s/makroökologie/Mikroökologie/gi
In der aquatischen Umwelt zeigen Pilze starke Interaktionen zu einer Vielzahl anderer Organismen, darunter Algen, Metazoen und Bakterien, die die pilzliche Diversifizierung vorangetrieben haben. Die Pilzevolution begann frühzeitlich in der aquatischen Umwelt. Die Verbindungen mit anderen Organismen führten zu vielen biotrophen Lebensweisen und einer großen phylogenetischen Vielfalt. Es ist wahrscheinlich, dass die frühen Wasserpilze bereits die funktionellen Merkmale ausbildeten, die zum Erfolg des Pilzreichs, als eine der vielfältigsten Organismengruppen der Erde, geführt hat. Trotz der recht umfangreichen Studien, die die Komplexität der aquatischen Mikrobiome untersuchen, sind weder die große phylogenetische Vielfalt der aquatischen Pilze noch die Wechselwirkungen der aquatischen Pilze mit anderen Organismen gut beschrieben. Dieses Paradoxon ist das Resultat von zu wenigen Studien, die aquatische Mikrobiome ganzheitlich untersuchen, und ist zudem auch der Tatsache geschuldet, dass die aquatischen Pilze nicht als solche erkannt werden. Wasserpilze erscheinen oft als unbekannte genetische Elemente ohne erkennbare Übereinstimmung mit unseren Datenbanken. Das veranlasste uns dazu, den Begriff Dunkle Materiepilze (DMP) zu etablieren, um die Unbekanntheit der frühen divergierenden Pilzlinien in der aquatischen Umwelt hervorzuheben. Einer der vielversprechendsten aquatischen Lebensräume zur Untersuchung von DMP und deren Wechselwirkungen mit anderen Organismen im kleinen Maßstab ist der aquatische Biofilm. Insbesondere heterotrophe Biofilme können einen hohen Anteil an DMP aufweisen, was die Aufklärung von DMP-Interaktionen und ökologischen Funktionen erleichtert. Es ist völlig unklar, welche organismischen Wechselwirkungen die Determinanten für die DMP in Biofilmen sind und inwieweit DMP die Biofilmstruktur beeinflussen. Das Verständnis der Ökologie und der Evolution von DMP bleibt aufgrund der Komplexität der natürlichen Gemeinschaften eine Herausforderung. Aufgrund der neuen methodischen Entwicklungen ist es nun jedoch möglich, durch Manipulationsexperimente an natürlichen sowie an Modell-Biofilmgemeinschaften eine konzeptionelle Sicht auf die DMP-Ökologie und -Evolution aufzubauen. Das Ziel der vorgeschlagenen Emmy Noether-Forschungsgruppe ist es, die grundlegende Ökologie und Evolution der aquatischen DMP zu verstehen. Durch die Kombination von Mikrodissektion, Hochdurchsatz-Kultivierung und molekularer Sequenzierung der nächsten Generation, werden wir herausfinden, wie und welche Pilz-Interaktionen mit Mikroben die gesamte Struktur und Funktion der mikrobiellen Gemeinschaft beeinflussen. Wir werden auch umfangreiche DMP-Barcode- und Genomdaten generieren, die als Schlüsselressourcen für das Erstellen einer robusten frühen Pilzphylogenie dienen werden, und es uns ermöglicht, die frühe Pilzevolution auf der Grundlage von Phylogenomik und biotrophen Interaktionen zu diskutieren.
Die Verunreinigung unserer Wasserressourcen mit organischen Schadstoffen, wie etwa Öl-bürtigen Kohlenwasserstoffen, ist ein ernstzunehmendes Problem und hat vielerorts bereits zu einer chronischen Belastung des Grundwassers geführt. Der biologische Abbau ist der einzige natürliche Prozess, der im Untergrund zu einer Schadstoffreduktion führt. Als Steuergrößen gelten hier die Anwesenheit von Abbauern (Mikroorganismen) und die Verfügbarkeit von Elektronenakzeptoren und Nährstoffen. In den letzten Jahren wurde zudem die Bedeutung dynamischer Umweltbedingungen (z.B. Hydrologie) als wichtige Einflussgröße erkannt. Ein wichtiger Aspekt wurde jedoch bisher nicht in Betracht gezogen, nämlich die Rolle der Viren bzw. Phagen. Viren sind zahlenmäßig häufiger als Mikroorganismen und ebenso ubiquitär vorhanden. Mittels verschiedener Mechanismen können sie einen enormen Einfluss auf die mikrobiellen Gemeinschaften ausüben. Einerseits verursachen sie Mortalität bei ihren Wirten. Andererseits können sie über horizontalen Gentransfer den Wirtsstoffwechsel sowohl zu dessen Vorteil als auch Nachteil modifizieren. In den vergangenen Jahren konnten verschiedene mikrobielle Phänomene der Aktivität von Viren zugeschrieben werden. Die klassische Ansicht, dass Viren ausschließlich Parasiten sind, ist nicht mehr zutreffend. Als Speicher und Überträger von genetischer Information ihrer Wirte nehmen sie direkten Einfluss auf biogeochemische Stoffkreisläufe sowie auf die Entstehung neuer Schadstoffabbauwege. Biogeochemische Prozesse in mikrobiell gesteuerten Ökosystemen wie dem Grundwasser und die dynamische Entstehung und Anpassung an neue Nischen als Folge von Veränderungen der Umweltbedingungen kann nur verstanden werden, wenn der Genpool in lytischen und lysogenen Viren entsprechend mit berücksichtigt wird. Das Projekt ViralDegrade stellt Paradigmen in Frage und möchte eine völlig neue Perspektive hinsichtlich der Rolle der Viren beim mikrobiellen Schadstoffabbau eröffnen, welche zur Zeit noch als Black Box behandelt werden. ViralDegrade postuliert, dass Viren (i) durch horizontalen Gentransfer und den Einsatz von metabolischen Genen den Wirtsstoffwechsel modulieren (Arbeitshypothese 1) und (ii) für den temporären Zusammenbruch von dominanten Abbauerpopulationen und, damit verbunden, für den Wechsel zwischen funktionell redundanten Schlüsselorganismen verantwortlich sind (Arbeitshypothese 2). Sorgfältig geplante Labor- und Felduntersuchungen und vor allem der kombinierte Einsatz von (i) neu entwickelten kultivierungsunabhängigen Methoden, wie etwa dem Viral-Tagging, und (ii) ausgewählten schadstoffabbauenden aeroben und anaeroben Bakterienstämmen, garantieren neue Erkenntnisse zur Rolle der Viren beim mikrobiellen Schadstoffabbau sowie ähnlichen mikrobiell gesteuerten Prozessen. Ein generisches Verständnis der Vireneinflüsse wird zudem zukünftig neue Optionen für die biologische Sanierung eröffnen.
Das Projekt BE-Cult wird sich mit der Biodiversität von nitratammonifizierenden (syn. Dissimilatorischen Nitrat-zu-Ammoniumreduzierenden, DNRA) Bakterien in Böden von wenig und intensiv genutzten Grünländern der Biodiversitätsexploratorien (BEs) an allen Grünland-VIPs (very intensively studied plots) beschäftigen. Die Funktion Stickstoff (N) durch DNRA-Bakterien im Boden zu halten, wurde lange Zeit nur wenig wahrgenommen und die quantitative Rolle bei der Lachgas-Freisetzung aus Böden nicht untersucht. Aus diesem Grund gibt es umfassende Informationen zur Biodiversität und Ökophysiologie von denitrifizierenden aber nicht zu DNRA-Boden- Mikroorganismen. Die Konsequenz dieser historischen Entwicklung ist, dass heute wenig über die Ökophysiologie und Bedeutung der DNRA Bakterien im N-Kreislauf terrestrischer Ökosysteme bekannt ist. Im Gegensatz zu den DNRA-Bakterien, bilden Dentrifikanten N-haltige Gase als Endprodukt ihres Stoffwechsels, die substantiell zum N-Verlust in Böden beitragen. Dahingegen reduzieren DNRA Bakterien Nitrat hauptsächlich zu Ammonium, das im Boden verbleibt und als wichtiger Pflanzennährstoff dient. Beide Bakteriengrupppen bilden das potente Treibhausgas Lachgas und tragen damit zur globalen Erwärmung bei. Das Hauptanliegen des Projektes BE-Cult ist es den Einfluss der Landnutzungsintensität auf diese wichtigen Mikroorganismen im N-Kreislauf von Böden zu untersuchen. In einem Hochdurchsatz-Kultivierungs-Ansatz (einschl. MALDI TOF MS für eine schnelle Stammidentifikation und verschiedene Tests zur physiologischen Charakterisierung des Nitrat- Stoffwechsels) werden über 10.000 Reinkulturen charakterisiert und entsprechend ihrer Phylogenie und Nitrat-Physiologie gruppiert. Aus dieser Stammsammlung werden 100 Isolate genom-sequenziert. Basierend auf den genomischen Informationen werden PCR-Primer funktioneller Genmarker entwickelt und verbessert um dann die funktionellen Genmarker in DNA-Extrakten der Grünland-VIPs zu quantifizieren. Zusammen mit Partnern in den BEs wird die relative Bedeutung der DNRA-Bakterien (insbesondere ihrer relativen Aktivität im Vergleich zu Denitrifikanten) in Meta-Transkriptom Datensätzen evaluiert. Letztendlich werden die so gewonnen Daten in multivariaten Analysen bestehend aus funktionellen Genmarker-Abundanzen, physiologischen 'traits' und auch abiotischen wie biotischen Parametern verwendet um die Verteilungsmuster von DNRA Bakterien in Böden zu erklären und ihre ökologischen Nischen besser definieren zu können.
Das strikt anaerobe, Endosporen-bildende Bakterium Clostridioides difficile ist der Verursacher von nosokomialen Durchfallerkrankungen bei Mensch und Tier. Eine C. difficile Infektion (CDI) erfolgt meist nach einer Antibiotikabehandlung welche die Darmflora schädigt und bei der Wiederbesiedlung das Auskeimen von C. difficile ermöglicht. Weltweit ist eine Zunahme der Inzidenz so wie ein schwerer Verlauf von CDI zu beobachten was die Gesundheitskosten in die Höhe treibt und verstärkte Maßnahmen zur Infektions-Prävention und Kontrolle der Ausbreitung erfordert. Die Behandlung einer CDI wird dadurch erschwert dass Endosporen resistent gegenüber einer Antibiotikabehandlung sind. Vegetative Zellen und Sporen des Darmbesiedlers C. difficile werden mit den Fäzes ausgeschieden und können so in die Umwelt gelangen. C. difficile wird in Fäkal-belasteten Matrices wie Abwasser, Klärschlamm, Gülle und in mit Fäkalien in Berührung gekommenem Viehfutter oder Silage nachgewiesen. Durch den rasanten Anstieg der Anaerobtechnologie in Biogasanlagen zur Schlamm- oder Güllebehandlung kann davon ausgegangen werden, dass C. difficile in solchen Milieus überlebt oder sich sogar vermehrt und mit den Gär-Rückständen als Dünger in der Umwelt verbreitet wird. Ziel des geplanten Forschungsvorhabens ist, solche fäkal-belasteten Proben zu identifizieren und daraus C. difficile zu quantifizieren und Isolate zu charakterisieren. Neben dem Nachweis der Gene der Virulenzfaktoren für das Enterotoxin A und Cytotoxin B und dem binären Toxin CDT werden die Isolate einer Ribotypisierung und einer Antibiotikaempfindlichkeitstestung zur MHK Bestimmung unterzogen. Zudem sollen auch Antibiotika-Resistenzgene sowie konjugative Transposons nachgewiesen werden. Zum quantitativen Nachweis von C. difficile und dem Antibiotikaresistenz-vermittelnden konjugativen Transposon Tn5397 soll eine qPCR etabliert werden die es ermöglicht, Zellzahlen und Pathogenität von C. difficile in Fäkal-belasteten Proben zu bestimmen. Bedingt durch den hohen Stellenwert der Anaerobtechnologie für die Abwasserreinigung und Güllebehandlung sollen im Labormaßstab Biogasreaktoren aufgebaut und unter 'Realbedingungen' betrieben werden, um das Überleben, eine Vermehrung oder die Reduktion/Elimination von C. difficile Zellen/Sporen sowie die Exkretion des konjugativen Transposons Tn5397 zu testen. Diese Versuche sollen auch in Laboranlagen zur Simulation der konventionellen Güllelagerung sowie nach Behandlung in einer Labor-Ozonierungs- und UV-Entkeimungsanlage durchgeführt werden. Letztere werden unter anderem als vierte Reinigungsstufe zur Abwasserbehandlung in der Praxis empfohlen. Nur in Kombination von Umweltmikrobiologie und Verfahrenstechnik können die gesetzten Ziele erreicht und neues Wissen generiert werden um Aussagen bezüglich der Überlebensfähigkeit, Pathogenität und Verbreitungspfaden von C. difficile zu treffen und um das Infektionsrisiko für Mensch und Tier besser abschätzen zu können.
Das primäre Forschungsziel des Projekts ist das Verständnis der biotischen und abiotischen Prozesse, welche die molekulare Zusammensetzung von gelöstem organischem Material (engl. DOM) in tiefen, hydrothermal beeinflussten Sedimenten bestimmen. Hierzu steht uns bereits ein umfassender Satz von Porenwasser- und Sedimentproben aus dem Guaymas-Becken zur Verfügung, die im Rahmen der IODP-Expedition 385 (Sep. - Nov. 2019) erbohrt wurden. Die Proben wurden aus bis zu 500 Meter langen Bohrkernen von acht Bohrlokationen gewonnen, die unterschiedliche hydrothermale Gradienten aufweisen. Durch die Bestimmung der molekularen Zusammensetzung von Porenwasser-DOM und Wasser-extrahierbarem organischem Material aus dem Sediment sollen deren hydrothermale und mikrobielle Überprägung erfasst werden. Mit Hilfe von ultrahochauflösender Massenspektrometrie (FT-ICR-MS), modernen molekularbiologischen Methoden und Kohlenstoff-Isotopen-Analyse sollen aktuelle Wissenslücken zu den molekularen Eigenschaften von DOM in tiefen Sedimenten geschlossen werden. Wir werden 1) die molekulare Zusammensetzung von DOM in Organik-reichen, hydrothermal geprägten Sedimenten im Vergleich zu unbeeinflussten Sedimenten charakterisieren und 2) die Verbindung zwischen der molekularen Zusammensetzung des DOM mit dem mikrobiellen Stoffwechsel in der tiefen Biosphäre entlang von Temperatur- und Redoxgradienten entschlüsseln. Die Ergebnisse sollen zudem mit Proben aus der Wassersäule verglichen werden, die während einer FS Atlantis-Ausfahrt zum Guaymas-Becken im Jahr 2018 gewonnen wurden, um den Transport von hydrothermalen DOM in die Tiefsee zu untersuchen. Im Rahmen des Projekts werden die folgenden Hypothesen getestet: I) Die hydrothermale Aufheizung tiefer Sedimente erzeugt und setzt große Mengen von reaktivem und refraktärem DOM frei, II) Hydrothermales thermogenes DOM (engl. dissolved black carbon, DBC) trägt zur stabilen Kohlenstoff-Isotopensignatur mariner Prägung und zum Radiokarbonalter des refraktären ozeanischen DBC bei, und III) die Struktur der mikrobiellen Gemeinschaft in der Tiefen Biosphäre wird durch die geochemischen und thermalen Gradienten beeinflusst und hängt mit spezifischen reaktiven, hydrothermal erzeugten DOM-Verbindungen zusammen. Insgesamt bietet das Projekt die einmalige Gelegenheit, die Biogeochemie von DOM entlang hydrothermaler Gradienten in tiefen Sedimenten, aber auch im Übergang von Lithosphäre zur Hydrosphäre zu untersuchen.
Die Interaktion von Arten kann durch anthropogene Einflüsse moduliert werden, zum Beispiel die Intensität der Waldbewirtschaftung. Waldeigenschaften können die lokale Biodiversität beeinflussen und als ökologische Filter auf biotische Interaktionen wirken. Das Verständnis dieser Dynamiken ist wichtig, um die Reaktionen von ökologischen Gemeinschaften auf Landnutzungsänderungen vorherzusagen. Die Flechtensymbiose ist in dieser Hinsicht ein ideales Studienobjekt, denn Flechten sind aus vielen Arten bestehende Holobionten, die neben den primären Pilz- und Algenpartnern noch zusätzliche Pilz-, Algen- und Bakteriengemeinschaften beherbergen. Es ist unklar, wie der Flechten-Holobiont seine organismische Diversität aus der Umgebung rekrutiert, und wie die Flechtensymbiose ihre Reaktion auf Umweltreize durch Umstrukturierung ihrer Komponenten moduliert. Hier stellen wir die Fragen: Wie interagiert der Flechten-Holobiont mit Mikroorganismengemeinschaften in seiner Umgebung? Wie beeinflusst die Intensität der Waldbewirtschaftung einzelne Komponenten des Flechten-Holobionten, sowie die Interaktion mit Mikroorganismengemeinschaften der Umgebung (auf Rinde und in der Erde)? Wir testen, in wie weit die mikoorganismische Diversität des Holobionten innerhalb der Diversität der Umgebung gruppiert ('nestedness'). Dann modellieren wir Diversitätsänderungen und Verschiebungen der biotischen Interaktionen unter Landnutzungsgradienten in allen 150 EP Walduntersuchungsflächen der Biodiversitäts-Exploratorien. Insgesamt wird dieses Projekt zum Verständnis der Mechanismen der Rekrutierung von Mikroorganismen in die Flechtensymbiose beitragen. Weiterhin wird es die Wirkung von Waldbewirtschaftungsintensität auf die Frequenz und Stabilität biotischer Interaktionen zwischen verschiedenen Gruppen von Mikroorganismen (Pilze, Grünalgen, Bakterien) beleuchten.
Protisten (eukaryotische Mikroorganismen) erfüllen wichtige ökologische Funktionen, sie sind die dominierenden Primärproduzenten in Gewässern und die wichtigsten Konsumenten von Bakterien und damit von zentraler Bedeutung für aquatische Nahrungsnetze. Die Diversität von Protisten ist enorm, ihre Verteilungsmuster sind dagegen nicht gut verstanden. Während einige Taxa offensichtlich global verteilt sind, sind einige andere Taxa endemisch. Es ist aber höchst umstritten, inwieweit die für höhere Organismen beobachteten Verbreitungsmuster auf Protisten übertragbar sind. Die nacheiszeitliche Biogeographie Europas ist ideal für die Prüfung der Verallgemeinerbarkeit solcher biogeographischer Muster. Hochdurchsatzsequenzierung erlaubt jetzt die Analyse großräumiger Diversitätsmuster. In diesem Projekt werden wir die Verteilung von Protisten in europäischen Binnengewässern im Hinblick auf die postglazialen Verteilungsmuster von Makroorganismen untersuchen. Wir werden die Variation der Protistendiversität in aquatischen Ökosystemen auf der Basis von Planktonproben von 250 europäischen Seen einschließlich Seen aus Spanien, Frankreich, Italien, Schweiz, Österreich, Rumänien, Ungarn, der Tschechischen Republik, der Slowakei, Polen, Schweden, Norwegen, Griechenland, Kroatien und Bulgarien untersuchen. Wir werden die räumliche Analyse durch saisonale Analyse ausgewählter Seen innerhalb eines zentraleuropäischen Gradienten ergänzen, um räumliche von zeitlichen Mustern zu trennen. Das Projekt wird die Biogeographie, die Phylogeographie und die Diversität der Protisten in europäischen Süßwasserseen auf der Gemeinschaftsebene analysieren basierend auf Hochdurchsatzsequenzierung der molekularen Diversität. Insgesamt wird das Projekt die Gültigkeit allgemeiner biologischer Theorien für mikrobielle Eukaryoten testen.
Interaktionen zwischen Bienen und Blütenpflanzen sind Teil eines 'berühmten' und evolutiv 'alten' Mutualismus, welcher die reproduktive Fitness von Pflanzen und Bienen maßgeblich bestimmen kann. Die Struktur, Stabilität und Fitness-Auswirkungen hängen dabei von der Diversität und Zusammensetzung der interagierenden Gemeinschaft ab, welche ihrerseits stark von der vorherrschenden Landnutzung beeinflusst werden. So nimmt die Diversität von Interaktionspartnern und Interaktionen mit zunehmend intensiverer Landnutzung ab. Welche Auswirkungen das auf die reproduktive Fitness der Interaktionspartner hat, ob diese Auswirkungen abhängig von der Art oder Gemeinschaft variieren, und wie das mit der Struktur des Interaktionsnetzwerkes zusammen hängt, wurde bisher jedoch kaum experimentell untersucht und soll nun in MacroBEEs geklärt werden. Dabei bauen wir auf bereits bestehenden Daten zu Interaktionsnetzwerken abhängig von Landnutzung auf und nutzen sowohl das etablierte Plot-Netzwerk als auch die neuen 'multi-grassland experiment' Plots, um besser zu verstehen, wie sich Landnutzung unabhängig von anderen Faktoren auf die reproduktive Fitness der Interaktionspartner auswirkt. Im Rahmen von drei 'Work Packages' (WPs), sollen folgende Fragen geklärt werden:1. Wie wirken sich Landnutzungs-bedingte Veränderungen in der Diversität und Zusammensetzung von Pflanzengemeinschaften auf die Besuchsmuster und Furagierentscheidungen von wilden Bienen und Honigbienen aus (WP1)?2. Wie beeinflussen diese Furagierentscheidungen die taxonomische und chemische (Nährstoff-) Zusammensetzung der erstellten (Pollen und Nektar) Diäten und damit die Gesundheit und Fitness der Tiere (WP2)?3. Wie beeinflussen Veränderungen der Besuchsmustern den Transfer von Pollen innerhalb und zwischen Pflanzenarten und folglich den Samenansatz und damit den Bestäubungserfolg von Pflanzen (WP3)? Um diese Fragen zu beantworten, werden wir ganz unterschiedliche Methoden anwenden (Beobachtungen im Feld, DNA Metabarcoding von Pollen von Bienen und Blüten, chemischer Analytik, Fütterungsversuche mit Bienen im Labor, Netzwerkanalysen und Modeling) und eng mit anderen geplanten sowie den Kern-Projekten zusammenarbeiten. Dabei können wir auf Daten zu Bestäubernetzwerken in Abhängigkeit von Landnutzung seit 2008 zurückgreifen, was die einzigartige Möglichkeit eröffnet, Langzeiteffekte von Landnutzung auf Netzwerk Stabilität, Widerstandfähigkeit, Interaktions-Asymmetrien usw. dieses bedeutenden Mutualismus zu untersuchen. Indem wir zusätzlich die Mechanismen untersuchen, welche den Auswirkungen von Landnutzung auf den Reproduktionserfolg von Bienen und Pflanzen zu Grunde liegen, ermöglicht MacroBEEs ein weitreichenderes Verständnis darüber, wie sich Landnutzung auf die funktionale Stabilität von Bestäubernetzwerken und damit die Sicherheit der Bestäubungsleistung in Pflanzengemeinschaften auswirkt.
Interaktionen zwischen Pflanzen und Mikrooganismen werden als treibende Faktoren für die Zusammensetzung und Diversität von Pflanzengemeinschaften angesehen. Oomyceten (z.B. Pythium) und Cercozoen (z.B. Plasmodiophora) gehören zu den weltweit bedeutendsten Pflanzenparasiten. Neben Feldfrüchten besiedeln sie ein weites Spektrum von Wirtspflanzen und üben darüber wahrscheinlich einen wichtigen, bisher aber nicht erforschten Einfluss auf die Diversität von natürlichen Pflanzengemeinschaften aus. Trotz ihrer funktionellen Bedeutung wurde ihre Verbreitung in natürlichen Lebensräumen noch nie systematisch untersucht. Molekulare Sequenziermethoden erlauben es nun die Diversität und Verbreitung mikrobieller Pathogene in nie dagewesener Genauigkeit in Böden und Pflanzen zu bestimmen. In Böden aller 300 experimenteller Plots in Grünland und Wäldern der Biodiversitätsexploratorien und in Rhizosphärenproben des BELOW Subprojekts sollen über High-troughput Illumina Sequenzierung die Diversität und die natürlichen Reservoirs von zwei Protistengruppen, Oomyceten und Cercozoen , untersucht werden. Beide Protistengruppen sind funktionell hochdivers und decken ein breites Spektrum von fakultativen zu obligatorischen Pflanzenparasiten bis hin zu freilebenden Bakterivoren ab, wobei manche parasitische Taxa einen Teil ihres Lebenszyklus als Saprotrophe verbringen. Die Biodiversitätsexploratorien bieten die Möglichkeit den Einfluss der Intensivierung von Landnutzung auf die Verbreitung von Pflanzenparasiten in verschiedenen geographischen Regionen Deutschlands zu untersuchen. Netzwerkanalysen ermöglichen es komplexe Gemeinschaften interagierender Mikroorganismen zu analysieren und potenzielle Hubs d.h. zentral agierende Pflanzenpathogene, mögliche pathogen-unterdrückende Bodengemeinschaften, und ihre Beziehung zu Wurzelmetaboliten und Pflanzentraits zu identifizieren. Erstmal würde eine großflächige Studie zur Verbreitung dieser hochdiversen und funktionell bedeutenden Pflanzenpathogene in natürlichen Habitaten durchgeführt. Diese Studie wird einen wichtigen Beitrag leisten um Faktoren zur Unterdrückung von Pflanzenparasiten durch Bewirtschaftungsverfahren zu identifizieren und Hinweise für Pathogenausbrüche liefern.
Methan ist ein höchst potentes Treibhausgas, dennoch ist das globale Methanbudget durch die vielen unbekannten CH4-Quellen und -senken sehr unsicher. Die Höhe der CH4-Anreicherung in der Wassersäule hängt von komplexen Interaktionen zwischen methanogenen Archaeen und methanotrophen Bakterien ab. Das bekannte Methan Paradoxon, das die CH4-Übersättigung im oxischen Oberflächenwasserkörper von Seen und Meeren darstellt, weckt Zweifel, dass die mikrobielle CH4-Bildung nur im anoxischen Milieu stattfindet. Im oligotrophen Stechlinsee haben wir eine wiederkehrende Methanübersättigung im Epilimnion gefunden. Unsere Studien zeigen, dass das CH4 aktiv in der oxischen Wassersäule produziert wird. Die Produktion scheint dabei an die autotrophe Produktion von Grünalgen und Cyanobakterien gekoppelt zu sein. Zur gleichen Zeit sind keine methanotrophen Bakterien im Epilimnion vorhanden, so dass das CH4 nicht oxidiert wird. Unsere Haupthypothese ist, dass pelagische Methanogene hydrogenotroph sind, wobei sie den Wasserstoff aus der Photosynthese und/oder Nitrogenaseaktivität nutzen. Unsere Untersuchungshypothesen sind:1) Die CH4-Produktion ist mit der Photosynthese und/oder N-Fixierung gekoppelt, wobei hydrogenotrophe methanogene Archaeen mit den Primärproduzenten assoziiert sind. Die Methanogenen können angereichert und kultiviert werden, um Mechanismen der epilimnischen CH4-Produktion detailliert zu untersuchen.2) Die CH4-Oxidation ist durch die Abwesenheit der Methanotrophen und/oder der Photoinhibition in den oberen Wasserschichten reduziert.3) Die CH4-Produktion innerhalb mikro-anoxischer Zonen, z. B. Zooplankton und lake snow, ist nicht ausreichend für die epilimnische CH4-Produktion.Die saisonale Entwicklung des epilimnischen CH4-Peaks soll in Verbindung mit den Photoautotrophen und der Seenschichtung im Stechlinsee untersucht werden. Dabei soll eine neu-installierte Mesokosmosanlage (www.seelabor.de) genutzt werden, um CH4-Profile bei unterschiedlichen autotrophen Gemeinschaften und Seenschichtungen zu studieren. Die Verknüpfung zwischen methanogenen Archaeen und den Photoautotrophen soll in Inkubationsexperimenten mittels Hochdurchsatz-Sequenzierung und qPCR für funktionelle Gene untersucht werden. Methanotrophe werden quantifiziert und die Photoinhibition der CH4-Oxidation durch Inkubationsexperimente gemessen. In Laborexperimenten sollen die methanogenen Archaeen angereichert und kultiviert werden mittels dilution-to-extinction und axenischen Cyanobakterien und Grünalgen. Physiologische Studien an Anreicherungs- oder Reinkulturen sollen die zu Grunde liegenden molekularen Mechanismen ermitteln. Feld- und Laborexperimente sollen helfen, das Methan Paradoxon zu entschlüsseln, um die bisherige und potentiell wichtige CH4-Quelle zu charakterisieren und zu quantifizieren. Die Studien sollen helfen, unser Verständnis des globalen CH4-Kreislaufes zu verbessern, damit zukünftige Prognosen realistischer werden.
Origin | Count |
---|---|
Bund | 111 |
Wissenschaft | 12 |
Type | Count |
---|---|
Daten und Messstellen | 12 |
Förderprogramm | 109 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 121 |
Language | Count |
---|---|
Deutsch | 92 |
Englisch | 82 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 11 |
Keine | 41 |
Webseite | 70 |
Topic | Count |
---|---|
Boden | 99 |
Lebewesen und Lebensräume | 121 |
Luft | 41 |
Mensch und Umwelt | 123 |
Wasser | 72 |
Weitere | 112 |