Der Abschluss- und Synthesebericht fasst die übergeordneten Erkenntnisse einer Untersuchung der Umweltauswirkungen in den Lieferketten ausgewählter deutscher Branchen zusammen: Automobilindustrie, des Maschinenbaus, der Elektronikindustrie, der chemisch-pharmazeutische Industrie, der lebensmittelverarbeitende Industrie, des Bausektors und der metallerzeugenden und -verarbeitende Industrie. Deutlich wird, dass negative Umweltauswirkungen zumeist auf den tieferen Lieferkettenstufen auftreten. Aber auch bei direkten Lieferanten können Unternehmen bereits signifikante Verbesserungspotenziale heben. Dem Bericht liegen sieben Studien zugrunde, die genauere Einblicke in die Lieferketten der jeweiligen Branchen geben und Unternehmen bei der Ermittlung und Bewertung von Umweltauswirkungen unterstützen. Veröffentlicht in Texte | 74/2025.
Die Siemens Energy Global GmbH & Co. KG, Siemens AG, Technische Universität Dresden und Josef Pfaffinger Bauunternehmung GmbH planen, die Grundlage für ein über die gesamte Lebensdauer hinweg nutzbares Digitales Abbild für Prozessanlagen am Beispiel einer Elektrolyseanlage zu erforschen. Die im Maschinenbau etablierten Methoden zur Produktentstehung und - Verwaltung sollen durch ihre Anpassung an den Anlagenbau für die Energiewende nutzbar gemacht werden. Das Forschungsvorhaben legt seinen Fokus auf die Entwicklung von Methoden und Werkzeuge zur Ableitung, Instanziierung und Pflege des Digitalen Abbilds. Begleitend zum Bau und dem Betrieb der Anlage werden diese implementiert. Zudem werden verschiedene Modularisierungsansätze auf Basis disziplin-spezifischer Grundmodelle, die mit einem Disziplin-übergreifenden Anlagenmodell synchronisiert und harmonisiert werden, entwickelt. Das Anlagenmodell soll zusätzlich eine für den Anlagenbau neuartige Variantenbildung ermöglichen. Die beschriebenen Schwerpunkte werden in dem Prototyp eines ersten Plant-Lifecycle-Management Systems (Plant-LM System) zusammengeführt und durch Anwendung im Engineering, in der Errichtung der Anlage und deren Betrieb validiert. Im Ergebnis soll mit dem Plant-LM System die Wirtschaftlichkeit der Anlagen stark erhöht, die Investitionskosten gesenkt und die Wartung verbessert werden. Hieraus ergibt sich ein erheblicher und langfristiger Wettbewerbsvorteil für Anwender der erarbeiteten Methoden und Werkzeuge zum Digitalen Abbild von Elektrolyseanlagen.
Zur nachhaltigen Sicherung der Energie- und Stromversorgung wird zukünftig neben Kernenergie und regenerativer Energiebereitstellung weiterhin der Rückgriff auf fossile Brennstoffe, wie Kohle, Öl und Erdgas, unverzichtbar bleiben. Bei konventionellen Kraftwerkstechnologien werden jedoch Treibhausgase freigesetzt, während gleichzeitig deren Reduzierung weltweit hohe Priorität hat. Zur Lösung dieses Zielkonflikts werden 'Carbon Capture and Storage' (CCS)-Methoden diskutiert, wobei die Oxyfuel-Verbrennung eine der vielversprechendsten Technologien zur CO2-Abscheidung darstellt. Bei diesem Verfahren wird der Brennstoff anstelle von Luft mit einem Gemisch aus Sauerstoff und rezirkuliertem Rauchgas verbrannt, um so ein hoch CO2-haltiges Abgas zu erzeugen, das nach weiteren sekundären Reinigungsschritten abgetrennt werden kann. Der Ersatz des Stickstoffanteils der Luft durch CO2 und H2O führt zu einem völlig neuen Verbrennungsverhalten, das auch zu Instabilitäten sowie zum örtlichen Verlöschen der Flamme führen kann. Die korrekte Beschreibung dieses Verbrennungsverhaltens erfordert entsprechende physikalisch und chemisch motivierte Modelle für diese spezielle Gasatmosphäre. Deshalb sollen bis zum Projektende des Sonderforschungsbereichs/Transregio die folgenden Erkenntnisse, Daten und Modelle zur Verfügung stehen: (1) Belastbare Modelle durch grundlegendes Verständnis der beteiligten Prozesse und deren Abhängigkeit von den jeweiligen Einflussparametern, von der Mikroskala bis hin zur skalenübergreifenden Interaktion, (2) Basisdaten zur Vorhersage der Wärmeübertragung von der Flamme an die Wände und Einbauten in Kraftwerkskesseln mit Oxyfuel-Atmosphäre, (3) Verlässliche Berechnungsgrundlagen für die Entwicklung und Auslegung von Brennern und Feuerräumen für Oxyfuel-Kraftwerke mit Feststoffverbrennung. Im Sonderforschungsbereich/Transregio arbeiten Wissenschaftlerinnen und Wissenschaftler der RWTH Aachen, Ruhr-Universität Bochum und TU Darmstadt zusammen.
Neben öffentlich geförderten Projekten werden am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden auch vielfältige bilaterale Forschungsprojekte/Industrieaufträge, die unmittelbar von der Industrie finanziert werden. Dazu gehören u. a. - Textile Verfahrensentwicklung und maschinenbautechnische Umsetzung in Prototypen - Maschinenbautechnische Lösungen für Technische Textilien, insbesondere Schutztextilien, Medizintextilen, Verstärkungstextilien für den Leichtbau und die Betonbewehrung sowie Mobiltextilien - Prozessinnovation und neue Maschinenkonzepte sowie mechatronische Lösungen für Textil- und Konfektionsmaschinen - Beanspruchungsgerechte Auslegung von Textil- und Konfektionsmaschinen sowie -- Modellierung und Simulation von Prozessen - Experimentelle Maschinenuntersuchungen und Entwicklung von anwendungsspezifischen Sensoren und Messsystemen - Modellierung und Simulation von Textilhalbzeugen und Textilprodukten - Entwicklung und Fertigung von innovativen Textilprodukten (Kleinserie) - Durchführung von Trend- und Machbarkeitsanalysen - CAE-Lehrgänge für Anwendungen in der Textil- und Konfektionstechnik - Weiterbildungslehrgänge in der gesamten Wertschöpfungskette textiler Produkte - Durchführung von Textilprüfungen - Anfertigung von Gutachten.
1
2
3
4
5
…
94
95
96