Das Projekt "Airglow-Forschung mit astronomischen Spektren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Augsburg, Institut für Physik.In der oberen Erdatmosphäre ab 70 km herrschen spezielle Bedingungen, die ein Leuchten im sichtbaren und infraroten Licht verursachen. Die Airglow genannten Emissionen werden durch solare extreme Ultraviolettstrahlung hervorgerufen, die Luftmoleküle zerstört und Atome ionisert. Daraufhin finden diverse chemische Reaktionen und physikalische Prozesse statt, die teilweise zur Lichtemission durch verschiedene Atome und Moleküle führen. Bedeutend sind z.B. die Beiträge durch Sauerstoff- und Natriumatome sowie Hydroxyl-, Sauerstoff- und Eisenoxidmoleküle. Airglow ist zeitlich und räumlich sehr variabel und die damit verbundenen komplexen Prozesse sind noch nicht vollständig verstanden.Die direkte Erforschung der oberen Atmosphäre ist schwierig, da nur Raketen diese Höhe erreichen können. Daher werden hauptsächlich erd- und satellitengebundene Fernerkundungsmethoden angewendet. Die verbreitetsten Messverfahren erfassen nur einen kleinen Teil des Lichtspektrums, womit viele der gleichzeitigen und teilweise verknüpften Emissionen nicht studiert werden können.Eine bisher wenig genutzte aber vielversprechende Methode zur Airglowmessung sind astronomische Spektren von bodengebundenen Teleskopen. Neben dem Licht vom astronomischen Objekt zeigen diese immer auch atmosphärische Emissionen. Für astronomische Anwendungen müssen diese Beiträge aufwändig entfernt werden, aber für die Atmosphärenforschung sind sie wertvoll, zumal die Spektrographen an großen Teleskopen besonders leistungsfähig sind. Speziell Instrumente, die einen großen Spektralbereich abdecken, erlauben simultane Messungen von vielen verschiedenen Airglowemissionen.Das geplante Projekt wird auf Aufnahmen verschiedener Spektrographen am Very Large Telescope in Nordchile und Apache Point Observatory in New Mexico basieren. Der volle Datensatz, beginnend im Jahr 2000, wird um die 100.000 Spektren umfassen. Er wird viel größer sein als alles was bisher unter Nutzung von astronomischen Daten zur Erdatmosphäre publiziert worden ist.Das Projektziel ist die Charakterisierung der zeitlichen Variationen aller beobachtbaren Airglowemissionen in der oberen Erdatmosphäre mit besonderen Fokus auf (1) Linienemissionen von Hydroxyl- und Sauerstoffmolekülen, besonders im Hinblick auf ihren Wert als Temperaturindikator für die Klimaforschung, (2) Kontinuumsemission von Metall- und Stickoxiden und (3) hochvariablen aber zumeist schwachen Linienemissionen in der Ionosphäre. Die Analyse wird auch Modell-, ergänzende Satelliten- und bodengestützte Daten berücksichtigen. Die dabei gewonnenen Erkenntnisse werden einen signifikanten Beitrag zum Verständnis der chemischen und physikalischen Prozesse in der oberen Atmosphäre, aber auch zur Atom- und Molekülphysik liefern. Mit besseren Modellen der Emissionen wird es auch möglich werden die natürliche Nachthimmelshelligkeit genauer abzuschätzen und astronomische Daten besser zu verarbeiten.
Das Projekt "Ermittlung einer Eingangs- und Ausgangsbilanz für PFAS in einer typischen Papierfabrik" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachgebiet Papierfabrikation und Mechanische Verfahrenstechnik.Teilthema im Globalvorhaben: Weiterentwicklung des Standes der Technik, national PFAS sind ubiquitär verbreitet. Es handelt sich um sehr persistente, mobile und toxische Stoffe. Einige Verbindungen werden in der wasser- und fettdichten Ausrüstung von Lebensmittelkontaktpapieren eingesetzt. Bestimmte Verbindungen kommen auch als Abriebfestmittel in Druckfarben zum Einsatz. Es ist unbekannt wie hoch die Gehalte an PFAS im Altpapier sind und wo diese in einer Papierfabrik verbleiben. in dem Forschungsvorhaben soll eine Input-Output-Analyse durchgeführt werden. Es soll geprüft werden, ob bestimmte Verarbeitungsschritte im Papierherstellungsprozess eventuell eine Senke für diese Stoffe darstellen. Es sollen darüber hinaus Emissionen in die Luft, ins Gewässer und in den Schlamm evaluiert werden.
Das Projekt "Ressortforschungsplan 2024, Aktualisierung der Datengrundlage für die Berichterstattungspflichten zu den Übereinkommen von Stockholm und Minamata: POP- und Quecksilber-Emissionen in Luft, Wasser, Boden, Produkte, Abfall" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Ramboll Deutschland GmbH.Überarbeitung der Quelleninventare, die für die POP-Emissionsberichterstattung genutzt werden, um zusätzlich zu den bereits berichteten Emissionen in die Luft auch Emissionen in Wasser, Boden, Produkte und Abfall berichten zu können. Erhebung dieser Daten für die Quecksilber-Berichterstattung. Hierzu sollen die bereits für andere Zwecke erhobenen Daten gesichtet und genutzt werden. Das Vorhaben entwickelt für die zusätzlich zu erhebenden Daten eine Strategie zur Identifizierung geeignter Datenquellen und deren geeigneter Nutzung für anstehende Berichterstattungen nach Artikel 15 des Stockholm Übereinkommens und Artikel 21 des Minamata Übereinkommens.
Das Projekt "CRISTA-NF Beobachtungen von polaren Stratosphärenwolken und Spurengasmischungsverhältnissen in der arktischen Stratosphäre im Winter" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Anorganische Chemie.Die Verteilungen vieler Spurengase wie HNO3, O3 und ClONO2 im polaren Vortex werden durch polare Stratosphärenwolken (PSCs) beeinflusst. NAT (Nitric Acid Trihydrate)-Teilchen, die ein Typ von PSC-Teilchen sind, können auf Größen anwachsen, die zu einem Absinken der Teilchen führen und somit zu einer Umlagerung von NOy. In denitrifizierten Luftmassen dauert der Ozonabbau länger an, da die Chlordeaktivierung dort verlangsamt abläuft. Wenn man die Verteilung der wichtigen Spurengase möglichst genau simulieren möchte, muss man diese Prozesse verstanden und im Modell berücksichtigt haben. Vor allem Bildung und Wachstum der NAT-Teilchen ist dabei sehr wichtig, da diese Prozesse in Modellen nur auf Basis von Messungen parametrisiert, aber bis jetzt noch nicht komplett verstanden sind. Selbst bei verbesserten Parametrisierungen treten immer noch Abweichungen zwischen Simulation und Messung (z.B. Größenverteilung der NAT-Teilchen, NOy Umlagerung) auf.Messungen des flugzeuggetragenen Infrarot-Limbsounders CRISTA-NF (CRyogenic Infrared Spectrometers and Telescope for the Atmosphere - New Frontiers) werden verwendet, um mehr über die relevanten Prozesse zu lernen. CRISTA-NF misst Höhenprofile der thermischen Emission verschiedener Spurengase im mittleren Infrarot. Die Messungen ermöglichen die Herleitung 2-dimensionaler Vorhänge der Mischungsverhältnisse unterschiedlicher Spurengase (z.B. HNO3, CFC-11, O3, ClONO2) und zudem die Detektion verschiedener PSCs (NAT, STS (Supercooled Ternary Solution) und Eis). Kleine NAT-Teilchen (Radius größer als 3 mym) verursachen eine spektrale Signatur, die zur Detektion verwendet wird. Neue Ergebnisse zeigen, dass es zu einem Verschub der Signatur kommen kann und dass die Stärke des Verschubs von der Größenverteilung der Teilchen abhängt. In der bestehenden Detektionsmethode wird der Verschub nicht berücksichtigt und die Methode wird verbessert werden, um Fehlinterpretationen zu reduzieren. Zudem wird die neue Methode die Herleitung von Informationen über die Größenverteilung kleiner NAT-Teilchen ermöglichen. Weiterhin soll der Strahlungseinfluss aufgrund der PSCs im Retrieval berücksichtigt werden, was die Herleitung von Spurengasmischungsverhältnissen in der Gegenwart von PSCs deutlich verbessert.Innerhalb des Projekts werden Simulationen des Chemie-und-Transport-Modells ClaMS (Chemical Lagrangian Model of the Stratosphere) verwendet werden. Vergleiche zwischen den CRISTA-NF Beobachtungen und den Modellergebnissen werden genutzt, um die wichtigen Prozesse besser zu verstehen. Detaillierte Vergleiche ermöglichen die Untersuchung verschiedener Aspekte, wie den Einfluss eines möglichen Temperaturbias oder Temperaturschwankungen auf die NAT Bildung und den Einfluss der Modellauflösung (zeitlich und räumlich). Vor allem kann man aber die Bildung von und die HNO3-Aufnahme durch NAT- und STS-Teilchen, die zur selben Zeit vorhanden sind, untersuchen sowie die Konsequenzen auf die Größenverteilungen und NOy Umlagerung.
Das Projekt "SP1.1 Dynamische Anreicherungsprozesse von organischer Substanz in der SML" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR).Der Oberflächenfilm (SML) ist die oberste dünne Schicht des Ozeans und Teil jeglicher Wechselwirkung zwischen Luft und Meer, wie Gasaustausch, atmosphärische Deposition und Aerosolemission. Die Anreicherung von organischer Materie (OM) in der SML modifiziert die Luft-Meer-Austauschprozesse, aber welche OM-Komponenten selektiv angereichert werden, sowie warum und wann sie dies tun, ist weitgehend unbekannt (Engel et al., 2017). Unsere bisherige Forschung hat gezeigt, dass Biopolymere aus photoautotropher Produktion wichtige Komponenten der SML sind und den Luft-Meer-Austausch beeinflussen, indem sie als Biotenside (Galgani et al., 2016; Engel et al., 2018) und als Quelle primärer organischer Aerosole (Trueblood et al., 2021) wirken. Die Motivation unseres Projektes ist es daher, die dynamischen Anreicherungsprozesse von OM in der SML aufzuklären und zu beschreiben, wobei ein besonderer Schwerpunkt auf der Auflösung der OM-Quellen liegt. Mit unserem Modellierungsansatz ist es das Ziel, unser mechanistisches Verständnis der Zusammenhänge zwischen den Wachstumsbedingungen des Planktons, der Produktion und der Freisetzung von Biomolekülen, einschließlich potentieller Tenside, und der Akkumulation von OM in der SML zu konsolidieren. Eine solche Modellentwicklung wird in hohem Maße von den Ergebnissen und Erkenntnissen der verschiedenen Teilprojekte des BASS-Konsortiums profitieren. Umgekehrt ist es unsere Motivation, ein Modell zu etablieren, das als Synthesewerkzeug für die Interpretation und Integration von Feld-, Mesokosmen- und Labormessungen der OM-Anreicherung in der SML anwendbar wird.Relevanz für die Forschungsgruppe BASS - SP1.1 wird die Quellen, die Menge und die biochemische Zusammensetzung von OM in der SML entschlüsseln und damit wichtige Informationen für alle BASS-Teilprojekte liefern. Der primäre Ursprung von OM im Oberflächenozean ist die photosynthetische Produktion und die wichtigsten biochemischen Komponenten von frisch produzierter OM, d.h. Kohlenhydrate, Aminosäuren und Lipide, unterliegen der mikrobiellen Verarbeitung (SP1.2) und Photoreaktionen innerhalb der SML (SP1.3, SP1.4) und füllen auch den Pool der gelösten organischen Substanz (DOM) auf (SP1.5). Die Modellentwicklung in SP1.1 stellt eine Verbindung zwischen der Produktion von OM und ihrer Anreicherung innerhalb der SML her und zielt darauf ab, die entsprechenden Auswirkungen auf den Luft-Meer-Gasaustausch (SP2.1) zu bestimmen, indem Änderungen des Impulsflusses auf den Ozeanoberflächenschichten (SP2.2) sowie des Auftriebs (SP2.3) berücksichtigt werden. Das vorgeschlagene SML-Submodell wird auf der Grundlage der Ergebnisse aus SP1.4 und SP2.3 verfeinert. Ergebnisse aus den Modellsensitivitätsanalysen werden ergänzende Informationen über oberflächenaktive Eigenschaften verschiedener OM Komponenten und deren Auswirkungen auf Luft-Meer-Austauschprozesse liefern, die innerhalb von BASS ausgewertet werden.
Das Projekt "Eine neue Bedrohung der stratosphärischen Ozonschicht durch anthropogene kurzlebige Halogenverbindungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 1: Ozeanzirkulation und Klimadynamik, Forschungseinheit Maritime Meteorologie.Die stratosphärische Ozonschicht bietet der Erde einen wirkungsvollen Schutzschild gegen den ultravioletten, schädigenden Anteil der solaren Strahlung. Der anthropogene Ozonabbau, verursacht durch Emissionen von langlebigen Fluorchlorkohlenwasserstoffen (FCKWs), war eines der größten Umweltprobleme der letzten Jahrzehnte. Emissionen von FCKWs wurden infolge des Montrealer Abkommens von 1987 stark reduziert und eine langsame Erholung der Ozonschicht wird im Laufe der nächsten Jahrzehnte erwartet. Im Gegensatz dazu werden die Emissionen von sehr kurzlebigen Halogenverbindungen (Very Short-Lived Halocarbons, VSLH), welche auch stratosphärisches Ozon zerstören, aufgrund von neuen Technologien ansteigen. Chemische Oxidationsprozesse in der marinen Umwelt, insbesondere die neuartigen Behandlungsverfahren von Ballastwasser, und anwachsende tropische Makroalgenkulturen beeinflussen biogeochemische Kreisläufe und können zu einem starken Anstieg der VSLH Produktion und Emission führen. Zusätzlich zu ihrem schädlichen Effekt auf die Ozonschicht, beeinflussen VSLH den atmosphärischen Strahlungsantrieb und das Vermögen der Atmosphäre viele natürliche und anthropogene Spurenstoffe zu entfernen (atmosphärische Oxidationspotential). Momentan ist nur sehr wenig über die zukünftig zu erwartenden anthropogenen VSLH Emissionen aus dem Ozean sowie ihre bedrohliche Wirkung auf die atmosphärische Chemie bekannt und fundierte wissenschaftliche Untersuchungen sind dringend erforderlich. Das Ziel dieses Antrages ist es, momentane und zukünftige Emissionen anthropogener VSLH und ihren Einfluss auf atmosphärische Zusammensetzung und Chemie zu quantifizieren. Ein besonderer Fokus liegt auf der Untersuchung einer möglichen neuen Bedrohung der stratosphärischen Ozonschicht. In einem ersten Schritt werden globale Karten der ozeanischen Emissionen von anthropogenen VSLH erstellt. Im zweiten Schritt wird, basierend auf atmosphärischer Chemie-Transport Modellierung, die Entwicklung der anthropogenen VSLH in der Atmosphäre quantifiziert. Zu diesem Zweck werden Küsten-auflösende Modellsysteme entwickelt, welche später dazu beitragen Parametrisierungen anthropogener VSLH Prozesse für globale Klima-Chemie Modelle zu erstellen. In einem dritten Schritt wird der globale Einfluss der anthropogenen VSLH auf Ozonabbau, Strahlungsantrieb und atmosphärisches Oxidationspotential bestimmt und mögliche Rückkopplungsmechanismen werden identifiziert. Der interdisziplinäre Forschungsplan umfasst die Synthese existierender Daten, Messungen, sowie Ozean-Zirkulation-, Biogeochemie- und atmosphärische Klima-Chemie Modellierung. Das Forschungsvorhaben wird die Frage beantworten, ob anthropogene Aktivitäten in der marinen Umwelt eine Bedrohung für die stratosphärische Ozonschicht darstellen. Solch eine Risikoabschätzung ist von großer gesellschaftlicher Bedeutung und liefert entscheidende Information für politische Entscheidungsträger bezüglich der Planung zukünftiger menschlicher Aktivitäten.
Das Projekt "Teilchenbasierte Simulation der Staubemission" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Köln, Institut für Geophysik und Meteorologie.Ziel dieses Projektes ist es, ein teilchenbasiertes numerisches Modell für die Simulation der Staubemission im Rahmen des äolischen Sandtransports zu entwickeln. Die Quantifizierung dieser Emission ist für die zuverlässige Repräsentation des Staubzykluses in Klimamodellen wesentlich, da die Aufnahme von Staubpartikeln in die Atmosphäre hauptsächlich durch den Beschuss des Sedimentbettes mit Sandpartikeln verursacht wird. Um den vertikalen Fluss emittierter Staubteilchen als Funktion der Boden- und Windbedingungen vorherzusagen, wurden verschiedene empirische Staubparametrisierungsschemata erarbeitet. Die Physik interpartikulärer Wechselwirkungen ist jedoch durch weitgehend unverstandene stochastische Kräfte gekennzeichnet, was die Entwicklung eines zuverlässigen theoretischen Staubemissionsmodells erschwert. Deshalb soll im vorliegenden Projekt ein numerisches Simulationswerkzeug, welches numerische Strömungsmechanik mit einem auf der Diskrete-Elemente-Methode basierenden Modell für granulare Dynamik koppelt, entwickelt werden, um die Trajektorien äolischer Sand- sowie emittierter Staubpartikel zu berechnen. Dabei werden die Trajektorien aller Teilchen in Luft und im Sedimentbett aus der Wirkung der Schwerkraft sowie interpartikulärer bzw. Teilchen-Wind-Wechselwirkungen berechnet, sodass auf die Annahme einer Splash-Funktion verzichtet wird. Zunächst soll ein physikalisches Modell für die interpartikulären Wechselwirkungen --- welche sowohl Kontakt- als auch van-der-Waals-Kräfte einbeziehen --- unter Berücksichtigung deren stochastischer Natur entwickelt werden. Um die Parameter dieses Modells zu bestimmen, werden Windkanalmessungen von Staubemissionsraten aus einem Sedimentbett unter gegebenen Partikelgrößenverteilungen und Windgeschwindigkeiten mit Vorhersagen der Simulationen verglichen. Daraufhin soll die Staubemission unter verschiedenen Verfügbarkeitsbedingungen mobilisierbarer Sedimente untersucht werden. Dies ist wichtig, um ein Parametrisierungsschema für die Staubemission aus schwer erodierbaren Böden (z.B. Böden mit biogener Kruste) aufstellen zu können.
Das Projekt "Beobachtung von Peroxyradikalen in dem städtischen Wald und Vergleichsübung von Peroxyradikale- Messmethoden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Institut für Umweltphysik.Peroxyradikale sind kurzlebige Spezies, die an den meisten Oxidationsprozessen in der Atmosphäre beteiligt sind, die zur Bildung von langlebigeren und chemisch oder toxikologisch wichtigen Schadstoffen wie Ozon führen. Insbesondere in Gebieten, die von komplexen Emissionsquellen betroffen sind, sind Peroxyradikal-Messmethoden mit ausreichender Genauigkeit, Reproduzierbarkeit und Empfindlichkeit erforderlich, um die chemische Umwandlung der städtischen Umweltverschmutzung zu verstehen. In dieser Hinsicht ermöglichen Vergleiche von state-of-the-art Sensoren in chemischen Reaktorkammern deren Charakterisierung unter kontrollierten Bedingungen und verbessern das Vertrauen in die Messung von Peroxyradikalen.SPRUCE strebt ein besseres Verständnis der Rolle der Peroxyradikale bei atmosphärischen chemischen Umwandlungen an, die aus der Wechselwirkung zwischen urbanen anthropogenen und ländlichen biogenen Emissionen resultieren. Im Rahmen der vorgeschlagenen Arbeit wird das vorhandene PeRCEAS-Instrument (Peroxy Radical Chemical Enhancement and Absorption Spectrometer) an der Messkampagne des internationalen Projekts ACROSS (Atmospheric ChemistRy Of the Suburban Forest) zur Untersuchung des Schadstoffausflusses von Paris über ein Waldgebiet, und in der internationalen Vergleichsstudie ROxCOMP22 für wissenschaftliche Instrumente, die atmosphärische Peroxyradikale teilnehmen. Diese beiden Messkampagnen befassen sich mit zwei Hauptaspekten von SPRUCE. Sie bieten eine einzigartige Gelegenheit für a) die Messung von Peroxyradikalen in der spezifischen Umgebung von Interesse und in Verbindung mit einer umfangreichen Reihe von Beobachtungen, die für die Interpretation der Radikalchemie von wesentlicher Bedeutung sind, und b) die Bewertung der Datenqualität und Leistungsfähigkeit von PeRCEAS, insbesondere die Überprüfung der Sensitivität und Effizienz für die Speziation der Radikale unter kontrollierten Bedingungen.Ein Schwerpunkt der Studie wird auf der Untersuchung von Oxidationsreaktionen und Ozonausbeuten in Luftmassen mit unterschiedlicher anthropogener/biogener Signatur in Abhängigkeit von der Menge und Zusammensetzung von Peroxyradikalen liegen. Numerische Berechnungen und Modelle werden durch die Beobachtungen von Vorläuferspezies eingeschränkt, um die Budgets von Peroxyradikalen abzuschätzen. Der Vergleich mit den PeRCEAS-Messungen wird verwendet, um das Verständnis der Oxidationsmechanismen in urbanen Plumes gemischt mit biogenen Emissionen zu testen. Es wird erwartet, dass die Analyse des resultierenden Datensatzes das aktuelle Wissen über die chemische Transformation von Megacity-Emissionen während des atmosphärischen Transports ergänzt.
Das Projekt "Biogeochemische Prozesse und Ozean/Atmosphäre- Austauschprozesse in marinen Oberflächenfilmen (BASS): Chemische und Photochemische Umsetzung Organischer Stoffe" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kiel, Institut für Physikalische Chemie.Die Grenzfläche zwischen Ozean und Atmosphäre ist durch einen allgegenwärtigen, < 1 mm dicken marinen Oberflächenfilm, den sogenannten sea-surface microlayer (SML), charakterisiert. Der SML ist nicht nur direkter UV-Strahlung und atmosphärischen Oxidantien ausgesetzt, sondern zeichnet sich im Vergleich zum unterliegenden Wasser auch durch höhere Konzentrationen an organischen Stoffen aus. Bisher ist unklar, welche Bedeutung die dadurch bedingten SML-spezifischen abiotischen Prozesse für die Umsetzung und die Emission organischer Stoffe insgesamt haben und wie man diese Prozesse parametrisieren kann. In diesem Projekt, das eng mit anderen Projekten der interdisziplinären Forschungsgruppe â€ÌBiogeochemische Prozesse und Ozean/Atmosphäre- Austauschprozesse in marinen Oberflächenfilmen (BASS)â€Ì verbunden ist, sollen daher molekulare Details SML-spezifischer Reaktionen (Photochemie, heterogene Oxidation, Radikalchemie) genauer untersucht werden. Ziel ist es, Reaktionsprodukte und -geschwindigkeiten quantitativ zu erfassen und Unterschiede zwischen Reaktionen im SML und in der freien Wassersäule herauszuarbeiten. Basierend auf der Expertise der drei beteiligten Arbeitsgruppen im Bereich Photochemie, Reaktionskinetik, Laserspektroskopie, Analytik und theoretischer Modellierung, soll ein molekulares Verständnis ausgewählter Reaktionen und des Einflusses der komplexen SML-Reaktionsumgebung erreicht werden. Dazu sollen experimentelle Verfahren wie Schwingungs-Summenfrequenzerzeugung, hochempfindliche Chromatographie-Massenspektrometrie und gepulste Laserphotolyse-Langwegabsorption mit Methoden der Quantenchemie und Molekulardynamik kombiniert werden. Arbeitsschwerpunkte bilden die Oxidationskinetik von Halogen- bzw. Hydroxyl-Radikalreaktionen in der flüssigen Phase, die Ozonolyse von Fettsäure-Monoschichten und die durch Photosensibilisatoren verstärkte Bildung von reaktiven Radikalen bzw. Zersetzung von organischen Schichten. Neben wohldefinierten Labor-Modellsystemen werden auch natürliche Proben analysiert werden. Dabei stellt sich z.B. die Frage nach den Einflussfaktoren der während einer Algenblüte zunehmenden Bildung von oberflächenaktiven Stoffen im SML und der Bedeutung der durch die Sonne bedingten Photolyse auf die abiotische Umsetzung organischer Stoffe. Flankierend werden im Projekt auch die eingesetzten Untersuchungsmethoden weiterentwickelt; das beinhaltet sowohl die Ausarbeitung von Messprotokollen zur Quantifizierung bestimmter organischen Substanzklassen (z.B. Carbonyle und Kohlenhydrate) im SML, die Synthese und Charakterisierung von neuartigen oberflächenaktiven Photosensibilisatoren (z.B. Benzoyl-Benzoesäure-funktionalisierte Lipide) sowie die Entwicklung und Erprobung mehrstufiger Modellierungsverfahren zur theoretischen Beschreibung von Struktur-Reaktivitätsbeziehungen der Fettsäure-Ozonolyse (z.B. Beschreibung des Einflusses sterischer und elektronischer Effekte der organischen Matrix).
Das Projekt "Netzwerkorientierte Analyse urbaner Wirtschaftsverkehre" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Umweltbundesamt.Der Güterverkehr in Deutschland ist für erhebliche Belastungen der Umwelt und des Klimas verantwortlich. Er wächst weiter deutlich, so stieg die inländische Güterverkehrsleistung zwischen 1991 und 2019 um 75 %, insbesondere der Straßengüterverkehr (Umweltbundesamt 2022). Auch die Kommunen werden durch den innerstädtischen Güterverkehr stark belastet. Nutzfahrzeuge haben einen überproportionalen Anteil an den innerstädtischen Emissionen in die Luft von Feinstaub, Stickoxiden und Treibhausgasen. Sie verursachen belastende Lärmemissionen und gefährden die Sicherheit des Verkehrs, vor allem durch Konflikte zwischen dem Güterverkehr und Fuß- bzw. Radverkehr. Die Kommunen sind auch durch das Lkw-Parken in Wohn- und Gewerbegebieten belastet. Parkende und durchfahrende LKW vermindern die Aufenthaltsqualität und Attraktivität von Quartieren und wirken sich negativ auf den Verkehrsfluss aus. Nicht zuletzt belasten sie die Infrastruktur und verursachen so erhebliche Kosten. Gleichzeitig ist der urbane Güterwirtschaftsverkehr das Rückgrat für umfassende Ver- und Entsorgungsfunktionen und eine zentrale Säule ökonomischer Aktivitäten. Der Wirtschaftsverkehr in urbanen Räumen muss zudem spezifischen Anforderungen gerecht werden, denen allein mit negativplanerischen Ansätzen (Durchfahrverbote, Lieferzeitfenster) nicht adäquat begegnet werden kann. Hierfür ist ein Gesamtrahmen erforderlich, der eine nachhaltige urbane Logistik ermöglicht, beispielsweise durch unternehmerische Kooperation und komplexe Governance-Ansätze, intelligenten Lager- und Umschlagstrukturen oder umfassende Ladeinfrastrukturen für eine Energiewende vor Ort. An dieser Stelle setzt das beabsichtigte Vorhaben an und hat das Ziel, die Bedeutung der urbanen Logistik für Kommunen systematisch aufzuarbeiten und vor allem Lösungen für die zunehmenden Belastungen zu entwickeln. Dabei soll der Fokus auf den kleineren Großstädten und Mittelstädten liegen, die bislang ganz überwiegend nicht über Wirtschaftsverkehrskonzepte bzw. personelle, organisatorische und finanzielle Ressourcen verfügen, um dem städtischen Güterverkehr eine nachhaltige Richtung zu geben. Der genaue Zuschnitt der Untersuchungsräume soll im Projekt basierend auf der Klassifikation der Regionalstatistische Raumtypologie (RegioStaR 7) des BMDV entwickelt werden. Dafür sollen typische Netzwerkstrukturen erfasst und exemplarisch für einzelne Branchen oder Versorgungsfunktionen auch Knotenpunkte, also Lagerstandorte, Lagerkapazitäten und Umschlagpunkte untersucht werden. Die KEP-Dienste sollen nicht Schwerpunkt des Vorhabens sein, weil für diese bereits viele Lösungsansätze und Untersuchungen vorliegen.
Origin | Count |
---|---|
Bund | 315 |
Europa | 3 |
Land | 9 |
Type | Count |
---|---|
Förderprogramm | 94 |
Kartendienst | 1 |
Messwerte | 1 |
Text | 214 |
Umweltprüfung | 4 |
unbekannt | 14 |
License | Count |
---|---|
geschlossen | 32 |
offen | 92 |
unbekannt | 203 |
Language | Count |
---|---|
Deutsch | 304 |
Englisch | 45 |
Resource type | Count |
---|---|
Archiv | 199 |
Bild | 2 |
Datei | 199 |
Dokument | 216 |
Keine | 87 |
Webseite | 31 |
Topic | Count |
---|---|
Boden | 327 |
Lebewesen & Lebensräume | 327 |
Luft | 327 |
Mensch & Umwelt | 327 |
Wasser | 327 |
Weitere | 320 |