API src

Found 3099 results.

Ortsdosisleistung (ODL): 63067 Offenbach am Main (in Betrieb)

Dieser Inhalt von ODL-INFO zeigt und beschreibt Stundenmesswerte und Tagesmittelwerte der Gamma-Ortsdosisleistung an der Messstelle Offenbach am Main.

Pegel Mainz (Messstellen-Nr: 2510010000)

Die Pegelmessstelle Mainz (ID: 489) befindet sich am Gewässer Rhein im Flusseinzugsgebiet Oberrhein. Die Messstelle dient zur Messung des Wasserstands. Weiterhin wird der Abfluss an der Messstelle gemessen.

Critical Levels und Critical Loads Baden-Württemberg 2020, Teil CL1: Methoden- und Datengrundlagen der Stickstoffanleitung

Das Kernvorhaben zur Umsetzung des ersten Forschungswettbewerbs in StickstoffBW konkretisiert die Simple-Mass-Balance Methode und entwickelt eine Fachkonvention für die behördliche Festsetzung von Critical Level und Critical Loads (CL). Die Ergebnisse sollen die in 2014 veröffentlichte 'CL-Datenmappe' ablösen. Im Einzelnen sollen die Forschenden 1. eine Anleitung zur Ermittlung der Critical Levels und Critical Loads orientierend mit Karten und abschließend mit Anleitung (Ing. Regioplus Mainz) einschließlich 2. einer Kartieranleitung zur Differenzierung der Biotoptypen nach Empfindlichkeit gegenüber Stickstoffeinträgen (Breunig Karlsruhe) und 3. einer Analyse der historischen Grünlandnutzung als Orientierungshilfe für die Definition von Trophiezonen für den Viehbesatz und die Düngungsintensität erarbeiten (Ing. Hohenheim).

Variabilität des Ostasiatischen Monsuns während der letzten 65.000 Jahre - laminierte Seesedimente aus dem Sihailongwan-Maarsee, NE-China

Laminierte Seesedimente sind unschätzbare Informationsquellen zur Geschichte der Umwelt und des Klimas direkt aus der Lebenssphäre des Menschen. Ein exzellentes Beispiel dafür ist der Sihailongwan-Maarsee aus NE-China. In einem immer noch dicht bewaldeten Vulkangebiet gelegen, bieten seine Sedimente ein ungestörtes Abbild der Monsunvariationen über zehntausende von Jahren. Nur die letzten ca. 200 Jahre zeigen einen deutlichen lokalen anthropogenen Einfluss. Das Monsunklima der Region mit Hauptniederschlägen während des Sommers und extrem kalten Wintern unter dem Einfluss des Sibirischen Hochdrucksystems bildet die Voraussetzung für die Bildung von saisonal deutlich geschichteten Sedimenten (Warven), die in dem tiefen Maarsee dann auch überwiegend ungestört erhalten bleiben. Insbesondere die Auftauphase im Frühjahr bringt einen regelmässigen Sedimenteintrag in den See, der das Gerüst für eine derzeit bis 65.000 Jahre vor heute zurückreichende Warvenchronologie bildet. Für das letzte Glazial zeigen Pollenspektren aus dem Sihailongwan-Profil Vegetationsvariationen im Gleichklang mit bekannten klimatischen Variationen des zirkum-nordatlantischen Raumes (Dansgaard-Oeschger-Zyklen) zu dieser Zeit. Der Einfluss dieser Warmphasen auf das Ökosystem See war jedoch sehr unterschiedlich. So sind die Warven aus den Dansgaard-Oeschger (D/O) Zyklen 14 bis 17 mit extrem dicken Diatomeenlagen (hauptsächlich Stephanodiscus parvus/minutulus) denen vom Beginn der spätglazialen Erwärmung zum Verwechseln ähnlich, während Warven aus dem D/O-Zyklus 8 kaum Unterschiede zu überwiegend klastischen Warven aus kalten Interstadialen aufweisen. Gradierte Ereignislagen mit umgelagertem Bodenmaterial sind deutliche Hinweise auf ein Permafrost-Regime während der Kaltphasen. Auch während des Spätglazials treten deutliche klimatische Schwankungen auf, die der in europäischen Sedimentarchiven definierten Gerzensee-Oszillation und der Jüngeren Dryas zeitlich exakt entsprechen. Das frühe Holozän ist von einer Vielzahl Chinesischer Paläoklima-Archive als Phase mit intensiverem Sommermonsun bekannt. Überraschenderweise sind die minerogenen Fluxraten im Sihailongwan-See während des frühen Holozäns trotz dichter Bewaldung des Einzugsgebietes sehr hoch. Sowohl Mikrofaziesanalysen der Sedimente als auch geochemische Untersuchungen deuten auf remoten Staub als Ursache dieses verstärkten klastischen Eintrags hin. Der insbesondere in den letzten Jahrzehnten zunehmende Einfluss des Menschen zeigt sich in den Sedimenten des Sihailongwan-Maarsees vor allem in einem wiederum zunehmenden Staubeintrag und einer Versauerung im Einzugsgebiet. Der anthropogene Einflusss auf die lokale Vegetation ist immer noch gering.

Schwerpunktprogramm (SPP) 1569: Erzeugung multifunktioneller anorganischer Materialien durch molekulare Bionik

norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.

Populationsmodell des Auerhuhns in den Schweizer Alpen: Grundlagen für den Artenschutz

Das Auerhuhn ist eine stark gefährdete Brutvogelart der Schweiz. Veränderungen in der Zusammensetzung und Nutzung des Waldes haben dazu geführt, dass sich die Bestände dieses Raufusshuhns in den letzten drei Jahrzehnten halbiert haben. Deshalb sollen die Lebensraumansprüche des attraktiven Waldvogels vermehrt in der Planung und Umsetzung von Waldreservaten und der Bewirtschaftung von Wäldern der höheren Lagen berücksichtigt werden. Auf der kleinen räumlichen Ebene sind die Habitatsansprüche der Art durch Untersuchungen in West- und Mitteleuropa (Storch 1993, 2002, Schroth 1994) und Skandinavien relativ gut bekannt. Dagegen werden die Populationsprozesse auf der Ebene der Landschaft erst in Ansätzen verstanden (Sjöberg 1996, Kurki 2000). Entsprechend konnte man die Bestandsrückgänge in den meisten Gebieten Europas noch nicht stoppen, da einerseits genauere Kenntnisse über das Zusammenspiel und die relative Bedeutung der einzelnen Faktoren fehlen (Habitatqualität, Störungen, Prädatoren, Witterung-Klima, Huftierkonkurrenz), und andererseits noch nicht versucht wurde, die Bestandsentwicklung im grossen landschaftlichen Massstab als Metapopulationsdynamik zu verstehen. Es ist das primäre Ziel dieses Projekts, ein räumlich explizites Metapopulationsmodell des Auerhuhns für einen grossen Landschaftsausschnitt der Schweizer Alpen zu erarbeiten. Dabei sollen die erwähnten Einflussfaktoren möglichst umfassend berücksichtigt werden. Die Arbeit soll modellhaft zeigen, dass für das Verständnis von Populationsvorgängen von raumbeanspruchenden Wildtierarten eine Analyse und Bewertung von lokal bis überregional wirksamen Einflussfaktoren notwendig sind. Die Ergebnisse sollen zudem als konzeptionelle Grundlage für den Nationalen Aktionsplan Auerhuhn und für regionale Artenförderungsprojekte dienen. Folgende Fragen und Themen sind für das Projekt von zentraler Bedeutung: Wie gross ist das landschaftsökologische Lebensraumpotenzial für das Auerhuhn in den Alpen, wie ist es räumlich verteilt? Wie verteilen sich die lokalen Auerhuhnpopulationen in diesen Potenzialgebieten? Wie gross sind die Bestände? Welche Faktoren beeinflussen den Status von Lokal- und Regionalpopulationen? Welche Populationen haben abgenommen oder sind verschwunden, welche sind stabil (Source-Sink-Mechanismen)? Zwischen welchen räumlich getrennten Populationen besteht ein Austausch? Welche Landschaftselemente wirken als Barrieren? Entwickeln einer nicht-invasiven Methode für die genetische Differenzierung von Populationen, sowie für Bestandsschätzungen und Monitoring.

Messstelle OBERNAU, MAIN

Messstelle betrieben von ASCHAFFENBURG.

Wasserversorgungsplan Rheinland-Pfalz 2022

Teil 2: Sensitivitätsanalyse [Redaktioneller Hinweis: Die folgende Beschreibung ist eine unstrukturierte Extraktion aus dem originalem PDF] WASSERVERSORGUNGSPLAN RHEINLAND-PFALZ 2022 Teil 2 Sensitivitätsanalyse Diese Veröffentlichung wird im Rahmen der Öffentlichkeitsarbeit der Landesregierung Rheinland- Pfalz herausgegeben. Sie darf weder von Parteien, noch Wahlbewerbern oder Wahlhelfern im Zeit- raum von sechs Monaten vor einer Wahl zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für Landtags-, Bundestags-, Kommunal- und Europawahlen. Missbräuchlich ist während dieser Zeit insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der Parteien sowie das Einlegen, Aufdrucken und Aufkleben parteipolitischer Informationen der Werbemittel. Untersagt ist gleichfalls die Weitergabe an Dritte zum Zwecke der Wahlwerbung. Auch ohne zeitlichen Bezug zu einer bevorstehenden Wahl darf die Druckschrift nicht in einer Weise verwendet werden, die als Par- teinahme der Landesregierung zugunsten einzelner politischer Gruppen verstanden werden könnte. Impressum Herausgeber: Ministerium für Klimaschutz, Umwelt, Energie und Mobilität (MKUEM) Kaiser-Friedrich-Straße 1, 55116 Mainz www.mkuem.rlp.de Twitter: http://twitter.com/Umwelt.RLP Facebook: http://Facebook.com/UmweltRLP Bearbeitung: Christof Baumeister (LfU) Jochen Kampf (LfU) Martin Schykowski (LfU) Marie Kirsch (MKUEM) Karten: Copyright LfU auf Basis GeoBasis-DE / LVermGeoRP 2022 Layout:Tatjana Schollmayer (Landesamt für Umwelt Rheinland-Pfalz) Titelfoto:Neubornquelle Wörrstadt (Rheinhessen) © Tatjana Schollmayer Stand: Januar 2025 © 2025 Nachdruck und Wiedergabe nur mit Genehmigung des Herausgebers INHALT 1EINLEITUNG UND ZIELSETZUNG4 2ZUSAMMENFASSUNG DER UNTERSUCHTEN SZENARIEN6 3SONDERFORMEN DER ÖFFENTLICHEN WASSERVERSORGUNG8 4ERGEBNISSE DER UNTERSUCHTEN SZENARIEN10 4.1Ist-Zustand 2018 (Szenario 0 – Karte 1)10 4.2Anstieg des Pro-Kopf-Verbrauchs (Szenario 1 – Karte 2)12 4.3Anstieg des Wasserbedarfs durch Bevölkerungsentwicklung (Szenario 2 – Karte 3)14 4.4Reduzierung des Grundwasser­dargebots (Szenario 3 – Karte 4)16 4.5Worst Case-Szenario (Szenario 4 – Karte 5)19 5TABELLARISCHE DARSTELLUNG DER DARGEBOTSRESERVEN21 6FAZIT UND HANDLUNGSBEDARF29 Wasserversorgungsplan Rheinland-Pfalz 2022 – Sensitivitätsanalyse 3 1 EINLEITUNG UND ZIELSETZUNG In den letzten Jahren wurde die öffentliche Was- serversorgung in Rheinland-Pfalz zunehmend vor Herausforderungen gestellt. Insbesondere heiße, trockene Sommer wie in den Jahren 2018, 2020 und 2022 mit überdurchschnittlichen Entnahmespitzen aber auch die Auswirkungen struktureller Änderungen in der Bevölkerung auf den Gesamtverbrauch sind auf Dauer regional bzw. lokal nicht ohne Weiteres zu handhaben. Die Struktur der Wasserversorgung wird in Rheinland-Pfalz über den Wasserversorgungs- plan beschrieben und dargestellt. Der Plan ist in § 53 Landeswassergesetz verankert und verfolgt die beiden folgenden wesentlichen Ziele: ■■ Die Darstellung der Versorgungsgebiete mit ihrer wesentlichen Versorgungsstruktur und ihrem nutzbaren Grundwasserdargebot. ■■ Das Aufweisen von Möglichkeiten und Maß- nahmen zur Sicherstellung der öffentlichen Wasserversorgung. Insbesondere auch sol- chen, die dem Zweck dienen, einen Ausgleich zwischen Wasserüberschuss- und Wasser- mangelgebieten herbeizuführen. Der Wasserversorgungsplan ist daher eine orientierende Einschätzung der Versorgungs­ situation auf regionaler Ebene. Auf lokaler Ebene kann er im Bedarfsfall keine detaillier­ ten Untersuchungen der Dargebotsreserven und des damit verbundenen individuellen Handlungsbedarfs ersetzen. 4 Zur Beschreibung der Versorgungsinfrastruktur wurde für den im Jahr 2022 veröffentlichten Wasserversorgungsplan Teil 1 eine systematische Bestandsaufnahme der rheinland-pfälzischen Wasserversorgung durchgeführt. Der Plan beschreibt hierfür einige für die Was- serversorgung relevante Hintergründe, wie die Hydrologie im Land, Grundsätze bezüglich der Grundwasserqualität sowie klimatische Faktoren. Im Fokus stehen jedoch die von den Wasser- versorgungsbetreibern bereitgestellten Daten zu Bedarf, Deckung und Dargebotsreserven für das Jahr 2018. Das Basisjahr 2018 wurde gewählt, weil es mit seiner reduzierten Grundwasserneu- bildung und seiner sommerlichen Trockenheit, die zukünftig zu erwartenden Verhältnisse bei fortschreitendem Klimawandel gut repräsentiert. Basierend auf den Daten der Bestandaufnahme wurde für den hier vorliegenden Teil 2 des Was- serversorgungsplans eine Sensitivitätsanalyse in Form mehrerer fiktiver Szenarien durchgeführt. Da in Rheinland-Pfalz der allergrößte Teil (97 %) des Trinkwassers aus Grundwasser gewonnen wird, ist für die zukünftige Sicherstellung der Trinkwasserversorgung im Land insbesondere das Dargebot an Grundwasser entscheidend. Dieses wird durch die mittlere jährliche Grund- wasserneubildungsrate beschrieben. Wasserversorgungsplan Rheinland-Pfalz 2022 – Sensitivitätsanalyse Die lokale Bestimmung der Grundwasserneubil- dung in den Gewinnungsgebieten der 189 Was- serversorgungsbetreiber im Land wäre mit einem sehr großen Aufwand verbunden gewesen, da sie eine genaue standortspezifische Erhebung und Auswertung hydrogeologischer Parameter und Prozesse erfordert. Daher wurden in der Regel näherungsweise die erteilten Entnahmegeneh- migungen der Wasserversorger als Grundlage für die Bestimmung verwendet. Dem verfügbaren Dargebot steht als zweiter entscheidender Faktor der Wasserbedarf für die öffentliche Wasserversorgung gegenüber. Dieser hängt in hohem Maß vom Pro-Kopf-Verbrauch und von der Bevölkerungszahl ab. Um die Sensitivität der rheinland-pfälzischen Trinkwasserversorgung zu untersuchen, wurden vier verschiedene, fiktive Szenarien gewählt, die zukünftig mögliche Entwicklungen bei Wasser- bedarf und Wasserdargebot simulieren. Die Ergebnisse sind in einer Tabelle mit den Dar- gebotsreserven der Wasserversorgungsbetreiber sowie in fünf Karten, die die Versorgungssicher­ heit der Versorgungsgebiete unter den v. g. Be- dingungen zeigen, dargestellt. Wasserversorgungsplan Rheinland-Pfalz 2022 – Sensitivitätsanalyse 5

Fließgewässermessstelle SH Klingenberg km 116,2 oh K-berg-Röllfeld, Main

Die Messstelle SH Klingenberg km 116,2 oh K-berg-Röllfeld (Messstellen-Nr: 22138) befindet sich im Gewässer Main in Bayern. Die Messstelle dient der Überwachung des chemischen Zustands, des Grundwasserstands im oberen Grundwasserstockwerk.

Fließgewässermessstelle SH Krotzenburg km 076,0 oh KA Untermain Kleinostheim, MHS, Main

Die Messstelle SH Krotzenburg km 076,0 oh KA Untermain Kleinostheim, MHS (Messstellen-Nr: 22541) befindet sich im Gewässer Main in Bayern. Die Messstelle dient der Überwachung des biologischen Zustands, der Quellschüttung, der Quelltemperatur.

1 2 3 4 5308 309 310