Austauschkapazität des Humus (Tab. 3), korrigiert um einen pH-Wert abhängigen Faktor (Tab. 2) addiert. Da in Abhängigkeit von Bodengenese und Nutzung sowohl die Humusgehalte als auch die Mächtigkeit der Humusschicht unterschiedlich sind und diese ebenfalls zur Berechnung der KAK herangezogen werden, werden für jede Bodengesellschaft unterschiedliche nutzungsspezifische Werte ermittelt. Die ermittelten Werte wurden zur Darstellung in der Karte entsprechend der Bodenkundlichen Kartieranleitung KA6 (2024) in sechs Stufen von sehr gering bis sehr hoch unterteilt (Tab. 4). Beschreibung Die gesättigte Wasserdurchlässigkeit (gesättigte Wasserleitfähigkeit, kf-Wert) kennzeichnet die Durchlässigkeit bzw. Permeabilität von vollständig wassergesättigten Böden. Sie hängt von der Bodenart und der Lagerungsdichte des Bodens ab. Lockere Böden mit hohen Sandgehalten haben daher eine wesentlich höhere Durchlässigkeit als tonreiche Böden, beispielsweise aus Geschiebemergel. Die gesättigte Wasserdurchlässigkeit ist wichtig für die Beurteilung von Staunässe, Filtereigenschaften, Erosionsanfälligkeit und Drainagewirksamkeit von Böden. Die Einheit der gesättigten Wasserdurchlässigkeit wird in cm/d oder m/s angegeben. In der Regel liegen bei den terrestrischen Böden aber ungesättigte Wasserverhältnisse vor, wobei nur ein Teil der Poren mit Wasser gefüllt ist. Bei ungesättigten Verhältnissen ist die Wasserbewegung deutlich geringer. Außerdem wird ein großer Teil des vorhandenen Wassers von den Pflanzen aufgenommen und steht für eine Verlagerung nicht mehr zur Verfügung. Da eine Messung der ungesättigten Wasserleitfähigkeit (ku) sehr aufwendig und kompliziert ist, und deshalb keine ableitbaren Daten in der Bodenkundlichen Kartieranleitung KA5 (2005) vorliegen, wird in der wissenschaftlichen Praxis auf die abgesicherten Werte der gesättigten Wasserleitfähigkeit als grobes Maß zurückgegriffen. Der Einfluss des Grobbodens wurde nicht berücksichtigt. Methode Der kf-Wert wurde für die Hauptbodenart des Ober- (0 – 10 cm Tiefe) und Unterbodens (90 – 100 cm Tiefe) nach Tab. 1 abgelesen. Der kf-Wert für Ober- und Unterboden ist der harmonische Mittelwert aus kf-Ober- und kf-Unterboden. Den in der Tabelle in Abhängigkeit von der Bodenart aufgeführten kf Werten ist eine effektive Lagerungsdichte von Ld3 zugrunde gelegt, was im Mittel den Berliner Böden entspricht. Die Ergebnisse der gesättigten Wasserdurchlässigkeit wurden für die Darstellung in der Karte in sechs Stufen von sehr gering bis äußerst hoch (1 – 6) nach Tab. 2 zusammengefasst.
01.06.1 Bodenarten Beschreibung Die Bodenart eines Bodens wird durch die Korngrößenzusammensetzung ihrer mineralischen Bestandteile bestimmt. Dabei wird der Grobboden (Korndurchmesser > 2 mm) und der Feinboden (Korndurchmesser < 2 mm) unterschieden. Auf sehr nassen Standorten entstehen außerdem durch die Anhäufung unvollständig zersetzten Pflanzenmaterials Torfe , die die mineralischen Böden überlagern können. Bodenart des Feinbodens Die Bodenarten des Feinbodens werden aus bestimmten Mengenanteilen der Kornfraktionen Ton, Schluff und Sand gebildet. Die Hauptbodenarten werden in Ton, Schluff, Lehm und Sand untergliedert, wobei Lehm ein Korngemisch ist, dass zu etwa gleichen Teilen aus Sand, Schluff und Ton besteht. Die Bodenart ist ein wichtiger Kennwert für die Ableitung ökologischer Eigenschaften, wie Nähr- und Schadstoffspeichervermögen, Wasserhaushalt und Wasserspeichervermögen sowie Filter- und Puffervermögen in Hinsicht auf Schadstoffe. Bodenart des Grobbodens Als Bodenart des Grobbodens oder das Bodenskelett werden alle mineralischen Bestandteile des Bodens bezeichnet, die im Durchmesser > 2 mm sind. Der Anteil des Grobbodens wirkt sich auf die Wasserdurchlässigkeit, den Luft- und Nährstoffhaushalt und das Bindungsvermögen für Nähr- und Schadstoffe aus. Je höher der Anteil des Grobbodens ist, um so durchlässiger ist ein Boden aufgrund der großen Poren, während Bindungsvermögen und Nährstoffsituation von der Art des Feinbodens abhängen. Torfart Torfe entstehen im wassergesättigten Milieu durch Ansammlung unvollständig zersetzten Pflanzenmaterials. Sie zeichnen sich durch ein hohes Wasserspeichervermögen und eine sehr hohe Kationenaustauschkapazität aus. Entsprechend der Art der Pflanzenreste und der Entstehungsbedingungen werden unterschiedliche Torfarten differenziert. Niedermoortorfe sind basen- und nährstoffreich, teilweise sogar carbonatreich. Übergangsmoortorfe weisen Pflanzenreste sowohl von nährstoffarmen als auch von nährstoffreichen Standorten auf. Methode Die Bodenarten des Feinbodens, des Grobbodens und der Torfarten jeweils differenziert nach Ober- (0 – 10 cm Tiefe) und Unterboden (90 – 100 cm Tiefe) wurden für jede Bodengesellschaft bestimmt. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden. Die kartierten Bodenarten des Feinbodens sind in Tab. 1 zusammengefasst. Da die Bodenarten im Ober- und Unterboden aufgrund des Ausgangsmaterials der Bodenbildung, der Bodenentwicklung und der Nutzung z. T. unterschiedlich sind, werden diese differenziert betrachtet. Außerdem werden innerhalb einer Bodengesellschaft häufig auftretende Bodenarten als Hauptbodenart und selten vorkommende Bodenarten als Nebenbodenart unterschieden. Die Bodengesellschaften, die in den Bodenarten des Feinbodens für den Oberboden als auch für den Unterboden weitgehend übereinstimmen, wurden zu einer Bodenartengruppe zusammengefasst. Die Zuordnung von Bodenartengruppen erfolgte lediglich deshalb, um eine lesbare Karte mit einer überschaubaren Anzahl von Legendeneinheiten zu erzeugen. Für genauere Angaben oder weitere Berechnungen liegen differenziertere Daten vor. Es treten Bodengesellschaften auf, die sowohl im Oberboden als auch im Unterboden aus den gleichen Bodenarten bestehen. Die Mehrzahl der Bodengesellschaften unterscheidet sich jedoch hinsichtlich der Bodenarten im Ober- und Unterboden. Durch Kombination der Bodenarten des Oberbodens mit den Bodenarten des Unterbodens wurden 14 Bodenartengruppen des Feinbodens (< 2 mm) gebildet, welche die Legendeneinheiten der Karte darstellen. Die Bodengesellschaften einer Bodenartengruppe können sich jedoch innerhalb dieser Gruppe hinsichtlich Torf- bzw. Steingehalt (Bodenskelett, Grobboden > 2 mm) des Ober- und Unterbodens unterscheiden, weshalb diese durch zusätzliche Signaturen dargestellt wurden. Die in den Böden Berlins vorkommenden Grobbodenarten sind in Tab. 2 zusammengestellt. Zwischen dem Vorkommen im Ober- bzw. Unterboden wird unterschieden. Die in Berlin vorkommenden Torfarten sind in Tab. 3 zusammengestellt. Zur Darstellung der ökologischen Eigenschaften und Ermittlung der Kennwerte wird unterschieden, ob Torf im Ober- und/oder im Unterboden vorkommt. Bei dem Vorhandensein von mehreren Torfarten in einem Boden oder einer Bodengesellschaft, wird nur die charakteristische Torfart (Torfart prägend) berücksichtigt. 01.06.2 Nutzbare Feldkapazität für Flachwurzler Beschreibung Die nutzbare Feldkapazität (nFK) ist die Wassermenge in l/m² bzw. mm, die der Boden festzuhalten vermag und der für Pflanzen nutzbar ist. Dieser Teil des Wassers wird in den Porenräumen des Bodens gegen die Schwerkraft festgehalten und steht den Pflanzen zur Verfügung. Die nFK ist von der Bodenart, dem Humusgehalt, der Lagerungsdichte und dem Steingehalt abhängig. Feinkörnige Böden können über längere Zeiträume wesentlich mehr Wasser speichern als grobkörnige, sodass bei letzteren das Niederschlagswasser rascher versickert und nicht für die Wasserversorgung der Pflanzen zur Verfügung steht. Hohe Humusgehalte und Torfanteile begünstigen die Wasserspeicherung. Methode Die nFK-Werte der Bodengesellschaften und Bodentypen wurden aus den in den Schnittzeichnungen von Grenzius (1987) dargestellten Musterprofilen entnommen. Dabei wird in eine Flachwurzelzone (0 – 3 dm) und eine Tiefwurzelzone (0-15 dm) unterschieden. Der Minimal- und Maximalwert der nFK für die Flachwurzel- und Tiefwurzelzone stammt von dem Bodentyp der Bodengesellschaft, der die höchste bzw. niedrigste nFK aufweist. Zusätzlich wird der typische nFK-Wert für die jeweilige Wurzelzone bestimmt. Als Karte dargestellt ist hier der typische nFK-Wert der Flachwurzelzone. Bei ergänzenden Untersuchungen der Bodengesellschaften des Ostteils Berlins wurden von Aey (1993) Analogieschlüsse anhand der Geologie durchgeführt. 2005 wurden anhand der Angaben bei Grenzius (1987) geringe nFK-Werte feiner differenziert und weitere korrigiert. Die Ergebnisse werden in sechs Stufen nach Grenzius (1987) zusammengefasst (Tab.1), da in der 4. Bodenkundlichen Kartieranleitung (1994) keine Stufung aufgeführt ist. 01.06.4 Nutzbare Feldkapazität des effektiven Wurzelraumes Beschreibung Eine differenzierte Betrachtung des pflanzenverfügbaren Wassers für den jeweiligen Standort ergibt die Beurteilung des Wasserhaushaltes über die nutzbare Feldkapazität im effektiven Wurzelraum (nFK We ). Dabei werden entsprechend der Bodenart und der Nutzung die unterschiedlichen Durchwurzelungstiefen und Wurzelräume berücksichtigt. So haben Wald- und Baumstandorte einen wesentlich größeren Wurzelraum als zum Beispiel Gartennutzungen. In Sandböden ist der effektive Wurzelraum geringer als in Lehmböden. In den Lehmböden kann das Niederschlagswasser länger als in den Sandböden gespeichert werden, so dass es für die Pflanzenwurzeln hinsichtlich des Wasser- und Nährstoffhaushaltes lohnend ist, sich einen etwas größeren Wurzelraum zu erschließen als in sandigen Substraten. Bei den moorigen Böden reicht der effektive Wurzelraum nur bis zu den grundwasserbeeinflussten Horizonten, so dass meist nur die obersten 20 – 30 cm als Wurzelraum dienen. Ursache für den geringen Wurzelraum ist der Luftmangel in den ständig wassergesättigten Horizonten. Die Pflanzenwurzeln, mit Ausnahme einiger Spezialisten, beschränken sich daher auf die oberen Horizonte, die sowohl ausreichend Luft als auch Wasser führen. Die zusätzliche Wasserversorgung der Pflanzen in der Vegetationszeit aus dem kapillaren Aufstieg des Grundwassers, die die nFK We bei geringen Flurabständen entscheidend beeinflusst, wurde hier bei der Ermittlung nicht berücksichtigt. Methode Die Ermittlung der nFK We für die Bodengesellschaften in Abhängigkeit von der realen Flächennutzung erfolgte durch das Fachgebiet Bodenkunde der TU Berlin im Rahmen eines Gutachtens (Plath-Dreetz/Wessolek/Renger 1989). Dabei wurde zunächst der effektive Wurzelraum für Berliner Standorte entsprechend unterschiedlichen Nutzungen aus Tab. 1 entnommen. Ausgehend von der Tiefe des effektiven Wurzelraumes wurden für die bei Grenzius (1987) dokumentierten Musterprofile die horizontweise ermittelten nutzbaren Feldkapazitäten zur nFK We addiert. Für die organische Substanz wurden entsprechende Zuschläge berücksichtigt. Da innerhalb einer Bodengesellschaft unterschiedliche Bodentypen auftreten, ergibt sich eine Spanne, die mit dem Minimal- und Maximalwert der nFK We je Bodengesellschaft beschrieben werden kann. Zusätzlich wurde der typische nFK We -Wert nutzungsabhängig für die jeweilige Bodengesellschaft bestimmt, der in der Karte dargestellt ist. Die Ergebnisse werden in fünf Stufen zusammengefasst (Tab. 2) 01.06.5 Humusmenge Beschreibung Humus bezeichnet die Gesamtheit der organischen Substanz von abgestorbenen Pflanzen und Tieren im Boden und setzt sich unter anderem zusammen aus Streu und Huminstoffen. Das hohe Sorptionsvermögen der Huminstoffe, der hohe Anteil pflanzenverfügbarer Nährstoffe und die günstigen Eigenschaften für den Wasserhaushalt wirken prägend für viele Bodenfunktionen. Die Humusgehalte mineralischer Böden sind bestimmt durch die Bodengenese, den Wassergehalt und die Nutzung. Durch Nutzungen wie Gartenbau mit Einarbeitung von Kompost oder intensiver Grünlandwirtschaft wird die Humusanreicherung begünstigt, während bei anderen Nutzungen ein deutlich geringerer Gehalt an organischer Substanz zu erwarten ist (vgl. Tab. 1). Nasse Vegetationsstandorte, z. B. Auenböden und Moore haben eine hohe Biomasseproduktion, aber einen geringen Humusabbau. Die angereicherte organische Substanz liegt in Form von Torfen mit unterschiedlichem Zersetzungsgrad vor. Die An- und Niedermoore besitzen in Abhängigkeit von der Nutzung und dem Zersetzungsgrad der Torfe einen Gehalt an org. Substanz von 15 – 80 %. Voraussetzung für hohe Gehalte an organischer Substanz ist eine stetige Vernässung bis in den Oberboden, die eine Mineralisierung hemmt oder unterbindet, sowie eine naturnahe Nutzung, wie zum Beispiel extensive Wiesennutzung. Die Humusmenge stellt die Menge an abgestorbener organischer Substanz dar, die an einem Standort für eine definierte Bodenfläche in Abhängigkeit vom Bodentyp und der Flächennutzung vorliegt. Die Humusmenge ist vor allem ein Zeiger für den Stickstoffvorrat und den leicht mobilisierbaren Stickstoffanteil. Aber auch andere wichtige Nährstoffe wie Kalium, Calcium, Magnesium und Phosphor werden durch die Zersetzung und Humifizierung der organischen Substanz freigesetzt und für die Pflanzen verfügbar gemacht. Neben der Bereitstellung und der Speicherung von Nährstoffen ermöglicht der Humus auch eine Erhöhung der Wasser- und Schadstoffspeicherkapazität. Die Humusmenge eines Bodens ergibt sich aus dem Humusgehalt und der Mächtigkeit der humosen Horizonte und hängt vom Bodentyp und der Nutzung ab. So weisen z. B. feuchte, moorige Standorte mit einer hohen Biomasseproduktion und einer geringen Zersetzung eine hohe Humusmenge und sandige, trockene Böden mit geringer Vegetationsdecke eine niedrige Humusmenge auf. Methode Die durchschnittlichen aus der Nutzung zu erwartenden Humusgehalte der Mineralböden in Abhängigkeit von Bodentyp und Nutzung wurden durch Untersuchungen von Grenzius (1987) und Bodenuntersuchungen im Rahmen des Schwermetalluntersuchungsprogramms (1986, 1987) hergeleitet. Diese Daten wurden zunächst von Fahrenhorst et al. (1990) ausgewertet und die durchschnittlichen Humusgehalte für den charakteristischen Bodentyp der verschiedenen Bodengesellschaften unter unterschiedlichen Nutzungen ermittelt. Eine Erweiterung der Datenbasis unter Verwendung verschiedener Einzelkartierungen erfolgte 1993 (Aey 1993). Eine rein nutzungsabhängige grobe Orientierung ist in Tab. 1 zusammengestellt. Die Humusgehalte von Torfen, die sich auf nassen Standorten bilden, werden bei den Mineralböden nicht berücksichtigt, sie gehen gesondert mit ihren Gehalten und mit ihren Mächtigkeiten in die Ermittlung der Humusmenge ein. Die Humusmenge wurde aus dem Humusgehalt der Humusschicht unter Berücksichtigung des Torfanteils [Masse-%] und der effektiven Lagerungsdichte sowie der Mächtigkeit der organischen Horizonte ermittelt. Die ermittelten Humusmengen für die unterschiedlichen Standorte werden entsprechend Tab. 2 in sechs Stufen unterteilt. 01.06.6 Organischer Kohlenstoffvorrat Beschreibung Die abgestorbene organische Substanz (Humus) im Boden besteht etwa zu 50 % aus organischem Kohlenstoff und ist für den Nährstoff- und Wasserhaushalt des Bodens von elementarer Bedeutung. Durch die Anreicherung, Speicherung und Freisetzung von organischer Substanz, und damit von organischem Kohlenstoff, spielen Böden eine zentrale Rolle im globalen Kohlenstoffkreislauf. Böden sind der größte terrestrische Kohlenstoffspeicher und somit neben den Ozeanen die größten Kohlenstoffspeicher der Erde (IPCC 2000). Große Auswirkungen auf die Kohlenstoffdynamik im Boden hat die Landnutzung. Böden in urbanen Gebieten unterliegen einem besonders hohen Nutzungsdruck und sind sehr stark anthropogen geprägt. Dadurch kommt es auf der einen Seite, beispielsweise durch gärtnerische Nutzung, zu höheren organischen Kohlenstoffgehalten als in natürlichen Systemen. Auf der anderen Seite wird durch die teilweise komplette Zerstörung der natürlichen Bodenfunktionen der Abbau bzw. die Mineralisierung des Humus und somit die Freisetzung von Kohlendioxid (CO 2 ) in die Atmosphäre verstärkt. Dies ist vor allem langfristig von besonderer klimatischer Bedeutung, da die Anreicherung von Humus und damit die klimawirksame Kohlenstoffbindung in Böden sehr lange Zeiträume in Anspruch nimmt. Böden haben als sogenannte Kohlenstoffsenken eine besondere Bedeutung im globalen Kohlenstoffkreislauf. Auch in urbanen Gebieten sind solche Kohlenstoffsenken zu finden. Dabei spielen vor allem hydromorphe Böden wie Moore eine besondere Bedeutung. Moore speichern potentiell bis zu zehnmal so viel Kohlenstoff wie andere Ökosysteme (Batjes 1996). Durch den veränderten Wasserhaushalt in Folge von Meliorationsmaßnahmen, wie Grundwasserabsenkungen, landwirtschaftlich genutzter Flächen, emittieren viele Moore heute CO 2 und CH 4 (Methan). Daher ist Moorschutz für den lokalen, regionalen und globalen Klimaschutz von großer Bedeutung. Die Bedeutung der Moorböden – in Berlin nur der Niedermoorböden – wird daran deutlich, dass sie bei einem Flächenanteil von nur 7 % fast 50 % des gesamten in den Böden Berlins gespeicherten organischen Kohlenstoffs enthalten. Aber auch Kleingärten und Standorte mit einer langen Bodenentwicklung, wie Friedhöfe, alte Waldbestände und Parkanlagen, sind wertvolle Kohlenstoffsenken, da sie als langfristige Kohlenstoffspeicher dienen. Durch die Funktion als Kohlenstoffsenke haben Böden eine wichtige Klimaschutzfunktion, die auch bei Planungs- und Genehmigungsverfahren Beachtung finden sollte (Dahlmann et al. 2012). Demnach ist es sinnvoll, kohlenstoffreiche Böden möglichst von negativ beeinflussender Nutzung, wie dem Überbauen von bisher unversiegelten Flächen, freizuhalten und die Rekultivierung von vorhanden Strukturen, gerade von Mooren, zu fördern. Daher wird das Puffervermögen im organischen Kohlenstoffhaushalt auch bei der Bewertung der Puffer- und Filterfunktion (vgl. Karte 01.12.3 ) berücksichtigt. Die Berechnungen auf der Grundlage dieser Karte ergeben, dass in den Böden Berlins insgesamt 4,8 Millionen Tonnen Kohlenstoff gespeichert sind. Dies entspricht einen Äquivalent von 17,6 Millionen Tonnen CO 2 . Die Gesamt-CO 2 -Emissionen in Berlin betrugen ca. 16,5 Millionen Tonnen im Jahr 2015 (Amt für Statistik Berlin-Brandenburg, 2018). Somit speichert der Boden mehr Kohlenstoff als in Berlin im gesamten Jahr 2015 durch den Primärenergieverbrauch ausgestoßen wurde. Methode Die Berechnung der organischen Kohlenstoffvorräte für Berlin wurde auf Grundlage der in der Berliner Bodendatenbank (Gerstenberg 2017) enthaltenen Humusmengen [kg/m²] vorgenommen (vgl. Karte 01.06.5 Humusmenge ). Aufbauend auf die Ergebnisse des Forschungsvorhabens “Berliner Moorböden im Klimawandel” wurde die Berechnung der organischen Kohlenstoffvorräte aus den Humusmengen im Vergleich zu 2010 leicht abgewandelt (Gerstenberg 2017). Um die organischen Kohlenstoffvorräte für ganz Berlin zu berechnen, wurden die Kohlenstoffmengen mit den Flächengrößen der Blöcke multipliziert. Die ermittelten organischen Kohlenstoffvorräte der Böden sind als Schätzung zu betrachten und methodisch bedingt z. T. relativ ungenau, da die in der Blockstruktur dargestellten Humusmengen auf einer Bodengesellschaftskarte basieren, die teilweise nur Konzeptcharakter hat (vgl. Karte 01.01 ). Zudem sind die Humusgehalte und die Mächtigkeiten der mineralischen humushaltigen Horizonte und der Torfauflagen sowie der Lagerungsdichten zum Teil abgeschätzt. Durch die Einarbeitung der Ergebnisse des Forschungsvorhabens “Berliner Moorböden im Klimawandel” im Jahr 2014 wurden Daten zur Lage, Ausdehnung, Torfmächtigkeit, Lagerungsdichte und zum Verhältnis Humusmenge / Kohlenstoffmenge von Mooren erheblich verbessert (Kingenfuß et al. 2015). Trotzdem kann die Karte 01.06.6 Organischer Kohlenstoffvorrat nur näherungsweise die Realität abbilden. Die ermittelten organischen Kohlenstoffvorräte werden entsprechend der Tab. 1 in sechs Stufen unterteilt. 01.06.7 pH-Werte im Oberboden Beschreibung Der pH-Wert (negativer dekadischer Logarithmus der Wasserstoffionenkonzentration) beeinflusst die chemischen, physikalischen und biologischen Eigenschaften des Bodens (Bodenreaktion). Er wirkt sich auf die Verfügbarkeit von Nähr- und Schadstoffen aus und gibt Auskunft über die Fähigkeit des Bodens, Säuren oder Basen zu neutralisieren. Er ist bedeutend für die Filter- und Pufferpotentiale der Böden. Bei niedrigen pH-Werten können daher im Boden keine Säuren neutralisiert werden, die Schwermetallverbindungen gehen zunehmend in Lösung und die verfügbaren Nährstoffe sind weitgehend ausgewaschen. Methode Die pH-Werte wurden für die Bodengesellschaften unter Berücksichtigung der Flächennutzung aus vorhandenen Unterlagen abgeleitet. Die Angaben wurden im Wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden, meist unter Verwendung einer Vielzahl verschiedener bodenkundlicher Gutachten. Lagen keine Messwerte vor, wurden die Werte unter Verwendung von Daten vergleichbarer Nutzungen oder vergleichbarer Bodengesellschaften abgeschätzt. Zusätzlich zu den repräsentativen Werten (typische pH-Werte) für den Ober- und Unterboden wurden noch die jeweiligen Maximal- und Minimalwerte bestimmt. In der Karte wurde nur der pH-Wert für den Oberboden dargestellt; dieser hat für die Funktionsbewertung der Böden (vgl. Karte 01.12 ) eine höhere Bedeutung als der pH-Wert des Unterbodens und weist auch eine größere, meist nutzungsbedingte Differenzierung auf. Die Stufung der pH-Werte erfolgte nach der Bodenkundlichen Kartieranleitung (1994) in den Stufen 1 bis 12 von äußerst alkalisch bis äußerst sauer (vgl. Tab. 1). Über die Stufung kann die Bodenreaktion entsprechend ihrer Alkalinität oder Azidität differenziert werden. 01.06.8 Summe austauschbarer basischer Kationen des Oberbodens (S-Wert) Beschreibung Die austauschbaren Kationen eines Bodens werden üblicherweise in saure und basische Kationen unterteilt. Zu ersteren gehören neben den Wasserstoff-Ionen (H-Ionen) auch solche, die beim Austritt in die Bodenlösung eine Hydrolyse hervorrufen und damit H-Ionen freisetzen, wie vor allem Aluminium (Al). Ihre Summe wird H-Wert genannt. Die basischen Kationen sind in erster Linie Calcium-Ionen (Ca 2+ ), Kalium-Ionen (K + ), Magnesium-Ionen (Mg 2+ ) und Natrium-Ionen (Na + ), in Kulturböden (nach einer Düngung) auch Ammonium-Ionen NH 4+ (wobei Calcium (Ca) meist mit mehr als 80 % dominiert). Ihre Summe bildet den S-Wert. Ihre Konzentration kann in cmol c /kg, die Menge in mol c /m² angegeben werden. Der %-Anteil des S-Wertes an den Austauschkationen insgesamt wird als Basensättigung bezeichnet. Der S-Wert beschreibt somit die Menge des vom Boden zur Verfügung gestellten und für die Pflanzenernährung relevanten Kationen und ist somit ein wichtiges Maß der Bodenfruchtbarkeit. Methode Die Menge der basisch wirkenden austauschbaren Ionen (S-Wert) für den Oberboden (hier: 0 – 3 dm Tiefe) wird durch Multiplikation der effektiven Kationenaustauschkapazität (KAK eff ) mit der Basensättigung (BS) unter Einbeziehung der Lagerungsdichte und des Grobbodenanteils berechnet. Die Berechnung der effektiven Kationenaustauschkapazität wird in der Karte 01.06.9 dargestellt. Die Basensättigung kann vom pH-Wert (in Calciumchlorid, CaCl 2 gemessen) abgeleitet werden. Zur Ermittlung wird der für den Standort typische pH-Wert des Oberbodens (vgl. Karte 01.06.7 ) herangezogen und nach Tab. 1 die Basensättigung bestimmt. Zwischen den pH-Stufen dieser Tabelle wird linear interpoliert. Die Stufung des S-Wertes erfolgt in den Stufen 1 – 10 (extrem gering – sehr hoch) nach Tab. 2. Die Einteilung der geringen Werte erfolgt in sehr engen Stufen, um die für die Bewertung der Funktion „Lebensraum für naturnahe und seltene Pflanzengesellschaften“ ( vgl. Karte 01.12.1 ) notwendige feine Abstufung nähstoffarmer Böden zu erkennen. 01.06.9 Mittlere effektive Kationenaustauschkapazität Beschreibung Die effektive Kationenaustauschkapazität (KAK eff ) stellt die Menge der an Bodenkolloide gebundenen Kationen unter Berücksichtigung der stark vom pH-Wert abhängigen Ladung der organischen Substanz dar. Dabei sind die austauschbaren Kationen an Tonminerale und Humuskolloide gebunden. In neutralen bis schwach sauren Böden dominieren Calcium (Ca), Magnesium (Mg), Kalium (K) und Natrium (Na) den Sorptionskomplex, in sauren Böden, z. B. Kiefer- und Heidestandorten Aluminium (Al), Wasserstoff (H) und Eisen (Fe). Das Bindungsvermögen der organischen Substanz ist deutlich höher als das der Tonminerale. Die Stärke der Bindung an die organische Substanz ist vom pH-Wert abhängig, während die Bindung an die Tonminerale unabhängig vom pH-Wert ist. So sinkt mit abnehmendem pH-Wert das Bindungsvermögen des Humus. Ton- und humusreiche Böden mit neutraler Bodenreaktion können daher wesentlich mehr Nähr- und Schadstoffe binden und eine Auswaschung dieser Stoffe in das Grundwasser verhindern als sandige humusarme Standorte. Die effektive Kationenaustauschkapazität ist daher geeignet, die Nähr- und Schadstoffbindungspotentiale von Böden zu beschreiben. Methode Die KAK eff der Bodengesellschaften wird aus der Hauptbodenart der Oberböden und Unterböden abgeleitet (Tab. 1). Für den Oberboden wird eine Tiefe von 0 – 3 dm angenommen, für den Unterboden 3 – 15 dm. Zu der ermittelten KAK der Hauptbodenart wird die Austauschkapazität des Humus (Tab. 3), korrigiert um einen pH-Wert abhängigen Faktor (Tab. 2) addiert. Da in Abhängigkeit von Bodengenese und Nutzung sowohl die Humusgehalte als auch die Mächtigkeit der Humusschicht unterschiedlich sind und diese ebenfalls zur Berechnung der KAK herangezogen werden, werden für jede Bodengesellschaft unterschiedliche nutzungsspezifische Werte ermittelt. Die ermittelten Werte wurden zur Darstellung in der Karte entsprechend der Bodenkundlichen Kartieranleitung (1994) in fünf Stufen von sehr gering bis sehr hoch unterteilt (Tab. 4). 01.06.10 Gesättigte Wasserdurchlässigkeit (kf) Beschreibung Die gesättigte Wasserdurchlässigkeit (gesättigte Wasserleitfähigkeit, kf-Wert) kennzeichnet die Durchlässigkeit bzw. Permeabilität von vollständig wassergesättigten Böden. Sie hängt von der Bodenart und der Lagerungsdichte des Bodens ab. Lockere Böden mit hohen Sandgehalten haben daher eine wesentlich höhere Durchlässigkeit als tonreiche Böden, beispielsweise aus Geschiebemergel. Die gesättigte Wasserdurchlässigkeit ist wichtig für die Beurteilung von Staunässe, Filtereigenschaften, Erosionsanfälligkeit und Drainagewirksamkeit von Böden. Die Einheit der gesättigten Wasserdurchlässigkeit wird in cm/d oder m/s angegeben. In der Regel liegen bei den terrestrischen Böden aber ungesättigte Wasserverhältnisse vor, wobei nur ein Teil der Poren mit Wasser gefüllt ist. Bei ungesättigten Verhältnissen ist die Wasserbewegung deutlich geringer. Ausserdem wird ein großer Teil des vorhandenen Wassers von den Pflanzen aufgenommen und steht für eine Verlagerung nicht mehr zur Verfügung. Da eine Messung der ungesättigten Wasserleitfähigkeit (ku) sehr aufwendig und kompliziert ist, und deshalb keine ableitbaren Daten in der Bodenkundlichen Kartieranleitung (1994) vorliegen, wird in der wissenschaftlichen Praxis auf die abgesicherten Werte der gesättigten Wasserleitfähigkeit als grobes Maß zurückgegriffen. Der Einfluss des Grobbodens wurde nicht berücksichtigt. Methode Der kf-Wert wurde für die Hauptbodenart des Ober- (0 – 10 cm Tiefe) und Unterbodens (90 – 100 cm Tiefe) nach Tab. 1 abgelesen. Der kf-Wert für Ober- und Unterboden ist der harmonische Mittelwert aus kf-Ober- und kf-Unterboden. Den in der Tabelle in Abhängigkeit von der Bodenart aufgeführten kf-Werten ist eine effektive Lagerungsdichte von Ld3 zugrunde gelegt, was im Mittel den Berliner Böden entspricht. Die Ergebnisse der gesättigten Wasserdurchlässigkeit wurden für die Darstellung in der Karte in sechs Stufen von sehr gering bis äußerst hoch (1 – 6) nach Tab. 2 zusammengefasst.
01.06.1 Bodenarten Beschreibung Die Bodenart eines Bodens wird durch die Korngrößenzusammensetzung ihrer mineralischen Bestandteile bestimmt. Dabei wird der Grobboden (Korndurchmesser > 2 mm) und der Feinboden (Korndurchmesser < 2 mm) unterschieden. Auf sehr nassen Standorten entstehen außerdem durch die Anhäufung unvollständig zersetzten Pflanzenmaterials Torfe , die die mineralischen Böden überlagern. Bodenart des Feinbodens Die Bodenarten des Feinbodens werden aus bestimmten Mengenanteilen der Kornfraktionen Ton, Schluff und Sand gebildet. Die Hauptbodenarten werden in Ton, Schluff, Lehm und Sand untergliedert, wobei Lehm ein Korngemisch aus Sand, Schluff und Ton ist. Die Bodenart ist ein wichtiger Kennwert für die Ableitung ökologischer Eigenschaften, wie Nähr- und Schadstoffspeichervermögen, Wasserhaushalt und Wasserspeichervermögen sowie Filter- und Puffervermögen von Schadstoffen. Bodenart des Grobbodens Als Bodenart des Grobbodens oder das Bodenskelett werden alle mineralischen Bestandteile des Bodens bezeichnet, die im Durchmesser > 2 mm sind. Der Anteil des Grobbodens wirkt sich auf die Wasserdurchlässigkeit, den Luft- und Nährstoffhaushalt und das Bindungsvermögen für Nähr- und Schadstoffe aus. Je höher der Anteil des Grobbodens ist, um so durchlässiger ist ein Boden aufgrund der großen Poren, während Bindungsvermögen und Nährstoffsituation von der Art der Feinerde abhängen. Torfart Torfe entstehen in wassergesättigtem Milieu durch Anhäufung unvollständig zersetzten Pflanzenmaterials. Sie zeichnen sich durch ein hohes Wasserspeichervermögen und eine sehr hohe Kationenaustauschkapazität aus. Entsprechend der Art der Pflanzenreste und der Entstehungsbedingungen werden unterschiedliche Torfarten differenziert. Niedermoortorfe sind basen- und nährstoffreich, teilweise sogar carbonatreich. Übergangsmoortorfe weisen Pflanzenreste sowohl von nährstoffarmen als auch von nährstoffreichen Standorten auf. Methode Die Bodenarten des Feinbodens, des Grobbodens und der Torfarten jeweils differenziert nach Ober- und Unterboden wurden für jede Bodengesellschaft bestimmt. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden. Die kartierten Bodenarten des Feinbodens sind in Tabelle 1 zusammengefasst. Da die Bodenarten im Ober- und Unterboden aufgrund des Ausgangsmaterials der Bodenbildung, der Bodenentwicklung und der Nutzung z.T. unterschiedlich sind, werden diese differenziert betrachtet. Außerdem werden innerhalb einer Bodengesellschaft häufig auftretende Bodenarten als Hauptbodenart und selten vorkommende Bodenarten als Nebenbodenart unterschieden. Die Bodengesellschaften, die in den Bodenarten des Feinbodens für den Oberboden als auch für den Unterboden weitgehend übereinstimmen, wurden zu einer Bodenartengruppe zusammengefasst. Die Zuordnung von Bodenartengruppen erfolgte lediglich deshalb, um eine lesbare Karte mit einer überschaubaren Anzahl von Legendeneinheiten zu erzeugen. Für genauere Angaben oder weitere Berechnungen liegen differenziertere Daten vor. Es treten Bodengesellschaften auf, die sowohl im Oberboden als auch im Unterboden aus den gleichen Bodenarten bestehen. Die Mehrzahl der Bodengesellschaften unterscheidet sich jedoch hinsichtlich der Bodenarten im Ober- und Unterboden. Durch Kombination der Bodenarten des Oberbodens mit den Bodenarten des Unterbodens wurden 14 Bodenartengruppen des Feinbodens (< 2 mm) gebildet, welche die Legendeneinheiten der Karte darstellen. Die Bodengesellschaften einer Bodenartengruppe können sich jedoch innerhalb dieser Gruppe hinsichtlich Torf- bzw. Steingehalt (Bodenskelett, Grobboden > 2 mm) des Ober- und Unterbodens unterscheiden, weshalb diese durch zusätzliche Signaturen dargestellt wurden. Die in den Böden Berlins vorkommenden Grobbodenarten sind in Tabelle 2 zusammengestellt. Zwischen dem Vorkommen im Ober- bzw. Unterboden wird unterschieden. Die in Berlin vorkommenden Torfarten sind in Tabelle 3 zusammengestellt. Zur Darstellung der ökologischen Eigenschaften und Ermittlung der Kennwerte wird unterschieden, ob Torf im Ober- und/oder im Unterboden vorkommt. Bei dem Vorhandensein von mehreren Torfarten in einem Boden oder einer Bodengesellschaft, wird nur die charakteristische Torfart (Torfart prägend) berücksichtigt. 01.06.2 nutzbare Feldkapazität für Flachwurzler Beschreibung Die nutzbare Feldkapazität (nFK) ist die Wassermenge in l/m² bzw. mm, die der Boden festzuhalten vermag und der für Pflanzen nutzbar ist. Dieser Teil des Wassers wird in den Porenräumen des Bodens gegen die Schwerkraft festgehalten und steht den Pflanzen zur Verfügung. Die nFK ist von der Bodenart, dem Humusgehalt, der Lagerungsdichte und dem Steingehalt abhängig. Feinkörnige Böden können wesentlich mehr Wasser speichern als grobkörnige, sodass bei letzteren das Niederschlagswasser rascher versickert und nicht für die Wasserversorgung der Pflanzen zur Verfügung steht. Hohe Humusgehalte und Torfanteile begünstigen die Wasserspeicherung. Methode Die nFK-Werte der Bodengesellschaften und Bodentypen wurden aus den in den Schnittzeichnungen von GRENZIUS (1987) dargestellten Musterprofilen entnommen. Dabei wird in eine Flachwurzelzone (0-3 dm) und eine Tiefwurzelzone (0-15 dm) unterschieden. Der Minimal- und Maximalwert der nFK für die Flachwurzel- und Tiefwurzelzone stammt von dem Bodentyp der Bodengesell¬schaft, der die höchste bzw. niedrigste nFK aufweist. Zusätzlich wird der typische nFK-Wert für die jeweilige Wurzelzone bestimmt. Als Karte dargestellt ist hier der typische nFK – Wert der Flachwurzelzone. Bei ergänzenden Untersuchungen der Bodengesellschaften des Ostteils Berlins wurden von AEY (1993) Analogieschlüsse anhand der Geologie durchgeführt. 2005 wurden anhand der Angaben bei Grenzius (1987) geringe nFK-Werte feiner differenziert und weitere korrigiert. Die Ergebnisse werden in sechs Stufen nach Grenzius (1987) zusammengefasst (Tab.1), da in der Bodenkundlichen Kartieranleitung (1994) keine Stufung aufgeführt ist. 01.06.4 Nutzbare Feldkapazität des effektiven Wurzelraumes Beschreibung Eine differenzierte Betrachtung des pflanzenverfügbaren Wassers für den jeweiligen Standort ergibt die Beurteilung des Wasserhaushaltes über die nutzbare Feldkapazität im effektiven Wurzelraum (nFK We ). Dabei werden entsprechend der Bodenart und der Nutzung die unterschiedlichen Durchwurzelungstiefen und Wurzelräume berücksichtigt. So haben Wald- und Baumstandorte einen wesentlich größeren Wurzelraum als zum Beispiel Gartennutzungen. In Sandböden ist der effektive Wurzelraum geringer als in Lehmböden. In den Lehmböden kann das Niederschlagswasser länger als in den Sandböden gespeichert werden, so dass es für die Pflanzenwurzeln hinsichtlich des Wasser- und Nährstoffhaushaltes lohnend ist, sich einen etwas größeren Wurzelraum zu erschließen als in sandigen Substraten. Bei den moorigen Böden reicht der effektive Wurzelraum nur bis zu den grundwasserbeeinflussten Horizonten, so dass meist nur die obersten 20 – 30 cm als Wurzelraum dienen. Ursache für den geringen Wurzelraum ist der Luftmangel in den ständig wassergesättigten Horizonten. Die Pflanzenwurzeln, mit Ausnahme einiger Spezialisten, beschränken sich daher auf die oberen Horizonte, die sowohl ausreichend Luft als auch Wasser führen. Die zusätzliche Wasserversorgung der Pflanzen in der Vegetationszeit aus dem kapillaren Aufstieg des Grundwassers, die die nFK We bei geringen Flurabständen entscheidend beeinflusst, wurde hier bei der Ermittlung nicht berücksichtigt. Methode Die Ermittlung der nFK We für die Bodengesellschaften in Abhängigkeit von der realen Flächennutzung erfolgte durch das Fachgebiet Bodenkunde der TU Berlin im Rahmen eines Gutachtens (Plath-Dreetz / Wessolek / Renger 1989). Dabei wurde zunächst der effektive Wurzelraum für Berliner Standorte entsprechend unterschiedlichen Nutzungen aus Tabelle 1 entnommen. Ausgehend von der Tiefe des effektiven Wurzelraumes wurden für die bei Grenzius (1987) dokumentierten Musterprofile die horizontweise ermittelten nutzbaren Feldkapazitäten zur nFK We addiert. Für die organische Substanz wurden entsprechende Zuschläge berücksichtigt. Da innerhalb einer Bodengesellschaft unterschiedliche Bodentypen auftreten, ergibt sich eine Spanne, die mit dem Minimal- und Maximalwert der nFK We je Bodengesellschaft beschrieben werden kann. Zusätzlich wurde der typische nFK We – Wert nutzungsabhängig für die jeweilige Bodengesellschaft bestimmt, der in der Karte dargestellt ist. Die Ergebnisse werden in fünf Stufen zusammengefasst (Tab. 2) 01.06.5 Humusmenge Beschreibung Die organische Substanz der Böden besteht aus abgestorbenen und umgewandelten Resten von Pflanzen und Tieren. Die Streu und die Huminstoffe bilden den Humus . Das hohe Sorptionsvermögen der Huminstoffe, der hohe Anteil pflanzenverfügbarer Nährstoffe und die günstigen Eigenschaften für den Wasserhaushalt wirken prägend für viele Bodenfunktionen. Die Humusgehalte der mineralischen Böden sind bestimmt durch die Bodengenese und die Nutzung. Durch Nutzungen wie Gartenbau mit Einarbeitung von Kompost oder intensiver Grünlandwirtschaft wird die Humusanreicherung begünstigt, während bei den anderen Nutzungen ein deutlich geringerer Gehalt an organischer Substanz vorhanden ist (vgl. Tab. 1). Nasse Vegetationsstandorte, z.B. Auenböden und Moore haben eine hohe Biomasseproduktion, aber einen geringen Humusabbau. Die angereicherte organische Substanz liegt in Form von Torfen mit unterschiedlichem Zersetzungsgrad vor. Die An- und Niedermoore besitzen in Abhängigkeit von der Nutzung und dem Zersetzungsgrad der Torfe einen Gehalt an org. Substanz von 15 – 80%. Voraussetzung für hohe Gehalte an organischer Substanz ist eine stetige Vernässung bis in den Oberboden und eine naturnahe Nutzung, wie zum Beispiel extensive Wiesennutzung. Die Humusmenge stellt die Menge an organischer Substanz dar, die an einem Standort für eine definierte Bodenfläche in Abhängigkeit vom Bodentyp und der Flächennutzung vorliegt. Die Humusmenge ist vor allem ein Zeiger für den Stickstoffvorrat und den leicht mobilisierbaren Stickstoffanteil. Aber auch andere wichtige Nährstoffe wie Kalium, Calcium, Magnesium und Phosphor werden durch die Zersetzung und Humifizierung der organischen Substanz freigesetzt und für die Pflanzen verfügbar gemacht. Neben der Verfügbarkeit von Nährstoffen wirkt die Humusmenge als Nährstoff- und Wasserspeicher und vermag in hohem Masse Schadstoffe zu binden. Die Humusmenge eines Bodens hängt von dem Humusgehalt und der Mächtigkeit der humosen Horizonte ab. Diese ist entsprechend dem Bodentyp und der Nutzung unterschiedlich. So besitzen zum Beispiel feuchte moorige Standorte mit einer hohen Biomasseproduktion und einer geringen Zersetzung eine hohe Humusmenge und sandige trockene Böden mit geringer Vegetationsdecke eine niedrige Humusmenge. Methode Die durchschnittlichen Humusgehalte der Mineralböden in Abhängigkeit von Bodentyp und Nutzung wurden den Untersuchungen von GRENZIUS (1987) und Bodenuntersuchungen im Rahmen des Schwermetalluntersuchungsprogramms (1986,1987) entnommen. Diese Daten wurden zunächst von Fahrenhorst et al. (1990) ausgewertet und die durchschnittlichen Humusgehalte für den charakteristischen Bodentyp der verschiedenen Bodengesellschaften unter unterschiedlichen Nutzungen ermittelt. Eine Erweiterung der Datenbasis unter Verwendung verschiedener Einzelkartierungen erfolgte 1993 (Aey 1993). Eine rein nutzungsabhängige grobe Orientierung ist in Tabelle 1 zusammengestellt. Die Humusgehalte von Torfen, die sich auf nassen Standorten bilden, werden bei den Mineralböden nicht berücksichtigt, sie gehen gesondert mit ihren Gehalten und mit ihren Mächtigkeiten in die Ermittlung der Humusmenge ein. Die Humusmenge wurde aus dem Humusgehalt der Humusschicht unter Berücksichtigung des Torfanteils [Masse-%] und unter Berücksichtigung der effektiven Lagerungsdichte und der Mächtigkeit der organischen Horizonte ermittelt. Die ermittelten Humusmengen für die unterschiedlichen Standorte werden entsprechend Tabelle 2 in fünf Stufen untereilt. 01.06.6 Kohlenstoffvorräte Beschreibung Die organische Substanz (Humus) im Boden besteht etwa zu 50 % aus Kohlenstoff und ist für den Nährstoff- und Wasserhaushalt des Bodens von elementarer Bedeutung. Durch die Anreicherung und Freisetzung von organischer Substanz, und damit von Kohlenstoff, spielen Böden eine zentrale Rolle im globalen Kohlenstoffkreislauf. Böden sind der größte terrestrische Kohlenstoffspeicher und somit neben den Ozeanen die größten Kohlenstoffspeicher der Erde (IPCC 2000). Große Auswirkungen auf die Kohlenstoffdynamik im Boden hat die Landnutzung. Böden in urbanen Gebieten unterliegen einem besonders hohen Nutzungsdruck und sind sehr stark anthropogen geprägt. Dadurch kommt es auf der einen Seite, durch z.B. gärtnerische Nutzung, zu höheren Kohlenstoffgehalten als in natürlichen Systemen. Auf der anderen Seite wird durch die teilweise komplette Zerstörung der natürlichen Bodenfunktionen der Abbau bzw. die Mineralisierung des Humus und somit die Freisetzung von Kohlendioxid (CO 2 ) in die Atmosphäre verstärkt. Dies ist von besonderer Bedeutung, da der Aufbau von Humus und damit der Kohlenstoffspeicher nur über sehr lange Zeiträume hinweg geschieht. Eine besondere Bedeutung im globalen Kohlenstoffkreislauf haben sogenannte Kohlenstoffsenken. Auch in Städten sind solche Kohlenstoffsenken zu finden. Dabei spielen vor allem hydromorphe Böden wie Moore eine besondere Bedeutung. Moore speichern potentiell bis zu zehnmal so viel Kohlenstoff wie andere Ökosysteme (Batjes 1996). Durch den veränderten Wasserhaushalt in Folge von landwirtschaftlicher Nutzung, emittieren viele Moore heute CO 2 und MH 4 (Methan). Daher ist Moorschutz für den lokalen, regionalen und globalen Klimaschutz von großer Bedeutung. Die Bedeutung der Moorböden – in Berlin vor allem Niedermoore – wird daran deutlich, dass sie bei einen Flächenanteil von 7 % fast 50 % des gesamten in den Böden Berlins gespeicherten Kohlenstoffs speichern. Aber auch Kleingärten und Standorte mit einer langen Bodenentwicklung wie Friedhöfe, alte Waldbestände und Parkanlagen sind wertvolle Kohlenstoffsenken, da sie langfristig Kohlenstoff speichern. Durch die Funktion als Kohlenstoffsenke haben Böden eine wichtige Klimaschutzfunktion, die auch bei Planungs- und Genehmigungsverfahren Beachtung finden sollte (Dahlmann et al. 2012). Demnach ist es sinnvoll, kohlenstoffreiche Böden möglichst von negativ beeinflussender Nutzung, wie dem Überbauen von bisher unversiegelten Flächen, frei zu halten und die Rekultivierung von vorhanden Strukturen, gerade von Mooren, zu fördern. Daher wird das Puffervermögen für den Kohlenstoffhaushalt auch bei der Bewertung der Puffer- und Filterfunktion (vgl. Karte 01.12.3 ) berücksichtigt. Die Berechnungen auf der Grundlage dieser Karte ergeben, dass in den Böden Berlins insgesamt 5,28 Millionen Tonnen Kohlenstoff gespeichert sind. Dies entspricht einen Äquivalent von 19,3 Millionen Tonnen CO 2 . Die Gesamt-CO 2 -Emissionen in Berlin betrugen ca. 18 Millionen Tonnen im Jahr 2009 (Statistik BBB 2012). Somit speichert der Boden mehr CO 2 als Berlin im gesamten Jahr 2009 durch den Primärenergieverbrauch ausgestoßen hat. Methode Die Berechnung der Kohlenstoffmengen für Berlin wurde auf Grundlage der in der Berliner Bodendatenbank (Gerstenberg 2013) enthaltenen Humusmengen [kg/m²] vorgenommen. Die Humusmenge wurde aus dem Humusgehalt der Humusschicht unter Berücksichtigung des Torfanteils [Masse-%] und unter Berücksichtigung der effektiven Lagerungsdichte und der Mächtigkeit der organischen Horizonte ermittelt (vgl. Karte 01.06.5 Humusmenge ). Zur Berechnung der Torfhorizonte wurde eine Lagerungsdichte von 0,9 [g/cm³] angenommen. Um die Kohlenstoffvorräte zu errechnen wurden die ermittelten Humusmengen durch den Faktor 1,72 dividiert (Bodenkundliche Kartieranleitung 2005). Um die Kohlenstoffvorräte für ganz Berlin zu berechnen, wurden die Kohlenstoffmengen mit den Flächengrößen der Blöcke multipliziert. Die ermittelten Kohlenstoffvorräte der Böden sind als erste Einschätzung zu betrachten und methodisch bedingt z.T. ungenau, da die in der Blockstruktur dargestellten Humusmengen auf einer Bodengesellschaftskarte basieren, die teilweise nur Konzeptcharakter hat. Zudem sind die Humusgehalte und die Mächtigkeiten der mineralischen humushaltigen Horizonte und der Torfauflagen sowie der Lagerungsdichten zum Teil abgeschätzt. Die Karte 01.06.6 Kohlenstoffvorräte kann daher nur näherungsweise die Realität abbilden. Im Rahmen des Forschungsvorhabens “Berliner Moorböden im Klimawandel” an der Humboldt–Universität werden zur Zeit detailliertere Daten erfasst, die die Kenntnis der Kohlenstoffvorräte in den Böden Berlins in Zukunft erheblich verbessern werden. 01.06.7 pH-Werte im Oberboden Beschreibung Der pH-Wert (Bodenreaktion) beeinflusst die chemischen, physikalischen und biologischen Eigenschaften des Bodens. Er wirkt sich auf die Verfügbarkeit von Nähr- und Schadstoffen aus und gibt Auskunft über die Fähigkeit des Bodens, Säuren oder Basen zu neutralisieren. Er ist bedeutend für die Filter- und Pufferpotentiale der Böden. Bei niedrigen pH-Werten können daher im Boden keine Säuren neutralisiert werden, die Schwermetallverbindungen gehen zunehmend in Lösung und die verfügbaren Nährstoffe sind weitgehend ausgewaschen. Methode Die pH-Werte wurden für die Bodengesellschaften unter Berücksichtigung der Flächennutzung aus vorhandenen Unterlagen abgeleitet. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden, meist unter Verwendung einer Vielzahl verschiedener bodenkundlicher Gutachten. Lagen keine Messwerte vor, wurden die Werte unter Verwendung von Daten vergleichbarer Nutzungen oder vergleichbarer Bodengesellschaften abgeschätzt. Zusätzlich zu den repräsentativen Werten (typische pH-Werte) für den Ober- und Unterboden wurden noch die jeweiligen Maximal- und Minimalwerte bestimmt. In der Karte wurde nur der pH-Wert für den Oberboden dargestellt; dieser hat für die Funktionsbewertung der Böden (vgl. Karte 01.12) eine höhere Bedeutung als der pH des Unterbodens und weist ein auch eine größere, meist nutzungsbedingte Differenzierung auf. Die Stufung der pH-Werte erfolgte nach der Bodenkundlichen Kartieranleitung (1994) in den Stufen 1 – 13 von äußerst alkalisch bis äußerst sauer (vgl. Tab. 1). Über die Stufung kann die Bodenreaktion entsprechend ihrer Alkalinität oder Azidität differenziert werden. 01.06.8 Summe austauschbarer basischer Kationen des Oberbodens (S-Wert) Beschreibung Die austauschbaren Kationen eines Bodens werden üblicherweise in saure und basische Kationen unterteilt. Zu ersteren gehören neben den Wasserstoff-Ionen (H-Ionen) auch solche, die beim Austritt in die Bodenlösung eine Hydrolyse hervorrufen und damit H-Ionen freisetzen, wie vor allem Al; ihre Summe wird H-Wert genannt. Die basischen Kationen sind in erster Linie Ca 2+ , K + Mg 2+ und Na + , in Kulturböden (nach einer Düngung) auch NH 4+ (wobei Ca meist mit mehr als 80 % dominiert); ihre Summe bildet den S-Wert. Ihre Konzentration kann in cmol c /kg, die Menge in mol c /m² angegeben werden. Der %-Anteil des S-Wertes an den Austauschkationen insgesamt wird als Basensättigung bezeichnet. Der S-Wert beschreibt somit die Menge des vom Boden zur Verfügung gestellten und für die Pflanzenernährung relevanten Kationen und ist somit ein wichtiges Maß der Bodenfruchtbarkeit. Methode Die Menge der basisch wirkenden austauschbaren Ionen (S-Wert) für den Oberboden (hier: 0 – 3 dm) wird durch Multiplikation der effektiven Kationenaustauschkapazität (KAK eff ) mit der Basensättigung (BS) unter Einbeziehung der Lagerungsdichte und des Grobbodenanteils berechnet. Die Berechnung der effektiven Kationenaustauschkapazität wird in Karte 01.06.09 dargestellt. Die Basensättigung kann aus dem pH-Wert (CaCl 2 ) abgeleitet werden. Zur Ermittlung wird der für den Standort typische pH-Wert des Oberbodens (vgl. Karte 01.06.07) herangezogen und nach Tabelle 1 die Basensättigung bestimmt. Zwischen den pH-Stufen dieser Tabelle wird linear interpoliert. Die Stufung des S-Wertes erfolgt in den Stufen 1 – 10 (extrem gering – sehr hoch) nach Tabelle 2. Die Einteilung der geringen Werte erfolgt in sehr engen Stufen, um die für die Bewertung der Funktion „Lebensraum für naturnahe und seltene Pflanzengesellschaften“ notwendige feine Abstufung nähstoffarmer Böden zu erkennen. 01.06.9 Mittlere effektive Kationenaustauschkapazität Beschreibung Die effektive Kationenaustauschkapazität (KAK eff ) stellt die Menge der an Bodenkolloide gebundenen Kationen unter Berücksichtigung der stark vom pH – Wert abhängigen Ladung der organischen Substanz dar. Dabei sind die austauschbaren Kationen an Tonminerale und Humuskolloide gebunden. In neutralen bis schwach sauren Böden dominieren Calcium (Ca), Magnesium (Mg), Kalium (K) und Natrium (Na) den Sorptionskomplex, in sauren Böden, z. B. Kiefer- und Heidestandorten Aluminium (Al), Wasserstoff (H) und Eisen (Fe). Das Bindungsvermögen der organischen Substanz ist deutlich höher als das der Tonminerale. Die Stärke der Bindung an die organische Substanz ist vom pH-Wert abhängig, die Bindung an die Tonminerale ist pH-unabhängig. So sinkt mit abnehmendem pH-Wert das Bindungsvermögen des Humus. Ton- und humusreiche Böden mit neutraler Bodenreaktion können daher wesentlich mehr Nähr- und Schadstoffe binden und eine Auswaschung dieser Stoffe in das Grundwasser verhindern als sandige humusarme Standorte. Die effektive Kationenaustauschkapazität ist daher geeignet, die Nähr- und Schadstoffbindungspotentiale von Böden zu beschreiben. Methode Die KAK eff der Bodengesellschaften wird aus der Hauptbodenart der Oberböden und Unterböden abgeleitet (Tabelle 1). Für den Oberboden wird eine Tiefe von 0 – 1 dm angenommen, für den Unterboden 3 – 15 dm. Zu der ermittelten Kationenaustauschkapazität der Hauptbodenart wird die Austauschkapazität des Humus (Tabelle 3), korrigiert um einen pH-abhängigen Faktor (Tabelle 2) addiert. Da in Abhängigkeit von Bodengenese und Nutzung sowohl die Humusgehalte als auch die Mächtigkeit der Humusschicht unterschiedlich sind und diese ebenfalls zur Berechnung der KAK herangezogen werden, werden für jede Bodengesellschaft unterschiedliche nutzungsspezifische Werte ermittelt. Die ermittelten Werte wurden zur Darstellung in der Karte entsprechend der Bodenkundlichen Kartieranleitung (1994) in fünf Stufen von sehr gering bis sehr hoch unterteilt (Tabelle 4). 01.06.10 Wasserdurchlässigkeit (kf) Beschreibung Die Wasserdurchlässigkeit (gesättigte Wasserleitfähigkeit, kf-Wert) kennzeichnet die Durchlässigkeit und Permeabilität von Böden. Sie hängt von der Bodenart und der Lagerungsdichte des Bodens ab. Lockere Böden mit hohen Sandgehalten haben daher eine wesentlich höhere Durchlässigkeit als tonreiche Böden aus Geschiebemergel. Die Wasserdurchlässigkeit ist wichtig für die Beurteilung von Staunässe, der Filtereigenschaften, Erosionsanfälligkeit und Drainwirksamkeit von Böden. Die Geschwindigkeit der Wasserdurchlässigkeit wird in cm/d oder m/s angegeben. Die Angaben der Geschwindigkeit für die Wasserbewegung gelten nur für den vollständig wassergesättigten Boden, bei dem alle Porenräume mit Wasser gefüllt sind. In der Regel liegen bei den terrestrischen Böden ungesättigte Wasserverhältnisse vor, wobei nur ein Teil der Poren mit Wasser gefüllt ist. Bei ungesättigten Verhältnissen ist die Wasserbewegung deutlich geringer. Ausserdem wird ein großer Teil des vorhandenen Wassers von den Pflanzen aufgenommen und steht für eine Verlagerung nicht mehr zur Verfügung. Da eine Messung der ungesättigten Wasserleitfähigkeit (ku) sehr aufwendig und kompliziert ist, und deshalb keine ableitbaren Daten in der Bodenkundlichen Kartieranleitung (1994) vorliegen, wird in der wissenschaftlichen Praxis auf die abgesicherten Werte der gesättigten Wasserleitfähigkeit als grobes Maß zurückgegriffen. Der Einfluss des Grobbodens wurde nicht berücksichtigt. Methode Der kf-Wert wurde für die Hauptbodenart des Ober- und Unterbodens nach Tabelle 1 abgelesen. Der kf-Wert für Ober- und Unterboden ist der Mittelwert aus kf-Ober- und kf-Unterboden. Den in der Tabelle in Abhängigkeit von der Bodenart aufgeführten kf-Werten ist eine effektive Lagerungsdichte von Ld3 zugrunde gelegt, was im Mittel den Berliner Böden entspricht. Die Ergebnisse der Wasserdurchlässigkeit wurden für die Darstellung in der Karte in sechs Stufen von sehr gering bis äußerst hoch (1 – 6) nach Tabelle 2 zusammengefasst.
01.06.1 Bodenarten Beschreibung Die Bodenart eines Bodens wird durch die Korngrößenzusammensetzung ihrer mineralischen Bestandteile bestimmt. Dabei wird der Grobboden (Korndurchmesser >2 mm) und der Feinboden (Korndurchmesser <2 mm) unterschieden. Auf sehr nassen Standorten entstehen außerdem durch die Anhäufung unvollständig zersetzten Pflanzenmaterials Torfe , die die mineralischen Böden überlagern. Bodenart des Feinbodens Die Bodenarten des Feinbodens werden aus bestimmten Mengenanteilen der Kornfraktionen Ton, Schluff und Sand gebildet. Die Hauptbodenarten werden in Ton, Schluff, Lehm und Sand untergliedert, wobei Lehm ein Korngemisch aus Sand, Schluff und Ton ist. Die Bodenart ist ein wichtiger Kennwert für die Ableitung ökologischer Eigenschaften, wie Nähr- und Schadstoffspeichervermögen, Wasserhaushalt und Wasserspeichervermögen sowie Filter- und Puffervermögen von Schadstoffen. Bodenart des Grobbodens Als Bodenart des Grobbodens oder das Bodenskelett werden alle mineralischen Bestandteile des Bodens bezeichnet, die im Durchmesser > 2 mm sind. Der Anteil des Grobbodens wirkt sich auf die Wasserdurchlässigkeit, den Luft- und Nährstoffhaushalt und das Bindungsvermögen für Nähr- und Schadstoffe aus. Je höher der Anteil des Grobbodens ist, um so durchlässiger ist ein Boden aufgrund der großen Poren, während Bindungsvermögen und Nährstoffsituation von der Art der Feinerde abhängen. Torfart Torfe entstehen in wassergesättigtem Milieu durch Anhäufung unvollständig zersetzten Pflanzenmaterials. Sie zeichnen sich durch ein hohes Wasserspeichervermögen und eine sehr hohe Kationenaustauschkapazität aus. Entsprechend der Art der Pflanzenreste und der Entstehungsbedingungen werden unterschiedliche Torfarten differenziert. Niedermoortorfe sind basen- und nährstoffreich, teilweise sogar carbonatreich. Übergangsmoortorfe weisen Pflanzenreste sowohl von nährstoffarmen als auch von nährstoffreichen Standorten auf. Methode Die Bodenarten des Feinbodens, des Grobbodens und der Torfarten jeweils differenziert nach Ober- und Unterboden wurden für jede Bodengesellschaft bestimmt. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden. Die kartierten Bodenarten des Feinbodens sind in Tabelle 1 zusammengefasst. Da die Bodenarten im Ober- und Unterboden aufgrund des Ausgangsmaterials der Bodenbildung, der Bodenentwicklung und der Nutzung z.T. unterschiedlich sind, werden diese differenziert betrachtet. Außerdem werden innerhalb einer Bodengesellschaft häufig auftretende Bodenarten als Hauptbodenart und selten vorkommende Bodenarten als Nebenbodenart unterschieden. Die Bodengesellschaften, die in den Bodenarten des Feinbodens für den Oberboden als auch für den Unterboden weitgehend übereinstimmen, wurden zu einer Bodenartengruppe zusammengefasst. Die Zuordnung von Bodenartengruppen erfolgte lediglich deshalb, um eine lesbare Karte mit einer überschaubaren Anzahl von Legendeneinheiten zu erzeugen. Für genauere Angaben oder weitere Berechnungen liegen differenziertere Daten vor. Es treten Bodengesellschaften auf, die sowohl im Oberboden als auch im Unterboden aus den gleichen Bodenarten bestehen. Die Mehrzahl der Bodengesellschaften unterscheidet sich jedoch hinsichtlich der Bodenarten im Ober- und Unterboden. Durch Kombination der Bodenarten des Oberbodens mit den Bodenarten des Unterbodens wurden 14 Bodenartengruppen des Feinbodens (< 2 mm) gebildet, welche die Legendeneinheiten der Karte darstellen. Die Bodengesellschaften einer Bodenartengruppe können sich jedoch innerhalb dieser Gruppe hinsichtlich Torf- bzw. Steingehalt (Bodenskelett, Grobboden > 2 mm) des Ober- und Unterbodens unterscheiden, weshalb diese durch zusätzliche Signaturen dargestellt wurden. Die in den Böden Berlins vorkommenden Grobbodenarten sind in Tabelle 2 zusammengestellt. Zwischen dem Vorkommen im Ober- bzw. Unterboden wird unterschieden. Die in Berlin vorkommenden Torfarten sind in Tabelle 3 zusammengestellt. Zur Darstellung der ökologischen Eigenschaften und Ermittlung der Kennwerte wird unterschieden, ob Torf im Ober- und/oder im Unterboden vorkommt. Bei dem Vorhandensein von mehreren Torfarten in einem Boden oder einer Bodengesellschaft, wird nur die charakteristische Torfart (Torfart prägend) berücksichtigt. 01.06.2 nutzbare Feldkapazität für Flachwurzler Beschreibung Die nutzbare Feldkapazität ist die Wassermenge in l/m² bzw. mm, die der Boden festzuhalten vermag und der für Pflanzen nutzbar ist. Dieser Teil des Wassers wird in den Porenräumen des Bodens gegen die Schwerkraft festgehalten und steht den Pflanzen zur Verfügung. Die nFK ist von der Bodenart, dem Humusgehalt, der Lagerungsdichte und dem Steingehalt abhängig. Feinkörnige Böden können wesentlich mehr Wasser speichern als grobkörnige, sodass bei letzteren das Niederschlagswasser rascher versickert und nicht für die Wasserversorgung der Pflanzen zur Verfügung steht. Hohe Humusgehalte und Torfanteile begünstigen die Wasserspeicherung. Methode Die nFK-Werte der Bodengesellschaften und Bodentypen wurden aus den in den Schnittzeichnungen von GRENZIUS (1987) dargestellten Musterprofilen entnommen. Dabei wird in eine Flachwurzelzone (0-3 dm) und eine Tiefwurzelzone (0-15 dm) unterschieden. Der Minimal- und Maximalwert der nFK für die Flachwurzel- und Tiefwurzelzone stammt von dem Bodentyp der Bodengesellschaft, der die höchste bzw. niedrigste nFK aufweist. Zusätzlich wird der typische nFK-Wert für die jeweilige Wurzelzone bestimmt. Als Karte dargestellt ist hier der typische nFK-Wert der Flachwurzelzone. Bei ergänzenden Untersuchungen der Bodengesellschaften des Ostteils Berlins wurden von AEY (1993) Analogieschlüsse anhand der Geologie durchgeführt. 2005 wurden anhand der Angaben bei Grenzius (1987) geringe nFK-Werte feiner differenziert und weitere korrigiert. Die Ergebnisse werden in sechs Stufen nach Grenzius (1987) zusammengefasst (Tab.1), da in der Bodenkundlichen Kartieranleitung (1994) keine Stufung aufgeführt ist. 01.06.4 Nutzbare Feldkapazität des effektiven Wurzelraumes Beschreibung Eine differenzierte Betrachtung des pflanzenverfügbaren Wassers für den jeweiligen Standort ergibt die Beurteilung des Wasserhaushaltes über die nutzbare Feldkapazität im effektiven Wurzelraum (nFK We ). Dabei werden entsprechend der Bodenart und der Nutzung die unterschiedlichen Durchwurzelungstiefen und Wurzelräume berücksichtigt. So haben Wald- und Baumstandorte einen wesentlich größeren Wurzelraum als zum Beispiel Gartennutzungen. In Sandböden ist der effektive Wurzelraum geringer als in Lehmböden. In den Lehmböden kann das Niederschlagswasser länger als in den Sandböden gespeichert werden, so dass es für die Pflanzenwurzeln hinsichtlich des Wasser- und Nährstoffhaushaltes lohnend ist, sich einen etwas größeren Wurzelraum zu erschließen als in sandigen Substraten. Bei den moorigen Böden reicht der effektive Wurzelraum nur bis zu den grundwasserbeeinflussten Horizonten, so dass meist nur die obersten 20 - 30 cm als Wurzelraum dienen. Ursache für den geringen Wurzelraum ist der Luftmangel in den ständig wassergesättigten Horizonten. Die Pflanzenwurzeln, mit Ausnahme einiger Spezialisten, beschränken sich daher auf die oberen Horizonte, die sowohl ausreichend Luft als auch Wasser führen. Die zusätzliche Wasserversorgung der Pflanzen in der Vegetationszeit aus dem kapillaren Aufstieg des Grundwassers, die die nFK We bei geringen Flurabständen entscheidend beeinflusst, wurde hier bei der Ermittlung nicht berücksichtigt. Methode Die Ermittlung der nFK We für die Bodengesellschaften in Abhängigkeit von der realen Flächennutzung erfolgte durch das Fachgebiet Bodenkunde der TU Berlin im Rahmen eines Gutachtens (Plath-Dreetz / Wessolek / Renger 1989). Dabei wurde zunächst der effektive Wurzelraum für Berliner Standorte entsprechend unterschiedlichen Nutzungen aus Tabelle 1 entnommen. Ausgehend von der Tiefe des effektiven Wurzelraumes wurden für die bei Grenzius (1987) dokumentierten Musterprofile die horizontweise ermittelten nutzbaren Feldkapazitäten zur nFK We addiert. Für die organische Substanz wurden entsprechende Zuschläge berücksichtigt. Da innerhalb einer Bodengesellschaft unterschiedliche Bodentypen auftreten, ergibt sich eine Spanne, die mit dem Minimal- und Maximalwert der nFK~We~ je Bodengesellschaft beschrieben werden kann. Zusätzlich wurde der typische nFK~We~ - Wert nutzungsabhängig für die jeweilige Bodengesellschaft bestimmt, der in der Karte dargestellt ist. Die Ergebnisse werden in fünf Stufen zusammengefasst (Tab. 2) 01.06.5 Humusmenge Beschreibung Die organische Substanz der Böden besteht aus abgestorbenen und umgewandelten Resten von Pflanzen und Tieren. Die Streu und die Huminstoffe bilden den Humus . Das hohe Sorptionsvermögen der Huminstoffe, der hohe Anteil pflanzenverfügbarer Nährstoffe und die günstigen Eigenschaften für den Wasserhaushalt wirken prägend für viele Bodenfunktionen. Die Humusgehalte der mineralischen Böden sind bestimmt durch die Bodengenese und die Nutzung. Durch Nutzungen wie Gartenbau mit Einarbeitung von Kompost oder intensiver Grünlandwirtschaft wird die Humusanreicherung begünstigt, während bei den anderen Nutzungen ein deutlich geringerer Gehalt an organischer Substanz vorhanden ist (vgl. Tab. 1). Nasse Vegetationsstandorte, z.B. Auenböden und Moore haben eine hohe Biomasseproduktion, aber einen geringen Humusabbau. Die angereicherte organische Substanz liegt in Form von Torfen mit unterschiedlichem Zersetzungsgrad vor. Die An- und Niedermoore besitzen in Abhängigkeit von der Nutzung und dem Zersetzungsgrad der Torfe einen Gehalt an org. Substanz von 15 - 80%. Voraussetzung für hohe Gehalte an organischer Substanz ist eine stetige Vernässung bis in den Oberboden und eine naturnahe Nutzung, wie zum Beispiel extensive Wiesennutzung. Die Humusmenge stellt die Menge an organischer Substanz dar, die an einem Standort für eine definierte Bodenfläche in Abhängigkeit vom Bodentyp und der Flächennutzung vorliegt. Die Humusmenge ist vor allem ein Zeiger für den Stickstoffvorrat und den leicht mobilisierbaren Stickstoffanteil. Aber auch andere wichtige Nährstoffe wie Kalium, Calcium, Magnesium und Phosphor werden durch die Zersetzung und Humifizierung der organischen Substanz freigesetzt und für die Pflanzen verfügbar gemacht. Neben der Verfügbarkeit von Nährstoffen wirkt die Humusmenge als Nährstoff- und Wasserspeicher und vermag in hohem Masse Schadstoffe zu binden. Die Humusmenge eines Bodens hängt von dem Humusgehalt und der Mächtigkeit der humosen Horizonte ab. Diese ist entsprechend dem Bodentyp und der Nutzung unterschiedlich. So besitzen zum Beispiel feuchte moorige Standorte mit einer hohen Biomasseproduktion und einer geringen Zersetzung eine hohe Humusmenge und sandige trockene Böden mit geringer Vegetationsdecke eine niedrige Humusmenge. Methode Die durchschnittlichen Humusgehalte der Mineralböden in Abhängigkeit von Bodentyp und Nutzung wurden den Untersuchungen von GRENZIUS (1987) und Bodenuntersuchungen im Rahmen des Schwermetalluntersuchungsprogramms (1986,1987) entnommen. Diese Daten wurden zunächst von Fahrenhorst et al. (1990) ausgewertet und die durchschnittlichen Humusgehalte für den charakteristischen Bodentyp der verschiedenen Bodengesellschaften unter unterschiedlichen Nutzungen ermittelt. Eine Erweiterung der Datenbasis unter Verwendung verschiedener Einzelkartierungen erfolgte 1993 (Aey 1993). Eine rein nutzungsabhängige grobe Orientierung ist in Tabelle 1 zusammengestellt. Die Humusgehalte von Torfen, die sich auf nassen Standorten bilden, werden bei den Mineralböden nicht berücksichtigt, sie gehen gesondert mit ihren Gehalten und mit ihren Mächtigkeiten in die Ermittlung der Humusmenge ein. Die Humusmenge wurde aus dem Humusgehalt der Humusschicht unter Berücksichtigung des Torfanteils [Masse-%] und unter Berücksichtigung der effektiven Lagerungsdichte und der Mächtigkeit der organischen Horizonte ermittelt. Die ermittelten Humusmengen für die unterschiedlichen Standorte werden entsprechend Tabelle 2 in fünf Stufen untereilt. 01.06.7 pH-Werte im Oberboden Beschreibung Der pH-Wert (Bodenreaktion) beeinflusst die chemischen, physikalischen und biologischen Eigenschaften des Bodens. Er wirkt sich auf die Verfügbarkeit von Nähr- und Schadstoffen aus und gibt Auskunft über die Fähigkeit des Bodens, Säuren oder Basen zu neutralisieren. Er ist bedeutend für die Filter- und Pufferpotentiale der Böden. Bei niedrigen pH-Werten können daher im Boden keine Säuren neutralisiert werden, die Schwermetallverbindungen gehen zunehmend in Lösung und die verfügbaren Nährstoffe sind weitgehend ausgewaschen. Methode Die pH-Werte wurden für die Bodengesellschaften unter Berücksichtigung der Flächennutzung aus vorhandenen Unterlagen abgeleitet. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden, meist unter Verwendung einer Vielzahl verschiedener bodenkundlicher Gutachten. Lagen keine Messwerte vor, wurden die Werte unter Verwendung von Daten vergleichbarer Nutzungen oder vergleichbarer Bodengesellschaften abgeschätzt. Zusätzlich zu den repräsentativen Werten (typische pH-Werte) für den Ober- und Unterboden wurden noch die jeweiligen Maximal- und Minimalwerte bestimmt. In der Karte wurde nur der pH-Wert für den Oberboden dargestellt; dieser hat für die Funktionsbewertung der Böden (vgl. Karte 01.12) eine höhere Bedeutung als der pH des Unterbodens und weist ein auch eine größere, meist nutzungsbedingte Differenzierung auf. Die Stufung der pH-Werte erfolgte nach der Bodenkundlichen Kartieranleitung (1994) in den Stufen 1 - 13 von äußerst alkalisch bis äußerst sauer (vgl. Tab. 1). Über die Stufung kann die Bodenreaktion entsprechend ihrer Alkalinität oder Azidität differenziert werden. 01.06.8 Summe austauschbarer basischer Kationen des Oberbodens (S-Wert) Beschreibung Die austauschbaren Kationen eines Bodens werden üblicherweise in saure und basische Kationen unterteilt. Zu ersteren gehören neben den Wasserstoff-Ionen (H-Ionen) auch solche, die beim Austritt in die Bodenlösung eine Hydrolyse hervorrufen und damit H-Ionen freisetzen, wie vor allem Al; ihre Summe wird H-Wert genannt. Die basischen Kationen sind in erster Linie Ca 2+ K + Mg 2+ und Na + , in Kulturböden (nach einer Düngung) auch NH 4+ (wobei Ca meist mit mehr als 80 % dominiert); ihre Summe bildet den S-Wert. Ihre Konzentration kann in cmol c /kg, die Menge in mol c /m² angegeben werden. Der %-Anteil des S-Wertes an den Austauschkationen insgesamt wird als Basensättigung bezeichnet. Der S-Wert beschreibt somit die Menge des vom Boden zur Verfügung gestellten und für die Pflanzenernährung relevanten Kationen und ist somit ein wichtiges Maß der Bodenfruchtbarkeit. Methode Die Menge der basisch wirkenden austauschbaren Ionen (S-Wert) für den Oberboden (hier: 0-3 dm) wird durch Multiplikation der effektiven Kationenaustauschkapazität (KAK eff ) mit der Basensättigung (BS) unter Einbeziehung der Lagerungsdichte und des Grobbodenanteils berechnet. Die Berechnung der effektiven Kationenaustauschkapazität wird in Karte 01.06.09 dargestellt. Die Basensättigung kann aus dem pH-Wert (CaCl 2 ) abgeleitet werden. Zur Ermittlung wird der für den Standort typische pH-Wert des Oberbodens (vgl. Karte 01.06.07) herangezogen und nach Tabelle 1 die Basensättigung bestimmt. Zwischen den pH-Stufen dieser Tabelle wird linear interpoliert. Die Stufung des S-Wertes erfolgt in den Stufen 1 - 10 (extrem gering - sehr hoch) nach Tabelle 2. Die Einteilung der geringen Werte erfolgt in sehr engen Stufen, um die für die Bewertung der Funktion „Lebensraum für naturnahe und seltene Pflanzengesellschaften" notwendige feine Abstufung nähstoffarmer Böden zu erkennen. 01.06.9 Mittlere effektive Kationenaustauschkapazität Beschreibung Die effektive Kationenaustauschkapazität (KAK eff ) stellt die Menge der an Bodenkolloide gebundenen Kationen unter Berücksichtigung der stark vom pH -- Wert abhängigen Ladung der organischen Substanz dar. Dabei sind die austauschbaren Kationen an Tonminerale und Humuskolloide gebunden. In neutralen bis schwach sauren Böden dominieren Calcium (Ca), Magnesium (Mg), Kalium (K) und Natrium (Na) den Sorptionskomplex, in sauren Böden, z. B. Kiefer- und Heidestandorten Aluminium (Al), Wasserstoff (H) und Eisen (Fe). Das Bindungsvermögen der organischen Substanz ist deutlich höher als das der Tonminerale. Die Stärke der Bindung an die organische Substanz ist vom pH-Wert abhängig, die Bindung an die Tonminerale ist pH-unabhängig. So sinkt mit abnehmendem pH-Wert das Bindungsvermögen des Humus. Ton- und humusreiche Böden mit neutraler Bodenreaktion können daher wesentlich mehr Nähr- und Schadstoffe binden und eine Auswaschung dieser Stoffe in das Grundwasser verhindern als sandige humusarme Standorte. Die effektive Kationenaustauschkapazität ist daher geeignet, die Nähr- und Schadstoffbindungspotentiale von Böden zu beschreiben. Methode Die KAK eff der Bodengesellschaften wird aus der Hauptbodenart der Oberböden und Unterböden nach abgeleitet (Tabelle 1). Für den Oberboden wird eine Tiefe von 0 - 1 dm angenommen, für den Unterboden 3 - 15 dm. Zu der ermittelten Kationenaustauschkapazität der Hauptbodenart wird die Austauschkapazität des Humus (Tabelle 3), korrigiert um einen pH-abhängigen Faktor (Tabelle 2) addiert. Da in Abhängigkeit von Bodengenese und Nutzung sowohl die Humusgehalte als auch die Mächtigkeit der Humusschicht unterschiedlich sind und diese ebenfalls zur Berechnung der KAK herangezogen werden, werden für jede Bodengesellschaft unterschiedliche nutzungsspezifische Werte ermittelt. Die ermittelten Werte wurden zur Darstellung in der Karte entsprechend der Bodenkundlichen Kartieranleitung (1994) in fünf Stufen von sehr gering bis sehr hoch unterteilt (Tabelle 4). 01.06.10 Wasserdurchlässigkeit (kf) Beschreibung Die Wasserdurchlässigkeit (gesättigte Wasserleitfähigkeit, kf-Wert) kennzeichnet die Durchlässigkeit und Permeabilität von Böden. Sie hängt von der Bodenart und der Lagerungsdichte des Bodens ab. Lockere Böden mit hohen Sandgehalten haben daher eine wesentlich höhere Durchlässigkeit als tonreiche Böden aus Geschiebemergel. Die Wasserdurchlässigkeit ist wichtig für die Beurteilung von Staunässe, der Filtereigenschaften, Erosionsanfälligkeit und Drainwirksamkeit von Böden. Die Geschwindigkeit der Wasserdurchlässigkeit wird in cm/d oder m/s angegeben. Die Angaben der Geschwindigkeit für die Wasserbewegung gelten nur für den vollständig wassergesättigten Boden, bei dem alle Porenräume mit Wasser gefüllt sind. In der Regel liegen bei den terrestrischen Böden ungesättigte Wasserverhältnisse vor, wobei nur ein Teil der Poren mit Wasser gefüllt ist. Bei ungesättigten Verhältnissen ist die Wasserbewegung deutlich geringer. Ausserdem wird ein grosser Teil des vorhandenen Wassers von den Pflanzen aufgenommen und steht für eine Verlagerung nicht mehr zur Verfügung. Da eine Messung der ungesättigten Wasserleitfähigkeit (ku) sehr aufwendig und kompliziert ist, und deshalb keine ableitbaren Daten in der Bodenkundlichen Kartieranleitung (1994) vorliegen, wird in der wissenschaftlichen Praxis auf die abgesicherten Werte der gesättigten Wasserleitfähigkeit als grobes Maß zurückgegriffen. Der Einfluss des Grobbodens wurde nicht berücksichtigt. Methode Der kf-Wert wurde für die Hauptbodenart des Ober- und Unterbodens nach Tabelle 1 abgelesen. Der kf-Wert für Ober- und Unterboden ist der Mittelwert aus kf-Ober- und kf-Unterboden. Den in der Tabelle in Abhängigkeit von der Bodenart aufgeführten kf-Werten ist eine effektive Lagerungsdichte von Ld3 zugrunde gelegt, was im Mittel den Berliner Böden entspricht. Die Ergebnisse der Wasserdurchlässigkeit wurden für die Darstellung in der Karte in sechs Stufen von sehr gering bis äußerst hoch (1 - 6) nach Tabelle 2 zusammengefasst.
01.06.1 Bodenarten Beschreibung Die Bodenart eines Bodens wird durch die Korngrößenzusammensetzung ihrer mineralischen Bestandteile bestimmt. Dabei wird der Grobboden (Korndurchmesser > 2 mm) und der Feinboden (Korndurchmesser < 2 mm) unterschieden. Auf sehr nassen Standorten entstehen außerdem durch die Anhäufung unvollständig zersetzten Pflanzenmaterials Torfe , die die mineralischen Böden überlagern. Bodenart des Feinbodens Die Bodenarten des Feinbodens werden aus bestimmten Mengenanteilen der Kornfraktionen Ton, Schluff und Sand gebildet. Die Hauptbodenarten werden in Ton, Schluff, Lehm und Sand untergliedert, wobei Lehm ein Korngemisch aus Sand, Schluff und Ton ist. Die Bodenart ist ein wichtiger Kennwert für die Ableitung ökologischer Eigenschaften, wie Nähr- und Schadstoffspeichervermögen, Wasserhaushalt und Wasserspeichervermögen sowie Filter- und Puffervermögen von Schadstoffen. Bodenart des Grobbodens Als Bodenart des Grobbodens oder das Bodenskelett werden alle mineralischen Bestandteile des Bodens bezeichnet, die im Durchmesser > 2 mm sind. Der Anteil des Grobbodens wirkt sich auf die Wasserdurchlässigkeit, den Luft- und Nährstoffhaushalt und das Bindungsvermögen für Nähr- und Schadstoffe aus. Je höher der Anteil des Grobbodens ist, um so durchlässiger ist ein Boden aufgrund der großen Poren, während Bindungsvermögen und Nährstoffsituation von der Art der Feinerde abhängen. Torfart Torfe entstehen in wassergesättigtem Milieu durch Anhäufung unvollständig zersetzten Pflanzenmaterials. Sie zeichnen sich durch ein hohes Wasserspeichervermögen und eine sehr hohe Kationenaustauschkapazität aus. Entsprechend der Art der Pflanzenreste und der Entstehungsbedingungen werden unterschiedliche Torfarten differenziert. Niedermoortorfe sind basen- und nährstoffreich, teilweise sogar carbonatreich. Übergangsmoortorfe weisen Pflanzenreste sowohl von nährstoffarmen als auch von nährstoffreichen Standorten auf. Methode Die Bodenarten des Feinbodens, des Grobbodens und der Torfarten jeweils differenziert nach Ober- und Unterboden wurden für jede Bodengesellschaft bestimmt. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden. Die kartierten Bodenarten des Feinbodens sind in Tabelle 1 zusammengefasst. Da die Bodenarten im Ober- und Unterboden aufgrund des Ausgangsmaterials der Bodenbildung, der Bodenentwicklung und der Nutzung z.T. unterschiedlich sind, werden diese differenziert betrachtet. Außerdem werden innerhalb einer Bodengesellschaft häufig auftretende Bodenarten als Hauptbodenart und selten vorkommende Bodenarten als Nebenbodenart unterschieden. Die Bodengesellschaften, die in den Bodenarten des Feinbodens für den Oberboden als auch für den Unterboden weitgehend übereinstimmen, wurden zu einer Bodenartengruppe zusammengefasst Die Zuordnung von Bodenartengruppen erfolgte lediglich deshalb, um eine lesbare Karte mit einer überschaubaren Anzahl von Legendeneinheiten zu erzeugen. Für genauere Angaben oder weitere Berechnungen liegen differenziertere Daten vor. Es treten Bodengesellschaften auf, die sowohl im Oberboden als auch im Unterboden aus den gleichen Bodenarten bestehen. Die Mehrzahl der Bodengesellschaften unterscheidet sich jedoch hinsichtlich der Bodenarten im Ober- und Unterboden. Durch Kombination der Bodenarten des Oberbodens mit den Bodenarten des Unterbodens wurden 14 Bodenartengruppen des Feinbodens (< 2 mm) gebildet, welche die Legendeneinheiten der Karte darstellen. Die Bodengesellschaften einer Bodenartengruppe können sich jedoch innerhalb dieser Gruppe hinsichtlich Torf- bzw. Steingehalt (Bodenskelett, Grobboden > 2 mm) des Ober- und Unterbodens unterscheiden, weshalb diese durch zusätzliche Signaturen dargestellt wurden. Die in den Böden Berlins vorkommenden Grobbodenarten sind in Tabelle 2 zusammengestellt. Zwischen dem Vorkommen im Ober- bzw. Unterboden wird unterschieden. Die in Berlin vorkommenden Torfarten sind in Tabelle 3 zusammengestellt. Zur Darstellung der ökologischen Eigenschaften und Ermittlung der Kennwerte wird unterschieden, ob Torf im Ober- und/oder im Unterboden vorkommt. Bei dem Vorhandensein von mehreren Torfarten in einem Boden oder einer Bodengesellschaft, wird nur die charakteristische Torfart (Torfart prägend) berücksichtigt. 01.06.2 nutzbare Feldkapazität für Flachwurzler Beschreibung Die nutzbare Feldkapazität ist die Wassermenge in l/m² bzw. mm, die der Boden festzuhalten vermag und der für Pflanzen nutzbar ist. Dieser Teil des Wassers wird in den Porenräumen des Bodens gegen die Schwerkraft festgehalten und steht den Pflanzen zur Verfügung. Die nFK ist von der Bodenart, dem Humusgehalt, der Lagerungsdichte und dem Steingehalt abhängig. Feinkörnige Böden können wesentlich mehr Wasser speichern als grobkörnige, sodass bei letzteren das Niederschlagswasser rascher versickert und nicht für die Wasserversorgung der Pflanzen zur Verfügung steht. Hohe Humusgehalte und Torfanteile begünstigen die Wasserspeicherung. Methode Die nFK-Werte der Bodengesellschaften und Bodentypen wurden aus den in den Schnittzeichnungen von GRENZIUS (1987) dargestellten Musterprofilen entnommen. Dabei wird in eine Flachwurzelzone (0-3 dm) und eine Tiefwurzelzone (0-15 dm) unterschieden. Der Minimal- und Maximalwert der nFK für die Flachwurzel- und Tiefwurzelzone stammt von dem Bodentyp der Bodengesellschaft, der die höchste bzw. niedrigste nFK aufweist. Zusätzlich wird der typische nFK-Wert für die jeweilige Wurzelzone bestimmt. Als Karte dargestellt ist hier der typische nFK – Wert der Flachwurzelzone. Bei ergänzenden Untersuchungen der Bodengesellschaften des Ostteils Berlins wurden von AEY (1993) Analogieschlüsse anhand der Geologie durchgeführt. 2005 wurden anhand der Angaben bei Grenzius (1987) geringe nFK-Werte feiner differenziert und weitere korrigiert. Die Ergebnisse werden in sechs Stufen nach Grenzius (1987) zusammengefasst (Tab.1), da in der Bodenkundlichen Kartieranleitung (1994) keine Stufung aufgeführt ist. 01.06.4 Nutzbare Feldkapazität des effektiven Wurzelraumes Beschreibung Eine differenzierte Betrachtung des pflanzenverfügbaren Wassers für den jeweiligen Standort ergibt die Beurteilung des Wasserhaushaltes über die nutzbare Feldkapazität im effektiven Wurzelraum (nFK We ). Dabei werden entsprechend der Bodenart und der Nutzung die unterschiedlichen Durchwurzelungstiefen und Wurzelräume berücksichtigt. So haben Wald- und Baumstandorte einen wesentlich größeren Wurzelraum als zum Beispiel Gartennutzungen. In Sandböden ist der effektive Wurzelraum geringer als in Lehmböden. In den Lehmböden kann das Niederschlagswasser länger als in den Sandböden gespeichert werden, so dass es für die Pflanzenwurzeln hinsichtlich des Wasser- und Nährstoffhaushaltes lohnend ist, sich einen etwas größeren Wurzelraum zu erschließen als in sandigen Substraten. Bei den moorigen Böden reicht der effektive Wurzelraum nur bis zu den grundwasserbeeinflussten Horizonten, so dass meist nur die obersten 20 – 30 cm als Wurzelraum dienen. Ursache für den geringen Wurzelraum ist der Luftmangel in den ständig wassergesättigten Horizonten. Die Pflanzenwurzeln, mit Ausnahme einiger Spezialisten, beschränken sich daher auf die oberen Horizonte, die sowohl ausreichend Luft als auch Wasser führen. Die zusätzliche Wasserversorgung der Pflanzen in der Vegetationszeit aus dem kapillaren Aufstieg des Grundwassers, die die nFK We bei geringen Flurabständen entscheidend beeinflusst, wurde hier bei der Ermittlung nicht berücksichtigt. Methode Die Ermittlung der nFK We für die Bodengesellschaften in Abhängigkeit von der realen Flächennutzung erfolgte durch das Fachgebiet Bodenkunde der TU Berlin im Rahmen eines Gutachtens (Plath-Dreetz / Wessolek / Renger 1989). Dabei wurde zunächst der effektive Wurzelraum für Berliner Standorte entsprechend unterschiedlichen Nutzungen aus Tabelle 1 entnommen. Ausgehend von der Tiefe des effektiven Wurzelraumes wurden für die bei Grenzius (1987) dokumentierten Musterprofile die horizontweise ermittelten nutzbaren Feldkapazitäten zur nFK We addiert. Für die organische Substanz wurden entsprechende Zuschläge berücksichtigt. Da innerhalb einer Bodengesellschaft unterschiedliche Bodentypen auftreten, ergibt sich eine Spanne, die mit dem Minimal- und Maximalwert der nFK We je Bodengesellschaft beschrieben werden kann. Zusätzlich wurde der typische nFK We -Wert nutzungsabhängig für die jeweilige Bodengesellschaft bestimmt, der in der Karte dargestellt ist. Die Ergebnisse werden in fünf Stufen zusammengefasst (Tab. 2) 01.06.5 Humusmenge Beschreibung Die organische Substanz der Böden besteht aus abgestorbenen und umgewandelten Resten von Pflanzen und Tieren. Die Streu und die Huminstoffe bilden den Humus . Das hohe Sorptionsvermögen der Huminstoffe, der hohe Anteil pflanzenverfügbarer Nährstoffe und die günstigen Eigenschaften für den Wasserhaushalt wirken prägend für viele Bodenfunktionen. Die Humusgehalte der mineralischen Böden sind bestimmt durch die Bodengenese und die Nutzung. Durch Nutzungen wie Gartenbau mit Einarbeitung von Kompost oder intensiver Grünlandwirtschaft wird die Humusanreicherung begünstigt, während bei den anderen Nutzungen ein deutlich geringerer Gehalt an organischer Substanz vorhanden ist (vgl. Tab. 1). Nasse Vegetationsstandorte, z.B. Auenböden und Moore haben eine hohe Biomasseproduktion, aber einen geringen Humusabbau. Die angereicherte organische Substanz liegt in Form von Torfen mit unterschiedlichem Zersetzungsgrad vor. Die An- und Niedermoore besitzen in Abhängigkeit von der Nutzung und dem Zersetzungsgrad der Torfe einen Gehalt an org. Substanz von 15 – 80%. Voraussetzung für hohe Gehalte an organischer Substanz ist eine stetige Vernässung bis in den Oberboden und eine naturnahe Nutzung, wie zum Beispiel extensive Wiesennutzung. Die Humusmenge stellt die Menge an organischer Substanz dar, die an einem Standort für eine definierte Bodenfläche in Abhängigkeit vom Bodentyp und der Flächennutzung vorliegt. Die Humusmenge ist vor allem ein Zeiger für den Stickstoffvorrat und den leicht mobilisierbaren Stickstoffanteil. Aber auch andere wichtige Nährstoffe wie Kalium, Calcium, Magnesium und Phosphor werden durch die Zersetzung und Humifizierung der organischen Substanz freigesetzt und für die Pflanzen verfügbar gemacht. Neben der Verfügbarkeit von Nährstoffen wirkt die Humusmenge als Nährstoff- und Wasserspeicher und vermag in hohem Masse Schadstoffe zu binden. Die Humusmenge eines Bodens hängt von dem Humusgehalt und der Mächtigkeit der humosen Horizonte ab. Diese ist entsprechend dem Bodentyp und der Nutzung unterschiedlich. So besitzen zum Beispiel feuchte moorige Standorte mit einer hohen Biomasseproduktion und einer geringen Zersetzung eine hohe Humusmenge und sandige trockene Böden mit geringer Vegetationsdecke eine niedrige Humusmenge. Methode Die durchschnittlichen Humusgehalte der Mineralböden in Abhängigkeit von Bodentyp und Nutzung wurden den Untersuchungen von GRENZIUS (1987) und Bodenuntersuchungen im Rahmen des Schwermetalluntersuchungsprogramms (1986,1987) entnommen. Diese Daten wurden zunächst von Fahrenhorst et al. (1990) ausgewertet und die durchschnittlichen Humusgehalte für den charakteristischen Bodentyp der verschiedenen Bodengesellschaften unter unterschiedlichen Nutzungen ermittelt. Eine Erweiterung der Datenbasis unter Verwendung verschiedener Einzelkartierungen erfolgte 1993 (Aey 1993). Eine rein nutzungsabhängige grobe Orientierung ist in Tabelle 1 zusammengestellt. Die Humusgehalte von Torfen, die sich auf nassen Standorten bilden, werden bei den Mineralböden nicht berücksichtigt, sie gehen gesondert mit ihren Gehalten und mit ihren Mächtigkeiten in die Ermittlung der Humusmenge ein. Die Humusmenge wurde aus dem Humusgehalt der Humusschicht unter Berücksichtigung des Torfanteils [Masse-%] und unter Berücksichtigung der effektiven Lagerungsdichte und der Mächtigkeit der organischen Horizonte ermittelt. Die ermittelten Humusmengen für die unterschiedlichen Standorte werden entsprechend Tabelle 2 in fünf Stufen untereilt. 01.06.7 pH-Werte im Oberboden Beschreibung Der pH-Wert (Bodenreaktion) beeinflusst die chemischen, physikalischen und biologischen Eigenschaften des Bodens. Er wirkt sich auf die Verfügbarkeit von Nähr- und Schadstoffen aus und gibt Auskunft über die Fähigkeit des Bodens, Säuren oder Basen zu neutralisieren. Er ist bedeutend für die Filter- und Pufferpotentiale der Böden. Bei niedrigen pH-Werten können daher im Boden keine Säuren neutralisiert werden, die Schwermetallverbindungen gehen zunehmend in Lösung und die verfügbaren Nährstoffe sind weitgehend ausgewaschen. Methode Die pH-Werte wurden für die Bodengesellschaften unter Berücksichtigung der Flächennutzung aus vorhandenen Unterlagen abgeleitet. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden, meist unter Verwendung einer Vielzahl verschiedener bodenkundlicher Gutachten. Lagen keine Messwerte vor, wurden die Werte unter Verwendung von Daten vergleichbarer Nutzungen oder vergleichbarer Bodengesellschaften abgeschätzt. Zusätzlich zu den repräsentativen Werten (typische pH-Werte) für den Ober- und Unterboden wurden noch die jeweiligen Maximal- und Minimalwerte bestimmt. In der Karte wurde nur der pH-Wert für den Oberboden dargestellt; dieser hat für die Funktionsbewertung der Böden (vgl. Karte 01.12) eine höhere Bedeutung als der pH des Unterbodens und weist ein auch eine größere, meist nutzungsbedingte Differenzierung auf. Die Stufung der pH-Werte erfolgte nach der Bodenkundlichen Kartieranleitung (1994) in den Stufen 1 – 13 von äußerst alkalisch bis äußerst sauer (vgl. Tab. 1). Über die Stufung kann die Bodenreaktion entsprechend ihrer Alkalinität oder Azidität differenziert werden. 01.06.8 Summe austauschbarer basischer Kationen des Oberbodens (S-Wert) Beschreibung Die austauschbaren Kationen eines Bodens werden üblicherweise in saure und basische Kationen unterteilt. Zu ersteren gehören neben den Wasserstoff-Ionen (H-Ionen) auch solche, die beim Austritt in die Bodenlösung eine Hydrolyse hervorrufen und damit H-Ionen freisetzen, wie vor allem Al; ihre Summe wird H-Wert genannt. Die basischen Kationen sind in erster Linie Ca 2+ , K + Mg 2+ und Na + , in Kulturböden (nach einer Düngung) auch NH 4 + (wobei Ca meist mit mehr als 80 % dominiert); ihre Summe bildet den S-Wert. Ihre Konzentration kann in cmol c /kg, die Menge in mol c /m² angegeben werden. Der %-Anteil des S-Wertes an den Austauschkationen insgesamt wird als Basensättigung bezeichnet. Der S-Wert beschreibt somit die Menge des vom Boden zur Verfügung gestellten und für die Pflanzenernährung relevanten Kationen und ist somit ein wichtiges Maß der Bodenfruchtbarkeit. Methode Die Menge der basisch wirkenden austauschbaren Ionen (S-Wert) für den Oberboden (hier: 0 – 3 dm) wird durch Multiplikation der effektiven Kationenaustauschkapazität (KAK eff ) mit der Basensättigung (BS) unter Einbeziehung der Lagerungsdichte und des Grobbodenanteils berechnet. Die Berechnung der effektiven Kationenaustauschkapazität wird in Karte 01.06.09 dargestellt. Die Basensättigung kann aus dem pH-Wert (CaCl 2 ) abgeleitet werden. Zur Ermittlung wird der für den Standort typische pH-Wert des Oberbodens (vgl. Karte 01.06.07) herangezogen und nach Tabelle 1 die Basensättigung bestimmt. Zwischen den pH-Stufen dieser Tabelle wird linear interpoliert. Die Einteilung der geringen Werte erfolgt in sehr engen Stufen, um die für die Bewertung der Funktion „Lebensraum für naturnahe und seltene Pflanzengesellschaften“ notwendige feine Abstufung nähstoffarmer Böden zu erkennen. 01.06.9 Mittlere effektive Kationenaustauschkapazität Beschreibung Die effektive Kationenaustauschkapazität (KAK eff ) stellt die Menge der an Bodenkolloide gebundenen Kationen unter Berücksichtigung der stark vom pH – Wert abhängigen Ladung der organischen Substanz dar. Dabei sind die austauschbaren Kationen an Tonminerale und Humuskolloide gebunden. In neutralen bis schwach sauren Böden dominieren Calcium (Ca), Magnesium (Mg), Kalium (K) und Natrium (Na) den Sorptionskomplex, in sauren Böden, z. B. Kiefer- und Heidestandorten Aluminium (Al), Wasserstoff (H) und Eisen (Fe). Das Bindungsvermögen der organischen Substanz ist deutlich höher als das der Tonminerale. Die Stärke der Bindung an die organische Substanz ist vom pH-Wert abhängig, die Bindung an die Tonminerale ist pH-unabhängig. So sinkt mit abnehmendem pH-Wert das Bindungsvermögen des Humus. Ton- und humusreiche Böden mit neutraler Bodenreaktion können daher wesentlich mehr Nähr- und Schadstoffe binden und eine Auswaschung dieser Stoffe in das Grundwasser verhindern als sandige humusarme Standorte. Die effektive Kationenaustauschkapazität ist daher geeignet, die Nähr- und Schadstoffbindungspotentiale von Böden zu beschreiben. Methode Die KAK eff der Bodengesellschaften wird aus der Hauptbodenart der Oberböden und Unterböden nach abgeleitet (Tabelle 1). Für den Oberboden wird eine Tiefe von 0 – 1 dm angenommen, für den Unterboden 3 – 15 dm. Zu der ermittelten Kationenaustauschkapazität der Hauptbodenart wird die Austauschkapazität des Humus (Tabelle 3), korrigiert um einen pH-abhängigen Faktor (Tabelle 2) addiert. Da in Abhängigkeit von Bodengenese und Nutzung sowohl die Humusgehalte als auch die Mächtigkeit der Humusschicht unterschiedlich sind und diese ebenfalls zur Berechnung der KAK herangezogen werden, werden für jede Bodengesellschaft unterschiedliche nutzungsspezifische Werte ermittelt. Die ermittelten Werte wurden zur Darstellung in der Karte entsprechend der Bodenkundlichen Kartieranleitung (1994) in fünf Stufen von sehr gering bis sehr hoch unterteilt (Tabelle 4). 01.06.10 Wasserdurchlässigkeit (kf) Beschreibung Die Wasserdurchlässigkeit (gesättigte Wasserleitfähigkeit, kf-Wert) kennzeichnet die Durchlässigkeit und Permeabilität von Böden. Sie hängt von der Bodenart und der Lagerungsdichte des Bodens ab. Lockere Böden mit hohen Sandgehalten haben daher eine wesentlich höhere Durchlässigkeit als tonreiche Böden aus Geschiebemergel. Die Wasserdurchlässigkeit ist wichtig für die Beurteilung von Staunässe, der Filtereigenschaften, Erosionsanfälligkeit und Drainwirksamkeit von Böden. Die Geschwindigkeit der Wasserdurchlässigkeit wird in cm/d oder m/s angegeben. Die Angaben der Geschwindigkeit für die Wasserbewegung gelten nur für den vollständig wassergesättigten Boden, bei dem alle Porenräume mit Wasser gefüllt sind. In der Regel liegen bei den terrestrischen Böden ungesättigte Wasserverhältnisse vor, wobei nur ein Teil der Poren mit Wasser gefüllt ist. Bei ungesättigten Verhältnissen ist die Wasserbewegung deutlich geringer. Ausserdem wird ein grosser Teil des vorhandenen Wassers von den Pflanzen aufgenommen und steht für eine Verlagerung nicht mehr zur Verfügung. Da eine Messung der ungesättigten Wasserleitfähigkeit (ku) sehr aufwendig und kompliziert ist, und deshalb keine ableitbaren Daten in der Bodenkundlichen Kartieranleitung (1994) vorliegen, wird in der wissenschaftlichen Praxis auf die abgesicherten Werte der gesättigten Wasserleitfähigkeit als grobes Maß zurückgegriffen. Der Einfluss des Grobbodens wurde nicht berücksichtigt. Methode Der kf-Wert wurde für die Hauptbodenart des Ober- und Unterbodens nach Tabelle 1 abgelesen. Der kf-Wert für Ober- und Unterboden ist der Mittelwert aus kf-Ober- und kf-Unterboden. Den in der Tabelle in Abhängigkeit von der Bodenart aufgeführten kf-Werten ist eine effektive Lagerungsdichte von Ld3 zugrunde gelegt, was im Mittel den Berliner Böden entspricht. Die Ergebnisse der Wasserdurchlässigkeit wurden für die Darstellung in der Karte in sechs Stufen von sehr gering bis äußerst hoch (1 – 6) nach Tabelle 2 zusammengefasst.
01.06.1 Bodenarten Beschreibung Die Bodenart eines Bodens wird durch die Korngrößenzusammensetzung ihrer mineralischen Bestandteile bestimmt. Dabei wird der Grobboden (Korndurchmesser > 2 mm) und der Feinboden (Korndurchmesser < 2 mm) unterschieden. Auf sehr nassen Standorten entstehen außerdem durch die Anhäufung unvollständig zersetzten Pflanzenmaterials Torfe , die die mineralischen Böden überlagern. Bodenart des Feinbodens Die Bodenarten des Feinbodens werden aus bestimmten Mengenanteilen der Kornfraktionen Ton, Schluff und Sand gebildet. Die Hauptbodenarten werden in Ton, Schluff, Lehm und Sand untergliedert, wobei Lehm ein Korngemisch aus Sand, Schluff und Ton ist. Die Bodenart ist ein wichtiger Kennwert für die Ableitung ökologischer Eigenschaften, wie Nähr- und Schadstoffspeichervermögen, Wasserhaushalt und Wasserspeichervermögen sowie Filter- und Puffervermögen von Schadstoffen. Bodenart des Grobbodens Als Bodenart des Grobbodens oder das Bodenskelett werden alle mineralischen Bestandteile des Bodens bezeichnet, die im Durchmesser > 2 mm sind. Der Anteil des Grobbodens wirkt sich auf die Wasserdurchlässigkeit, den Luft- und Nährstoffhaushalt und das Bindungsvermögen für Nähr- und Schadstoffe aus. Je höher der Anteil des Grobbodens ist, um so durchlässiger ist ein Boden aufgrund der großen Poren, während Bindungsvermögen und Nährstoffsituation von der Art der Feinerde abhängen. Torfart Torfe entstehen in wassergesättigtem Milieu durch Anhäufung unvollständig zersetzten Pflanzenmaterials. Sie zeichnen sich durch ein hohes Wasserspeichervermögen und eine sehr hohe Kationenaustauschkapazität aus. Entsprechend der Art der Pflanzenreste und der Entstehungsbedingungen werden unterschiedliche Torfarten differenziert. Niedermoortorfe sind basen- und nährstoffreich, teilweise sogar carbonatreich. Übergangsmoortorfe weisen Pflanzenreste sowohl von nährstoffarmen als auch von nährstoffreichen Standorten auf. Methode Die Bodenarten des Feinbodens, des Grobbodens und der Torfarten jeweils differenziert nach Ober- und Unterboden wurden für jede Bodengesellschaft bestimmt. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden. Die kartierten Bodenarten des Feinbodens sind in Tabelle 1 zusammengefasst. Da die Bodenarten im Ober- und Unterboden aufgrund des Ausgangsmaterials der Bodenbildung, der Bodenentwicklung und der Nutzung z.T. unterschiedlich sind, werden diese differenziert betrachtet. Außerdem werden innerhalb einer Bodengesellschaft häufig auftretende Bodenarten als Hauptbodenart und selten vorkommende Bodenarten als Nebenbodenart unterschieden. Die Bodengesellschaften, die in den Bodenarten des Feinbodens für den Oberboden als auch für den Unterboden weitgehend übereinstimmen, wurden zu einer Bodenartengruppe zusammengefasst. Die Zuordnung von Bodenartengruppen erfolgte lediglich deshalb, um eine lesbare Karte mit einer überschaubaren Anzahl von Legendeneinheiten zu erzeugen. Für genauere Angaben oder weitere Berechnungen liegen differenziertere Daten vor. Es treten Bodengesellschaften auf, die sowohl im Oberboden als auch im Unterboden aus den gleichen Bodenarten bestehen. Die Mehrzahl der Bodengesellschaften unterscheidet sich jedoch hinsichtlich der Bodenarten im Ober- und Unterboden. Durch Kombination der Bodenarten des Oberbodens mit den Bodenarten des Unterbodens wurden 14 Bodenartengruppen des Feinbodens (< 2 mm) gebildet, welche die Legendeneinheiten der Karte darstellen. Die Bodengesellschaften einer Bodenartengruppe können sich jedoch innerhalb dieser Gruppe hinsichtlich Torf- bzw. Steingehalt (Bodenskelett, Grobboden > 2 mm) des Ober- und Unterbodens unterscheiden, weshalb diese durch zusätzliche Signaturen dargestellt wurden. Die in den Böden Berlins vorkommenden Grobbodenarten sind in Tabelle 2 zusammengestellt. Zwischen dem Vorkommen im Ober- bzw. Unterboden wird unterschieden. Die in Berlin vorkommenden Torfarten sind in Tabelle 3 zusammengestellt. Zur Darstellung der ökologischen Eigenschaften und Ermittlung der Kennwerte wird unterschieden, ob Torf im Ober- und/oder im Unterboden vorkommt. Bei dem Vorhandensein von mehreren Torfarten in einem Boden oder einer Bodengesellschaft, wird nur die charakteristische Torfart (Torfart prägend) berücksichtigt. 01.06.4 Nutzbare Feldkapazität des effektiven Wurzelraumes Beschreibung Eine differenzierte Betrachtung des pflanzenverfügbaren Wassers für den jeweiligen Standort ergibt die Beurteilung des Wasserhaushaltes über die nutzbare Feldkapazität im effektiven Wurzelraum (nFK We ). Dabei werden entsprechend der Bodenart und der Nutzung die unterschiedlichen Durchwurzelungstiefen und Wurzelräume berücksichtigt. So haben Wald- und Baumstandorte einen wesentlich größeren Wurzelraum als zum Beispiel Gartennutzungen. In Sandböden ist der effektive Wurzelraum geringer als in Lehmböden. In den Lehmböden kann das Niederschlagswasser länger als in den Sandböden gespeichert werden, so dass es für die Pflanzenwurzeln hinsichtlich des Wasser- und Nährstoffhaushaltes lohnend ist, sich einen etwas größeren Wurzelraum zu erschließen als in sandigen Substraten. Bei den moorigen Böden reicht der effektive Wurzelraum nur bis zu den grundwasserbeeinflussten Horizonten, so dass meist nur die obersten 20 – 30 cm als Wurzelraum dienen. Ursache für den geringen Wurzelraum ist der Luftmangel in den ständig wassergesättigten Horizonten. Die Pflanzenwurzeln, mit Ausnahme einiger Spezialisten, beschränken sich daher auf die oberen Horizonte, die sowohl ausreichend Luft als auch Wasser führen. Die zusätzliche Wasserversorgung der Pflanzen in der Vegetationszeit aus dem kapillaren Aufstieg des Grundwassers, die die nFK We bei geringen Flurabständen entscheidend beeinflusst, wurde hier bei der Ermittlung nicht berücksichtigt. Methode Die Ermittlung der nFK We für die Bodengesellschaften in Abhängigkeit von der realen Flächennutzung erfolgte durch das Fachgebiet Bodenkunde der TU Berlin im Rahmen eines Gutachtens (Plath-Dreetz / Wessolek / Renger 1989). Dabei wurde zunächst der effektive Wurzelraum für Berliner Standorte entsprechend unterschiedlichen Nutzungen aus Tabelle 1 entnommen. Ausgehend von der Tiefe des effektiven Wurzelraumes wurden für die bei Grenzius (1987) dokumentierten Musterprofile die horizontweise ermittelten nutzbaren Feldkapazitäten zur nFK We addiert. Für die organische Substanz wurden entsprechende Zuschläge berücksichtigt. Da innerhalb einer Bodengesellschaft unterschiedliche Bodentypen auftreten, ergibt sich eine Spanne, die mit dem Minimal- und Maximalwert der nFK We je Bodengesellschaft beschrieben werden kann. Zusätzlich wurde der typische nFK We -Wert nutzungsabhängig für die jeweilige Bodengesellschaft bestimmt, der in der Karte dargestellt ist. Die Ergebnisse werden in fünf Stufen zusammengefasst (Tab. 2) 01.06.5 Humusmenge Beschreibung Die organische Substanz der Böden besteht aus abgestorbenen und umgewandelten Resten von Pflanzen und Tieren. Die Streu und die Huminstoffe bilden den Humus . Das hohe Sorptionsvermögen der Huminstoffe, der hohe Anteil pflanzenverfügbarer Nährstoffe und die günstigen Eigenschaften für den Wasserhaushalt wirken prägend für viele Bodenfunktionen. Die Humusgehalte der mineralischen Böden sind bestimmt durch die Bodengenese und die Nutzung. Durch Nutzungen wie Gartenbau mit Einarbeitung von Kompost oder intensiver Grünlandwirtschaft wird die Humusanreicherung begünstigt, während bei den anderen Nutzungen ein deutlich geringerer Gehalt an organischer Substanz vorhanden ist (vgl. Tab. 1). Nasse Vegetationsstandorte, z.B. Auenböden und Moore haben eine hohe Biomasseproduktion, aber einen geringen Humusabbau. Die angereicherte organische Substanz liegt in Form von Torfen mit unterschiedlichem Zersetzungsgrad vor. Die An- und Niedermoore besitzen in Abhängigkeit von der Nutzung und dem Zersetzungsgrad der Torfe einen Gehalt an org. Substanz von 15 – 80%. Voraussetzung für hohe Gehalte an organischer Substanz ist eine stetige Vernässung bis in den Oberboden und eine naturnahe Nutzung, wie zum Beispiel extensive Wiesennutzung. Die Humusmenge stellt die Menge an organischer Substanz dar, die an einem Standort für eine definierte Bodenfläche in Abhängigkeit vom Bodentyp und der Flächennutzung vorliegt. Die Humusmenge ist vor allem ein Zeiger für den Stickstoffvorrat und den leicht mobilisierbaren Stickstoffanteil. Aber auch andere wichtige Nährstoffe wie Kalium, Calcium, Magnesium und Phosphor werden durch die Zersetzung und Humifizierung der organischen Substanz freigesetzt und für die Pflanzen verfügbar gemacht. Neben der Verfügbarkeit von Nährstoffen wirkt die Humusmenge als Nährstoff- und Wasserspeicher und vermag in hohem Masse Schadstoffe zu binden. Die Humusmenge eines Bodens hängt von dem Humusgehalt und der Mächtigkeit der humosen Horizonte ab. Diese ist entsprechend dem Bodentyp und der Nutzung unterschiedlich. So besitzen zum Beispiel feuchte moorige Standorte mit einer hohen Biomasseproduktion und einer geringen Zersetzung eine hohe Humusmenge und sandige trockene Böden mit geringer Vegetationsdecke eine niedrige Humusmenge. Methode Die durchschnittlichen Humusgehalte der Mineralböden in Abhängigkeit von Bodentyp und Nutzung wurden den Untersuchungen von GRENZIUS (1987) und Bodenuntersuchungen im Rahmen des Schwermetalluntersuchungsprogramms (1986,1987) entnommen. Diese Daten wurden zunächst von Fahrenhorst et al. (1990) ausgewertet und die durchschnittlichen Humusgehalte für den charakteristischen Bodentyp der verschiedenen Bodengesellschaften unter unterschiedlichen Nutzungen ermittelt. Eine Erweiterung der Datenbasis unter Verwendung verschiedener Einzelkartierungen erfolgte 1993 (Aey 1993). Eine rein nutzungsabhängige grobe Orientierung ist in Tabelle 1 zusammengestellt. Die Humusgehalte von Torfen, die sich auf nassen Standorten bilden, werden bei den Mineralböden nicht berücksichtigt, sie gehen gesondert mit ihren Gehalten und mit ihren Mächtigkeiten in die Ermittlung der Humusmenge ein. Die Humusmenge wurde aus dem Humusgehalt der Humusschicht unter Berücksichtigung des Torfanteils [Masse-%] und unter Berücksichtigung der effektiven Lagerungsdichte und der Mächtigkeit der organischen Horizonte ermittelt. Die ermittelten Humusmengen für die unterschiedlichen Standorte werden entsprechend Tabelle 2 in fünf Stufen untereilt. 01.06.6 mittlere pH-Werte als Mittel aus Ober- und Unterboden Beschreibung Der pH-Wert (Bodenreaktion) beeinflusst die chemischen, physikalischen und biologischen Eigenschaften des Bodens. Er wirkt sich auf die Verfügbarkeit von Nähr- und Schadstoffen aus und gibt Auskunft über die Fähigkeit des Bodens, Säuren oder Basen zu neutralisieren. Er ist bedeutend für die Filter- und Pufferpotentiale der Böden. Bei niedrigen pH-Werten können daher im Boden keine Säuren neutralisiert werden, die Schwermetallverbindungen gehen zunehmend in Lösung und die verfügbaren Nährstoffe sind weitgehend ausgewaschen. Methode Die pH-Werte wurden für die Bodengesellschaften unter Berücksichtigung der Flächennutzung aus vorhandenen Unterlagen abgeleitet. Die Angaben wurden im wesentlichen den Profilschnitten von Grenzius (1987) entnommen. Einige Werte sind gutachterlich ergänzt worden, meist unter Verwendung einer Vielzahl verschiedener bodenkundlicher Gutachten. Lagen keine Messwerte vor, wurden die Werte unter Verwendung von Daten vergleichbarer Nutzungen oder vergleichbarer Bodengesellschaften abgeschätzt. Zusätzlich zu den repräsentativen Werten (typische pH-Werte) für den Ober- und Unterboden wurden noch die jeweiligen Maximal- und Minimalwerte bestimmt. Da für generalisierte Bodenfunktionsbewertungen nur ein charakteristischer pH-Wert pro Fläche weiterverarbeitet werden kann, die pH-Werte aber für Ober- und Unterboden getrennt vorliegen, war es erforderlich, diese zusammenzufassen. Aus den typischen pH-Werten für den Ober- und Unterboden wurde das arithmetische Mittel gebildet. Durch diese Vereinfachung können allgemeine Aussagen bezüglich der Bodenreaktion der Standorte getroffen werden, z.B. ob es sich um mehr alkalische oder saure Standorte handelt. Bei Böden mit sehr unterschiedlichen pH-Werten im Ober- und Unterboden werden durch die Mittelung allerdings Werte erzeugt, die den ökologischen Eigenschaften am Standort nicht immer gerecht werden. Die Stufung der mittleren pH-Werte als Mittel aus Ober- und Unterboden erfolgte nach der Bodenkundlichen Kartieranleitung (1994) in den Stufen 1 – 13 von äußerst alkalisch bis äußerst sauer (vgl. Tab. 1). Über die Stufung kann die Bodenreaktion entsprechend ihrer Alkalinität oder Azidität differenziert werden. 01.06.8 Basensättigung des Oberbodens Beschreibung Die Basensättigung (BS) entspricht dem Anteil basisch gebundener Kationen an der Kationenaustauschkapazität (KAK pot ). Dies sind vor allem die basischen Kationen Calcium (Ca), Magnesium (Mg), Kalium (K) und Natrium (Na). Bei neutralem pH Wert ist die Bodenlösung vollständig mit den basisch wirkenden Kationen gesättigt. Bei niedrigen pH-Werten dominieren versauernd wirkende Wasserstoffionen (H) und Aluminium (Al) die Bodenlösung. Die basischen Kationen dienen als wichtige Nährstoffe und als Puffer und Neutralisator für in den Boden eingetragene Säuren, die H-Ionen wirken versauernd und freiwerdende Aluminiumverbindungen toxisch für Pflanzen. Wichtig für das Pflanzenwachstum ist die Basensättigung des Oberbodens, da dieser mit Ausnahme einiger Wald- und Baumstandorte den Hauptwurzelraum darstellt. Methode Umso weniger basische Kationen vorhanden sind, desto niedriger ist der pH-Wert. Deshalb kann die Basensättigung in Abhängigkeit vom pH-Wert (CaCl 2 ) abgeleitet werden. Zur Ermittlung wird der für den Standort typische pH-Wert des Oberbodens herangezogen und nach Tabelle 1 die Basensättigung bestimmt. Zwischen den pH-Stufen dieser Tabelle wird linear interpoliert. Die Stufung der Basensättigung erfolgt entsprechend der Bodenkundlichen Kartieranleitung (1994) in den Stufen 1 – 5 (sehr basenarm – sehr basenreich) nach Tabelle 2. 01.06.9 Mittlere effektive Kationenaustauschkapazität Beschreibung Die effektive Kationenaustauschkapazität (KAK eff ) stellt die Menge der an Bodenkolloide gebundenen Kationen unter Berücksichtigung der stark vom pH – Wert abhängigen Ladung der organischen Substanz dar. Dabei sind die austauschbaren Kationen an Tonminerale und Humuskolloide gebunden. In neutralen bis schwach sauren Böden dominieren Calcium (Ca), Magnesium (Mg), Kalium (K) und Natrium (Na) den Sorptionskomplex, in sauren Böden, z. B. Kiefer- und Heidestandorten Aluminium (Al), Wasserstoff (H) und Eisen (Fe). Das Bindungsvermögen der organischen Substanz ist deutlich höher als das der Tonminerale. Die Stärke der Bindung an die organische Substanz ist vom pH-Wert abhängig, die Bindung an die Tonminerale ist pH-unabhängig. So sinkt mit abnehmendem pH-Wert das Bindungsvermögen des Humus. Ton- und humusreiche Böden mit neutraler Bodenreaktion können daher wesentlich mehr Nähr- und Schadstoffe binden und eine Auswaschung dieser Stoffe in das Grundwasser verhindern als sandige humusarme Standorte. Die effektive Kationenaustauschkapazität ist daher geeignet, die Nähr- und Schadstoffbindungspotentiale von Böden zu beschreiben. Methode Bei der Berechnung der KAK eff wurde versucht, ein einfaches Verfahren anzuwenden, das einerseits den charakteristischen Wert der jeweiligen Bodengesellschaft abbildet, andererseits aber auch starke Abweichungen vom typischen Wert innerhalb der jeweiligen Bodengesellschaft berücksichtigt. Die KAK eff der Bodengesellschaften wird aus der Hauptbodenart der Oberböden und Unterböden nach Tab. 1 abgeleitet. Für den Oberboden wird eine Tiefe von 0 – 1 dm angenommen, für den Unterboden 3 – 15 dm. Um Besonderheiten einer Bodengesellschaft zu erfassen, wird auch die Nebenbodenart mit dem größten Unterschied im Tongehalt zur Hauptbodenart berücksichtigt. Dadurch werden zwar Abweichungen von der Hauptbodenart berücksichtigt, allerdings wird durch dieses Verfahren den Nebenbodenarten ein sehr großes Gewicht verliehen, so dass die Austauschkapazitäten der Bodengesellschaften teilweise zu hoch oder zu niedrig bewertet werden. Zu der gemittelten Kationenaustauschkapazität der Hauptboden- und Nebenbodenart wird die Austauschkapazität des Humus, korrigiert um einen pH-abhängigen Faktor addiert. Da in Abhängigkeit von Bodengenese und Nutzung sowohl die Humusgehalte als auch die Mächtigkeit der Humusschicht unterschiedlich sind und diese ebenfalls zur Berechnung der KAK herangezogen werden, werden für jede Bodengesellschaft unterschiedliche nutzungsspezifische Werte ermittelt. Die ermittelten Werte wurden zur Darstellung in der Karte entsprechend der Bodenkundlichen Kartieranleitung (1994) in fünf Stufen von sehr gering bis sehr hoch unterteilt. 01.06.10 Wasserdurchlässigkeit (kf) Beschreibung Die Wasserdurchlässigkeit (gesättigte Wasserleitfähigkeit, kf-Wert) kennzeichnet die Durchlässigkeit und Permeabilität von Böden. Sie hängt von der Bodenart und der Lagerungsdichte des Bodens ab. Lockere Böden mit hohen Sandgehalten haben daher eine wesentlich höhere Durchlässigkeit als tonreiche Böden aus Geschiebemergel. Die Wasserdurchlässigkeit ist wichtig für die Beurteilung von Staunässe, der Filtereigenschaften, Erosionsanfälligkeit und Drainwirksamkeit von Böden. Die Geschwindigkeit der Wasserdurchlässigkeit wird in cm/d oder m/s angegeben. Die Angaben der Geschwindigkeit für die Wasserbewegung gelten nur für den vollständig wassergesättigten Boden, bei dem alle Porenräume mit Wasser gefüllt sind. In der Regel liegen bei den terrestrischen Böden ungesättigte Wasserverhältnisse vor, wobei nur ein Teil der Poren mit Wasser gefüllt ist. Bei ungesättigten Verhältnissen ist die Wasserbewegung deutlich geringer. Ausserdem wird ein grosser Teil des vorhandenen Wassers von den Pflanzen aufgenommen und steht für eine Verlagerung nicht mehr zur Verfügung. Da eine Messung der ungesättigten Wasserleitfähigkeit (ku) sehr aufwendig und kompliziert ist, und deshalb keine ableitbaren Daten in der Bodenkundlichen Kartieranleitung (1994) vorliegen, wird in der wissenschaftlichen Praxis auf die abgesicherten Werte der gesättigten Wasserleitfähigkeit als grobes Maß zurückgegriffen. Der Einfluss des Grobbodens wurde nicht berücksichtigt. Methode Der kf-Wert wurde für die Hauptbodenart des Ober- und Unterbodens nach Tabelle 1 abgelesen. Der kf-Wert für Ober- und Unterboden ist der Mittelwert aus kf-Ober- und kf-Unterboden. Den in der Tabelle in Abhängigkeit von der Bodenart aufgeführten kf-Werten ist eine effektive Lagerungsdichte von Ld3 zugrunde gelegt, was im Mittel den Berliner Böden entspricht. Die Ergebnisse der Wasserdurchlässigkeit wurden für die Darstellung in der Karte in sechs Stufen von sehr gering bis äußerst hoch (1 – 6) nach Tabelle 2 zusammengefasst.
Origin | Count |
---|---|
Bund | 45 |
Land | 16 |
Type | Count |
---|---|
Förderprogramm | 43 |
Text | 14 |
Umweltprüfung | 1 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 17 |
offen | 43 |
Language | Count |
---|---|
Deutsch | 59 |
Englisch | 21 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 2 |
Dokument | 1 |
Keine | 47 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 60 |
Lebewesen & Lebensräume | 55 |
Luft | 31 |
Mensch & Umwelt | 60 |
Wasser | 47 |
Weitere | 58 |