API src

Found 17 results.

Erbsenfaser 2.0: Neue Konzepte zur Erhöhung der Wertschöpfung und zur Optimierung der technofunktionellen sowie nutritiven Eigenschaften der bei der Erbsenverarbeitung anfallenden faserreichen Nebenprodukte, Erbsenfaser 2.0: Neue Konzepte zur Erhöhung der Wertschöpfung und zur Optimierung der technofunktionellen sowie nutritiven Eigenschaften der bei der Erbsenverarbeitung anfallenden faserreichen Nebenprodukte

Die Zielstellung des Vorhabens besteht in der Erhöhung der Wertschöpfung der bei der Erbsenverarbeitung entstehenden Nebenprodukte (Erbsenschale und Kotyledonen-Rückstand), welche reich an Ballaststoffen und bioaktiven sekundären Pflanzenstoffen sind, aber bisher nur unzureichend vermarktet werden. Dabei sollen zum einen die technofunktionellen Eigenschaften der Außenfasern aus den Erbsenschalen durch kombinierte enzymatisch-mechanische Aufschlussverfahren verbessert werden und deren ernährungsphysiologisches Potential anhand der Gehalte an assoziierten Sekundärmetaboliten charakterisiert werden. Zum anderen verfolgt die Verfahrensentwicklung das Ziel, neben der Innenfaser, Pektin als zusätzlichen funktionellen Wertstoff aus dem Kotyledonen-Rückstand zu gewinnen und anhand seiner funktionellen Eigenschaften als Gelbildner und Emulsions- bzw. Schaumstabilisator zu bewerten. Der analytische Schwerpunkt des Vorhabens liegt auf der Ermittlung der Konzentrationen an Proteinen, Saponinen und Flavonoiden in den jeweiligen Zwischen- und Endprodukten und der Bewertung von Möglichkeiten zur Gewinnung und Nutzung dieser wichtigen ggf. gesundheitspräventiven Substanzen. Im Ergebnis der Forschungsarbeiten werden neue Wege zur nachhaltigen Nutzung heimischer Körnerleguminosen und deren anfallenden Nebenproduktströme für die Herstellung hochfunktioneller Lebensmittelzutaten aufgezeigt und somit ein wichtiger Beitrag für die Humanernährung und eine nachhaltige Be- und Verarbeitung geleistet.

ERA-Net: Bioraffinerie: Nutzung von Citrus Biomasse (CPW), Teilvorhaben: Uni Bremen

ERA-IB 7: YEASTPEC: Engineering der Hefe Saccharomyces cerevisiae für die Biokonversion pektinhaltiger agro-industrieller Nebenströme^Teilvorhaben GEM: Hydrolytische Enzyme, Teilvorhaben JUB: Redoxbilanz

Die Bäckerhefe Saccharomyces cerevisiae hat sich als ein beliebter Produktionsorganismus in der industriellen Biotechnologie etabliert. Dies beruht auf der außergewöhnlichen Einfachheit, mit der man hier zielgerichtete genetische Modifikationen durchführen kann. Tatsächlich konnten bereits einige natürliche Limitationen der Bäckerhefe überwunden werden, die anfangs einer Nutzung von Abfallbiomasse als Rohstoff entgegenstanden. Ein robuster genetisch veränderter Industriestamm, der Inhibitoren in Lignozellulose-haltigen Hydrolysaten tolerieren und neben Glukose auch Xylose zu Ethanol vergären kann, steht als Ausgangsplattform für das YEASTPEC Projekt zur Verfügung. Neben Lignozellulose-haltigen Abfallströmen gibt es preiswerte agro-industrielle Nebenströme, die reich an Pektin sind und daher ebenfalls attraktive Substrate für die industrielle Biotechnologie darstellen. In Europa, ist vor allem das gepresste Fruchtfleisch von Zuckerrüben (Zuckerindustrie) und Früchten (Fruchtsaftindustrie) in hohen Mengen verfügbar. Außer Glukose, sind die Hydrolysate dieser bisher weitgehend unerschlossenen Rohstoffe reich an Galakturonsäure (GalA) und Arabinose. Innerhalb des YEASTPEC Projektes soll ein robuster Industriestamm entwickelt werden, der Enzyme für die Hydrolyse der Polysaccharide in pektinhaltigen Abfällen ausscheiden und alle im Hydrolysat vorherrschenden Zucker, d.h. Glucose, GalA und Arabinose zu Ethanol vergären kann. Das inherente Redoxproblem des Stoffwechselweges für die GalA Vergärung soll durch Zufütterung von Glycerol gelöst werden, wodurch zusätzliche Reduktionsequivalente bereit gestellt werden. Glycerol ist das hauptsächliche Nebenprodukt der gegenwärtigen Biodieselproduktion und steht daher ebenfalls in hohen Mengen preiswert zur Verfügung. Der generierte Industriestamm soll zusätzlich für eine erhöhte Robustheit während der industriellen Fermentation, insbesondere gegenüber schwachen Säuren, verbessert werden.

ERA-IB 7: YEASTPEC: Engineering der Hefe Saccharomyces cerevisiae für die Biokonversion pektinhaltiger agro-industrieller Nebenströme, Teilvorhaben GEM: Hydrolytische Enzyme

Das YEASTPEC-Konsortium will die fermentative Verwertung von Pektin bzw. Pektinbausteinen (v.a. D-Galakturonsäure, GalA, und Arabinose, Ara), einem Reststoff der Agroindustrie, durch entsprechend modifizierte Stämme der Hefe Saccharomyces cerevisiae erreichen. In dem Teilvorhaben des Verbundpartners GEM sollen Enzyme identifiziert werden, die für die Freisetzung der monomeren Bestandteile von Pektin geeignet sind und in Hefe exprimiert werden können.

Erbsenfaser 2.0: Neue Konzepte zur Erhöhung der Wertschöpfung und zur Optimierung der technofunktionellen sowie nutritiven Eigenschaften der bei der Erbsenverarbeitung anfallenden faserreichen Nebenprodukte^Erbsenfaser 2.0: Neue Konzepte zur Erhöhung der Wertschöpfung und zur Optimierung der technofunktionellen sowie nutritiven Eigenschaften der bei der Erbsenverarbeitung anfallenden faserreichen Nebenprodukte, Erbsenfaser 2.0: Neue Konzepte zur Erhöhung der Wertschöpfung und zur Optimierung der technofunktionellen sowie nutritiven Eigenschaften der bei der Erbsenverarbeitung anfallenden faserreichen Nebenprodukte

ERA-NET Euro TransBio-11: ALFAPRO-Nutzung und Verwertung von Alfalfa außerhalb der klassischen Zuchtindustrie

SHEMICELL: Stoffliche Verwertung hemicellulosereicher Wertstoffströme aus landwirtschaftlichen Reststoffen von Einjahrespflanzen, Teilvorhaben 2

Primäres Ziel des Projektes ist die Entwicklung eines Verfahrens zur stofflichen Verwertung von Hemicellulosen (HC). In Bioraffinerien beschränkt sich deren Verwertung derzeit weitestgehend auf die Erzeugung von Dampf, Strom oder Ethanol. Für letzteres existieren noch technische Herausforderungen damit sich dieses Vorhaben lohnt. Um HC erfolgreich zu Nutzen, ist eine gezielte Abtrennung und stoffliche Verwertung von HC ein essentieller Weg. Ziel ist es, HC beim Biomasseaufschluss möglichst vollständig von der Cellulose zu trennen und so zu isolieren, damit sie einer separaten stofflichen Nutzung zugefügt werden kann. Mögliche Einsatzgebiete der isolierten HC (Flotationsmittel, Flockungsmittel, Flammschutzmittel und Papieradditiv) sollen untersucht werden. Aussichtsreich ist die Anwendung der Flotationsmittel, wo derivatisierte Stäke als Produkt bereits Anwendung findet. 1) Charakterisierung der Stoffströme 2) Aufschluss, Isolierung und Reinigung von Hemicellulose (HC) aus Weizenstroh und Haferspelzen 3) Aufschluss, Isolierung und Reinigung von HC und Pektin aus Rübenschnitzel 4) Modifizierung und Derivatisierung der HC für den Flotationsprozess und Testung der Substanzen im Labormaßstab 5) Herstellung und Testung von Flammschutzmitteln auf Basis von HC und Pektinen 6) Herstellung und Testung von Papieradditiven auf Basis von HC 7) Machbarkeits- und Wirtschaftlichkeitsstudie.

Bedeutung des Apoplasten für Aluminium-Toxizität und Aluminium-Resistenz höherer Pflanzen

Über die physiologischen Ursache von Aluminium-Toxizität und Al-Resistenz bestehen nach wie vor große Unklarheiten. Im ersten und zweiten Förderungsabschnitt wurden klare Hinweise darauf erarbeitet, daß die für die Wirkung von Al und die genotypische Resistenz der Wurzel gegenüber Al die distale Zone der transition zone (DTZ) des Wurzelapex entscheidend ist, und der Pektingehalt und der Pektinmethylierungsgrad wesentliche die Al-Aufnahme und -Wirkung beeinflussende Eigenschaften des Apo- plasten des Wurzelapex sind. Als zentrales Ziel der Forschungsarbeiten im beantragten Förderungszeitraum sollen die erarbeiteten Hinweise weitern untermauert und kausal geklärt werden. Der Schwerpunkt soll auf der Charakterisierung der besonderen Al-Empfindlichkeit der DTZ und der genotypischen Unterschiede in Al-Resistenz durch Quantifizierung von Gehalten und Exsudation von organischen Komplexoren für Al und der Signalleitung an die EZ (Zusammenarbeit mit AG Felle, Gießen), der Mikrolokalisation von Al im Wurzelapex (Zusammenarbeit mit AG Schröder, Jülich und AG Lehmann/Stelzer, Hannover) und der Charakterisierung der Leitfähigkeit für organische Säureanionen der Plasmamembran äußerer apikaler Wurzelcortexzellen (Zusammenarbeit mit AG Hedrich, Würzburg) liegen. Der Einfluß von Al auf die Porosität des Wurzelapoplasten mit CLSM soll in Kooperation mit AG Matsumoto, Kurashiki, Japan , erfolgen. Die Charaktersierung der Al-Wirkungen auf von für das Wurzelstreckungswachstum bedeutenden Enzymen konzentrieren sich auf PME und Peroxidase im Zusammenhang mit dem Ascorbathaushalt. Die Einbeziehung in die Untersuchungen der bisher nur schlecht verstandenen Phänomene der B- und Si- induzierten erhöhten Al-Resistenz (Zusammenar- beit mit der Arbeitsgruppe Goldbach, Bonn) soll zu einem weitergehenden vertieften Verständnis der Bedeutung des Apoplasten für Al-Toxizität und Al-Resistenz beitragen, da beide Mineralstoffe Struktur und Funktion des Apoplasten wesentlich beeinflussen.

Strahlenbedingte Veraenderung der Lymphozytenpopulationen und ihre Funktion als biologischer Indikator fuer ionisierende Strahlung

Fuer fuenf verschiedene immunologische Parameter wird die Wirkung ionisierender Strahlung untersucht. 1. Absolutzahlen und relative Anteile der Subpopulationen der Lymphozyten. 2. Immunglobulin-Produktion durch die B-Lymphozyten nach Stimulierung mit Mitogenen. Dabei sollen die verschiedenen Subpopulationen der Lymphozyten in unterschiedlichen Zahlenverhaeltnissen eingesetzt werden, ausserdem autologe und allogene Kombinationen. 3. Gemischte Lymphozyten-Kultur. In erster Linie wird dabei die Wirkung ionisierender Strahlung auf die 'Responder-Zellen' untersucht. 4. Lymphozyten-Stimulierung mit Mitogenen und Antigenen. Zusaetzlich werden im Rahmen des Vorhabens noch folgende Parameter untersucht: Der Einfluss der Bestrahlung auf die elektrophoretische Mobilitaet von zellulaeren Blutbestandteilen. Der Einfluss der Bestrahlung auf die Aktivitaet der Alphaamylase im Blut. Der Einfluss der Bestrahlung auf die Thymidin-Konzentration im Blut. Der Einfluss der Bestrahlung auf die Bindungskapazitaet von zellulaeren Blutbestandteilen fuer Lektine. Fuer saemtliche Parameter werden Dosis-Wirkungs-Beziehungen ermittelt. Die Verfahren werden sowohl in-vitro als auch an Strahlentherapiepatienten getestet.

ERA-IB 3: Herstellung organischer Säuren für die Polymersynthese (POAP), Teilvorhaben 2: Enzymentwicklung

Ziel dieses Teilprojektes ist die Entwicklung neuer Enzyme für die Extraktion von Polysaccharariden und anderen Stoffen aus Orangenschale und Getreidespreu. Dabei soll die Freisetzung von Monosacchariden und Zuckersäuren verbessert werden. Weiterhin sollen Mikroorganismenstämme entwickelt werden, die entweder Cellulose oder Hemicellulosen oder Pektin spalten, um selektiv entweder Hexosen oder Pentosen oder Galakturonsäure zu erhalten. Die neuen Enzyme sollen mit gentechnischen Methoden hinsichtlich Endprodukthemmung, pH-Optimum und Prozessstabilität optimiert werden. Abschließend wird eine biochemische Charakterisierung der neu entwickelten Enzyme durchgeführt. Zunächst werden neue mikrobielle Stämme des Projektpartners VTi auf ihre Enzymbildung untersucht. Bei den effektivsten Stämmen wird versucht, die Produktion von nicht erwünschten Enzymaktivitäten durch Gen-Knockout zu verhindern. Zur Verringerung der Endprodukthemmung, zur Erhöhung der Prozessstabilität sowie zur Optimierung des pH-Spektrums wird die Methode der ortsspezifischen Mutagenese eingesetzt. Abschließend werden biochemische Arbeitstechniken wie Gelelektrophorese, HPLC und Photometrie eingesetzt, um die neuen Enzyme zu charakterisieren.

1 2