API src

Found 590 results.

Klimaerlebnisbaum - Rottendorf - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in Rottendorf sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 01.12.2024 12 Uhr](https://opendata.smartandpublic.eu/datasets/a00d7121-fc5b-4b4d-ad19-5b0e3689b5dd?locale=en#state=011dcbe3-d7f2-4512-ac48-b8d08b563e01&session_state=45ffef6b-701d-4846-ac6d-9af6d7c6ff80&iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub&code=a85c0ca8-b9b3-4785-bd45-11b0d3201e34.45ffef6b-701d-4846-ac6d-9af6d7c6ff80.cc28098c-2fc1-472b-a4ca-77a8ebde7f28)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

H2Giga: Serienproduktion und Industrialisierung von integrierten & sektorgekoppelten Elektrolysesystemen für Wasser, H2Giga_TP_SINEWAVE: Serienproduktion und Industrialisierung von integrierten & sektorgekoppelten Elektrolysesystemen für Wasser

Erarbeitung einer wissenschaftlich fundierten, nachhaltigen Datenbasis und Empfehlung als Entscheidungsbasis für die zukunftsfähige und langfristige Nutzung von LNG-Terminal-Standorten als logistische Knotenpunkte für Wasserstoff und dessen Derivate, Erarbeitung einer wissenschaftlich fundierten, nachhaltigen Datenbasis und Empfehlung als Entscheidungsbasis für die zukunftsfähige und langfristige Nutzung von LNG-Terminal-Standorten als logistische Knotenpunkte für Wasserstoff und dessen Derivate

Aktuelles zum Pflanzenschutz

20.06.2025 Aufgrund der vorherrschenden Witterung konnten sich große Spinnmilbenpopulationen an Linden aufbauen. Typische Symptome sind blattoberseits kleine Flecken als Folge der Saugtätigkeit. Stärker betroffene Blätter vertrocknen und fallen unter Braunfärbung ab. Charakteristisch beginnt der Befall im unteren Kronenbereich. Häufig wird das Schadbild mit Trockenschäden verwechselt. Nachhaltige Schäden an betroffenen Bäumen sind meist nicht zu erwarten. Weitere Informationen folgen im „Grünes Blatt Berlin 06-2025“ . 30.04.2025 Die Gespinstmottenaktivität ist je nach Standort unterschiedlich stark vorangeschritten. Von Anfangsfraß mit ersten Gespinsten bis Kahlfraß. Im Inneren sind zahlreiche weißliche Raupen mit schwarzen Flecken zu finden. Auch bei Weißdorn sind die ersten Gespinste der Weißdornmotte erkennbar. Sowohl die Raupen der Gespinstmottenarten als auch deren Gespinste sind für den Menschen völlig harmlos. Ein früher Befall lässt sich durch Rückschnitt gut eindämmen, später ist dieses nicht mehr möglich – die Gehölze treiben bei ausreichender Wasserversorgung selbst bei Kahlfraß i. d. R. wieder aus. Die Gespinste führen häufig zu Verwechslungen mit den Raupen des Eichenprozessionsspinners. Dieser befindet sich aktuell im L2-Stadium und kommt nur an Eichen vor , nicht an Sträuchern und Büschen wie dem Pfaffenhütchen etc. 10.04.2025 Sofern sich die Wetterprognosen bestätigen, beginnt ab der kommenden Woche der optimale Anwendungszeitraum für eine biologische Pflanzenschutzmittelmaßnahme mittels BT-Präparaten (Bacillus thuringiensis). Biologische Präparate erfassen nur jüngere Raupen in den Stadien L1 bis L2. Danach nehmen die Wirkungsgrade rapide ab. Diese Präparate haben auf Flächen, die für die Allgemeinheit bestimmt sind (§ 17 PflSchG) und im Haus- und Kleingarten keine Höhenbegrenzung und sind dementsprechend vielseitig an Hecken und Formgehölzen einsetzbar. Weitere Informationen entnehmen Sie bitte aus der vorherigen Meldung. 10.03.2025 In den letzten Tagen wurden die ersten Aktivitäten der Buchsbaumzünslerraupen festgestellt. Der Fraß im Inneren der Buxus sollte durch Kontrollgänge erfasst und vermieden werden. Hierbei sind die Buchsbäume auf die Jungraupen und die Überwinterungsgespinste zu kontrollieren (siehe Bild). Bei einem starken Befall sollten erste Pflanzenschutzmittelanwendungen mit BT-Präparaten in Abhängigkeit der Witterung anvisiert werden. Eine Mindesttemperatur von 15 °C ist für eine gute Wirkung erforderlich. Weitere Informationen entnehmen Sie gerne dem Merkblatt. 31.01.2025 Das Gebührenverzeichnis wurde neu gefasst und einzelne Gebührentatbestände wurden dabei auf den aktuellen Stand europarechtlicher und nationaler Verordnungen und Gesetze auf dem Gebiet des Pflanzenschutzes und der Pflanzengesundheit gebracht. Die neue PflSchGebO tritt ab dem 01.02.2025 in Kraft. Weitere Informationen finden Sie in der Pressemitteilung vom 07.01.2025

Ergebnisse der Status-Quo-Analyse

Die Status-Quo-Analyse ist Ende 2024 abgeschlossen worden. Sie umfasst einen detaillierten Blick auf die verkehrliche und städtebauliche Situation in der Berliner Mitte. Im Folgenden sind zentrale Analyseergebnisse in den Kategorien Städtebau Verkehrsnetze und Parken aufbereitet. Der Masterplan für die Berliner Mitte umfasst einen zentralen Bereich Berlins, der von einer hohen Nutzungsmischung geprägt ist. An kaum einem anderen Ort in Berlin, überlagern sich so vielfältige Zielorte – von Handel, Gastronomie und Gewerbe über Frei- und Grünflächen, bis hin zu touristischen und historischen Hotspots. Daneben verleiht auch die unmittelbare Nähe zum Berliner Regierungsviertel dem Gebiet eine hohe gesamtstädtische und nationale Bedeutung. Diese Gegebenheiten führen zu einer hohen Anziehungskraft des Gebietes, womit eine hohe Verkehrsbelastung und Flächenkonkurrenz einhergeht. Darüber hinaus ist das Gebiet auch durch eine relevante Wohnnutzung geprägt – ein hoher Anteil findet sich entlang der Leipziger Straße, aber auch in größeren Bereichen im Nordosten des Untersuchungsgebiets. Hinsichtlich Einzelhandel und Gastronomie hebt sich die Friedrichstraße mit einer hohen Dichte an Gastronomie- und Einzelhandelsbetrieben deutlich ab. Auch die Straßen zwischen Alexanderplatz und Rosenthaler Platz weisen viele Restaurants, Cafés und Geschäfte auf. Die Mall of Berlin im Westen des Untersuchungsgebiets ist ein wichtiger Einzelhandelsstandort. Zudem ist nahezu das gesamte Gebiet nördlich der Spree von gastronomischen Einrichtungen geprägt. Die wichtigsten touristischen Ziele liegen vor allem zwischen den beiden Hauptachsen Unter den Linden und Leipziger Straße, mit einer besonders wichtigen Achse vom Brandenburger Tor bis zum Alexanderplatz. Aufgrund dieser Nutzungsvielfalt ist es wichtig, Nutzergruppen zu definieren, um daraus differenzierte Anforderungen an die Verkehrsinfrastruktur und die Verkehrsangebote abzuleiten. Diese können dann auf die einzelnen Schwerpunkträume übertragen werden, um allen Bedürfnissen bestmöglich gerecht zu werden und die Erreichbarkeit der Ziele zu gewährleisten. Wie in vielen europäischen Städten, ist auch in Berlin das Stadtzentrum durch einen hohen Versiegelungsgrad geprägt. Gebäude und Verkehrsflächen nehmen gegenüber Frei- und Grünflächen einen deutlichen höheren Anteil ein. Auch auf Grund historischer städtebaulicher Erwägung gibt es in vielen Straßen in der Friedrichstadt keine Straßenbäume. Mit zunehmender Versiegelung reduziert sich die Fähigkeit, das Mikroklima bei Hitzeereignissen zu kühlen. Es bildet sich auch deutlich weniger Grundwasser, da das Niederschlagswasser nicht oder nur erschwert dem Boden zugeführt werden kann. Diese Gegebenheiten in Verbindung mit den querenden Hauptverkehrsachsen und dem vergleichsweise geringen Anteil an blaugrüner Infrastruktur (d. h. Grün- und Wasserflächen) führen in bestimmten Bereichen zu deutlich spürbaren Hitzebelastungen. Durch eine Vernetzung und Stärkung der vorhandenen Grün- und Freiflächen kann dem jedoch gut begegnet werden. Darüber hinaus entstehen die Lärm- und Luftschadstoffemissionen im Gebiet in relevantem Umfang durch den Verkehr. Besonders die Entzerrung zwischen Lärmquelle und Aufenthalts- und Wohnbereichen gilt es weiter zu forcieren. Dies wird ein wesentlicher Aspekt der Verkehrsnetzgestaltung sein. Die Lärmemissionen des Schienenverkehrs sind im Gebiet nur bedingt vermeidbar und in erster Linie durch bauliche Maßnahmen (z.B. Schallschutz) zu reduzieren. Die Berliner Mitte dient als Wohn- und Arbeitsort, als touristisches Zentrum Berlins und für vielfältige weitere Wegezwecke. Dementsprechend hoch ist die Nachfrage an Stellplätzen für Pkw und Fahrräder. Hinzu kommt der touristische Reisebusverkehr mit seinem Bedarf an Parkplätzen in fußläufiger Entfernung zu den Sehenswürdigkeiten. Auch für Liefer- und Ladeverkehr, Taxis und Elektrofahrzeuge gibt es Halteflächenbedarf und bereits ausgewiesene Stellplätze. Hinsichtlich der Kfz-Parkstände ist im Untersuchungsgebiet bereits heute ein hoher Parkdruck festzustellen. Teil einer Parkraumbewirtschaftung sind derweil nur die Gebiete im Bezirk Mitte. Eine Besonderheit im Betrachtungsgebiet sind zudem die relativ hohe Dichte und Kapazität von privaten und halb-öffentlichen Parkanlagen. Hier bieten sich vielfach umfangreiche freie Kapazitäten zu allen Tageszeiten. Preislich sind die Parkhäuser in der Regel bereits günstiger als das Parken im öffentlichen Straßenraum. Potenzialflächen für die Verlagerung oder Umnutzung von Parkständen können so an verschiedenen Lagen vermutlich gut kompensiert werden. Auch das Fahrradparken ist flächendeckend vorhanden. Größere Lücken im Untersuchungsgebiet gibt es nicht. Im Rahmen der Analyse wurden die Vorrangnetze der einzelnen Verkehrsträger zusammengestellt und überlagert. Durch die Betrachtung weiterer Informationen zu den Verkehrsnetzen wie Verkehrsstärken, -unfällen und ergänzenden Mobilitätsangeboten und -infrastrukturen konnte die Analyse vertieft werden. Für den motorisierten Individualverkehr (MIV), den ÖPNV und das Fahrrad gibt es aktuelle Netzhierarchien. Für das mit dem Fußverkehrsplan noch zu entwickelnde Fußverkehrsnetz wurde ein Arbeitsstand zur Priorisierung der Fußverkehrsinfrastruktur herangezogen, der allerdings noch kein zusammenhängendes Netz mit Verbindungsachsen abbildet. Bei der Betrachtung der einzelnen Verkehrsträger wird deutlich, dass insbesondere das geplante Radvorrang- und Ergänzungsnetz aktuell noch in der Umsetzung ist. Durch verschiedenen Maßnahmen auf Senats- und bezirklicher Ebene entsteht in den nächsten Jahren ein dichtes Netz an Radverbindungen. So kann für verschiedene Nutzendengruppen das Fahrrad eine attraktive Mobilitätsoption zum Erreichen der Berliner Mitte werden bzw. bleiben. Im Untersuchungsraum ist schon jetzt ein flächendeckendes Angebot des ÖPNV mit zahlreichen schienengebundenen Verkehren sowie ergänzenden Buslinien vorhanden. Eine Ausweitung der Kapazitäten sollte bedarfsgerecht erfolgen und zur Attraktivität des Umweltverbundes beitragen. Im Bereich Shared Mobility ist das Untersuchungsgebiet gut abgedeckt. So findet sich insbesondere im Stadtteil Mitte eine besonders hohe Dichte an Jelbi-Punkten mit Abstellflächen für die Mikromobilität. Darüber hinaus befinden sich die Stationen in unmittelbarer Nähe von U-Bahn-, S-Bahn- und Bushaltestellen, sodass der Umstieg vom öffentlichen Verkehr auf die Verkehrsmittel der geteilten Mobilität gewährleistet ist. Der Kfz-Verkehr im Untersuchungsgebiet ist stark ausgeprägt. Aufgrund der zentralen Lage innerhalb der Stadt und der übergeordneten Zentrumsfunktion wird das Gebiet von zwei Bundesstraßen sowie großen übergeordneten Straßenverbindungen durchzogen, die den Osten und Westen sowie den Norden und Süden der Stadt miteinander verbinden. Die Verkehrsnetze überlagern sich an einigen Stellen im Untersuchungsgebiet. In Kombination mit der Flächenverfügbarkeit kann es zu einem hohen Nutzungsdruck bzw. zukünftig Flächenknappheit kommen. Eine Optimierung muss in Abwägung der Belange des Städtebaus und des Ruhenden Verkehrs integriert erfolgen.

Klimaerlebnisbaum - Ludwigkai - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Zu Rheinstraße - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/74e7c788-0882-4ffe-b0dc-74cb0e0fb782), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/b976e56e-9fbf-42dd-86db-1677c2a5dc91?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Landesgartenschaugelände - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station auf dem Landesgartenschaugelände sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 14.04.2025 12 Uhr](https://opendata.smartandpublic.eu/datasets/2525e376-990b-45cb-90b3-71a2e5ae3cbc?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 14.04.2025 13 Uhr](https://opendata.smartandpublic.eu/datasets/7507c65c-a1b2-446d-82e1-fcc14a793552?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Zu Rheinstraße - Robinia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Robinien stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 21 Uhr](https://opendata.smartandpublic.eu/datasets/d1f68fc3-c76d-4147-b01e-dfe490ab6331?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 13.11.2024 22 Uhr](https://opendata.smartandpublic.eu/datasets/5dc3648a-66fd-4310-accf-7256db111d5c?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Neubau der Bundesstraße B 293, Ortsumfahrung Jöhlingen

Neubau der Bundesstraße B 293, Ortsumfahrung Jöhlingen, auf der Gemarkung Jöhlingen (Gemeinde Walzbachtal) einschließlich teilplanfreiem Knotenpunkt, sowie Durchführung von naturschutzrechtlichen Kompensationsmaßnahmen. Bei der Maßnahme werden unter anderem folgende Eingriffe und Maßnahmen erfor-derlich: - Neubau der Bundesstraße B 293 auf eine Länge von ca. 2,964 km, einschließ-lich teilplanfreiem Knotenpunkt B 293 neu / B 293 alt / L 559 neu / Gemeinde-verbindungsstraße „Wössinger Straße“, inklusive Entwässerungsleitungen und Seitenablagerungen - Teilrückbau der B 293 alt und Neubau der L 559 neu südlich von Jöhlingen auf eine Länge von ca.790 m - Neubau von 7 Brückenbauwerken (u.a. Neubau einer Grünbrücke im Gewann „Lehrwald“) und 2 Stützwänden - Anpassung des vorhandenen Wirtschaftswegenetzes - Neubau eines Regenrückhaltebeckens und eines Pumpwerks im Bereich der At-tentalbrücke (ca. km 1+155) mit Notentlastung in den Attentalgraben - Neubau eines Pumpwerks sowie einer Schmutzfangzelle, welche in den Ver-bandssammler entlastet, bei ca. km 2+580 - Neubau eines Regenklärbeckens (Retentionsbodenfilteranlage) sowie eines Re-genrückhaltebeckens bei ca. km 2+600 mit Auslauf in die Pfinz - Sicherung bzw. Verlegung von Leitungen - Eingriffe in das FFH-Gebiet „Mittlerer Kraichgau“ und Erweiterung des FFH-Gebietes um das Prinzhölzle zur Kohärenzsicherung - Eingriffe in das Landschaftsschutzgebiet und flächenhafte Naturdenkmal „Atten-tal“ - Eingriffe in das Naturdenkmal „Ahorn und Linde an Kruzifix“, Wiederaufbau des Wegkreuzes (Kulturdenkmal) - Eingriffe in die Biotope „Hohlweg im Lehrwald“, „Hohlweg mit Feldhecke am Kirchberg westlich von Jöhlingen“; „Feldhecke an der B 293 südwestlich von Jöhlingen“, „Feuchtgebüsch im Attental südwestlich von Jöhlingen“, „Feldhecke im ‚Wieland‘ südlich von Jöhlingen“, „Feldhecke I an der B 293 südöstlich von Jöhlingen“, „Feldhecke II an der B 293 südöstlich von Jöhlingen“, „Feldgehölz II an der Bahnlinie südöstlich von Jöhlingen“, „Feldhecke südl. der B 293 südöst-lich von Jöhlingen“, „Naturnaher Walzbach zwischen Jöhlingen und Wössingen“ und „Auwald am Walzbach zwischen Jöhlingen und Wössingen“ - Anlage von natur- und artenschutzschutzrechtlichen Kompensationsmaßnahmen Die Umgehungsstraße B 293 neu verläuft im Bereich von ca. Station 0+560 – 1+580 im Wasserschutzgebiet „Weingarten – Walzbachtal – Jöhlingen“ (WSG-Nr. 215 152) in der Zone III. Zwischen der Einmündung der L 559 in der Ortslage von Jöhlingen und der Einmündung der Gemeindeverbindungsstraße „Wössinger Straße“ verläuft die vorhandene Bundesstraße B 293 und somit auch die L 559 neu bzw. B 293 neu im Überschwemmungsgebiet (HQ 100). Teile des Lehrwaldes und der Hohberg sind als FFH-Gebiet „Mittlerer Kraichgau“ ausgewiesen. Um agrar- bzw. flurstrukturelle Nachteile auszugleichen, ist ein Flurbereinigungsverfahren vorgesehen.

1 2 3 4 557 58 59