Standorte der vorhandenen Bioernergieanlagen im Landkreis Göttingen. Es handelt sich um Anlagen zur Erzeugung regenerativer Energien (Biogas) aus Biomasse durch Vergärung. Biogas stellt eine wichtige und vielseitige Form der Bioenergie aus der Landwirtschaft dar. Die neuen Anlagen setzen fast ausnahmslos nachwachsende Rohstoffe (NaWaRo) wie Mais, Getreide, Hirse, Zuckerrüben, Sonnenblumen und teilweise Aufwuchs von Grünland mit oder ohne Gülle ein. Biogas wird derzeit überwiegend dezentral produziert und als Strom- und Wärmelieferant genutzt. Aufgrund dieser Dezentralität der Anlagen, die dadurch begründet ist, dass das primäre Ausgangsmaterial für die Biogaserzeugung wie Gülle oder Energiepflanzen aufgrund der niedrigen Energiedichte aus ökonomischen Gründen in der Regel nicht über längere Distanzen transportiert werden kann, ist die Integration guter Wärmenutzungskonzepte nicht immer möglich.
Der Datensatz enthält Informationen zu Nutzung und Oberflächenmaterial der einzelnen Objekte im Straßenraum der Bezirks- und Hauptverkehrsstraßen. In der Regel sind im Datensatz alle Objekte im Bereich des Tiefbauvermögens der FHH enthalten. Flächen im Zuständigkeitsbereich der Autobahn GmbH und des Hafens sind nicht enthalten. Flächen, die eindeutig zum städtischen Straßenraum gehören, aus verschiedenen Gründen aktuell aber rechtlich nicht dem Tiefbauvermögen zugerechnet werden, sind ebenfalls enthalten und werden mit dem Attribut "Fremdeigentum" gekennzeichnet. Enthaltene Attribute: Bezirksnummer, Bezirk, Stadtteilnummer, Stadtteil, Straßenname, Straßentyp, Kategorie, Nutzungsnummer, Nutzung, Inhaltsnummer, Inhalt (Oberflächenmaterial), Ebenennummer, Ebene (Lage regulär auf Straßenebene oder darüber bzw. darunter), Fremdeigentum, Quelle, Bemerkung, Fläche (in m^2), Objekt-ID und Stand der Erfassung. Die Ersterfassung der Feinkartierung Straßen erfolgte auf Grundlage einer Luftbilddigitalisierung in den einzelnen Bezirken zwischen 2013 und 2021. Die Pflege der Daten erfolgt seit 2022 kontinuierlich anhand von Planunterlagen, Luft- und Befahrungsbildern durch den Landesbetrieb Geoinformation und Vermessung im Auftrag der Behörde für Verkehr und Mobilitätswende. Die Aktualität des jeweiligen Objektes ist den Attributen zu entnehmen. Es kann keine Gewähr für die Richtigkeit aller Daten übernommen werden. Aufgrund der Aktualität des Datensatzes kann keine rechtssichere bzw. tagesaktuelle Aussage getroffen werden.
01.11.1 Regionale Seltenheit der Bodengesellschaften Beschreibung Im Interesse des Erhaltes einer großen Standortvielfalt ist es anzustreben, den Bestand möglichst vieler unterschiedlicher Böden zu sichern. Mit dem Kriterium Seltenheit wird die flächenmäßige Verbreitung einer Bodengesellschaft im Land Berlin beschrieben. Im Berliner Stadtgebiet treten Böden in unterschiedlicher Häufigkeit auf. Mit Hilfe der Bodengesellschaftskarte kann eine Übersicht über die Verbreitung und damit Seltenheit bzw. Häufigkeit von Bodengesellschaften gegeben werden. Eine Bodengesellschaft ist um so gefährdeter, je geringer ihr jeweiliger Flächenanteil ist, d.h. mit abnehmendem Flächenanteil steigt der Gefährdungsgrad. Die Bewertung der Seltenheit bezieht sich ausschließlich auf Bodengesellschaften und nicht auf einzelne Bodentypen. So können an sich seltene Bodentypen auch innerhalb von weniger seltenen bis häufig vorkommenden Bodengesellschaften auftreten und umgekehrt. Methode Die Ermittlung der flächenmäßigen Anteile der einzelnen Bodengesellschaften erfolgte mittels der im Informationssystem Stadt und Umwelt vorliegenden Daten zu den Flächengrößen. Flächen von Straßen und Gewässern wurden nicht berücksichtigt. Die Flächengrößen wurden für die einzelnen Bodengesellschaften aufsummiert und zur betrachteten Gesamtfläche in Beziehung gesetzt. Im Ergebnis liegen Werte zu den Flächenanteilen der jeweiligen Bodengesellschaften in Prozent der Gesamtfläche vor. Zur Bewertung der Seltenheit der Böden wurde die von Stasch, Stahr und Sydow (1991) dargestellte Verfahrensweise gewählt. Die Bewertung erfolgte nach dem flächenmäßigen Auftreten der Bodengesellschaften in Berlin. Die Einstufung der Seltenheit der Böden erfolgte in fünf Kategorien von “sehr selten” bis “sehr häufig” (Tab. 1). Die Sammelgesellschaften ( vgl. Karte 01.01 ) wurden, wie die zur Sammelgesellschaft gehörige Bodengesellschaft, mit der geringsten flächenhaften Verbreitung bewertet. Die Konzept-Bodengesellschaft 2471 [49a] wurde, wie die Bodengesellschaft 2470 [49], in die Kategorie “häufig” eingestuft. 01.11.2 Besondere naturräumliche Eigenart Beschreibung Die eiszeitlichen Ablagerungen haben dem Berliner Raum eine besondere naturräumliche Eigenart verliehen, die sich von anderen Landschaften Deutschlands deutlich unterscheidet. Auffällig im Landschaftsbild sind vor allem geomorphologische Besonderheiten wie Toteissenken, End- und Stauchmoränen, Dünen und ehemalige glaziale Schmelzwasserrinnen. Toteissenken entstanden durch später ausschmelzende Resteisblöcke der letzten Eiszeit und stellen heute runde, zum Teil noch wassergefüllte Vertiefungen dar, die grundwasserbeeinflusste Böden und Moorgesellschaften aufweisen. Lehmige Böden mit Sandkeilen, bei denen in der Späteiszeit Trockenrisse durch eingewehten Flugsand verfüllt wurden, liegen auf ungestörten Geschiebemergelhochflächen und sind im Luftbild als regelmäßiges Polygonnetz erkennbar. End- und Stauchmoränen sind Aufschüttungsmoränen, die sich bei einem Gleichgewicht von Nachschub und Abschmelzen des Eises an seinen Rändern bildeten. In der Landschaft stellen sie heute Höhenrücken und Hügel dar. Die spät- und nacheiszeitlichen Dünen sind noch deutlich in ihrer Form erkennbar, aber durch die Bedeckung mit Vegetation kaum noch in Bewegung. Die glazialen Schmelzwasserrinnen sind zum Teil erhalten und bilden Seenketten und Feuchtgebiete. Die Bodenentwicklungen und vorkommenden Bodengesellschaften, die eng mit der Morphologie und dem Ausgangsmaterial verknüpft sind, spiegeln hier die naturräumlichen Besonderheiten und Eigenarten wieder. Methode Es werden ausschließlich Bodengesellschaften berücksichtigt, die an eiszeitlich geprägte geomorphologische Besonderheiten gebunden sind und sich ungestört aus den eiszeitlichen Ablagerungen entwickeln konnten. Böden mit besonderer Eigenart dürfen anthropogen nur wenig überprägt sein, daher wurden nur naturnahe Bodengesellschaften berücksichtigt (vgl. Legende zu Karte 01.01 ). Böden aus Auffüllungen und Aufschüttungen oder umgelagertem Bodenmaterial erhalten keine Kennzeichnung der naturräumlichen Eigenart. Eine Zusammenstellung der Bodengesellschaften, die aufgrund ihres Ausgangsmaterials, ihrer besonderen Morphologie und der weitgehend ungestörten Bodenentwicklung eine naturräumliche Eigenart darstellen, ist in Tab. 1 zusammengefasst. Hierbei handelt es sich vor allem Moränenhochflächen mit Sandkeilen, Moränenhügel, Schmelzwasserrinnen mit Grundwasserböden und Mooren, Flussauen mit Auenböden, Mudden und Torfen sowie Dünen. Die in der Tab. 1 aufgeführten Bodengesellschaften erhalten eine positive Bewertung hinsichtlich der naturräumlichen Eigenart. Alle anderen Bodengesellschaften weisen keine besondere naturräumliche Eigenart auf. 01.11.3 Naturnähe Beschreibung Im Berliner Stadtgebiet sind Böden in großem Ausmaß durch menschliche Eingriffe stark verändert. Mit dem Kriterium Naturnähe wird das Ausmaß der Veränderungen gegenüber dem natürlichen Ausgangszustand beschrieben. Als Veränderungen werden in diesem Zusammenhang insbesondere Vermischungen der natürlichen Horizontierung der Böden, der Abtrag von Bodenmaterial oder die Überlagerung mit Fremdmaterialien verstanden. Stoffeinträge und Grundwasserabsenkungen bleiben hier unberücksichtigt. Mit Hilfe der Bodengesellschaftskarte und Angaben über die Flächennutzung wird eine Übersicht über das Ausmaß der anthropogenen Veränderungen und damit der Naturnähe von Böden und Bodengesellschaften in Berlin gegeben. Diesem Kriterium kommt insofern eine besondere Bedeutung zu, als davon auszugehen ist, dass sich natürliche Bodencharakteristika und die Vielfalt von Bodeneigenschaften vor allem an wenig veränderten Standorten erhalten haben, während der Einfluss des Menschen zu einer Homogenisierung von Bodentypen und deren Eigenschaften geführt hat. Bereits bei der Bildung der Legendeneinheiten der Bodengesellschaftskarte wird daher grob zwischen naturnahen und anthropogen geprägten Bodengesellschaften unterschieden. Methode Zur Ermittlung der Naturnähe wurden von Blume und Sukopp (1976) Hemerobiestufen für Böden in Anlehnung an den Hemerobiebegriff aus der Vegetationskunde eingeführt. Danach wurden verschiedene Landnutzungsformen nach dem Grad des Kultureinflusses auf Ökosysteme in sogenannte Hemerobiestufen eingegliedert. Dieses System nutzte Grenzius (1987) zur Beschreibung des anthropogenen Einflusses auf Böden und Bodengesellschaften in Hinsicht auf die Karte der Bodengesellschaften von Berlin (West) von 1985. In Grenzius (1987) wurde eine differenziertere Untergliederung der Hemerobiestufen in Abhängigkeit von Flächennutzungen durchgeführt (vgl. Tab. 1). Ausgangspunkt war, dass insbesondere die spezifischen Nutzungen der Flächen durch den Menschen Art und Umfang der Veränderung und Zerstörung des natürlichen Bodens verursachen. In der Tab. 1 ist die Einstufung der Flächen in Abhängigkeit von ihrer Nutzung durch die verschiedenen Autoren dargestellt. Da in Berlin völlig unveränderte Böden nicht mehr existieren, blieben die Kategorien der unveränderten oder sehr wenig veränderten Böden unberücksichtigt. Entsprechend wurden für die Bewertung der Berliner Böden die Kategorien unter Berücksichtigung der Einstufungskriterien von Blume (1990), Grenzius (1985) und Stasch, Stahr, Sydow (1991) neu festgelegt. Für die Bestimmung der Naturnähe der Böden wurden Daten zu Bodengesellschaften, Nutzung, Flächentyp und zum Versiegelungsgrad verwendet. Aus diesen Werten wurden in einem ersten Aggregationsschritt eine automatisierte Einstufung vorgenommen, indem bestimmten Kombinationen aus Bodengesellschaften, Nutzungen und Versiegelungsgraden, ggf. unter Verwendung des Flächentyps, die entsprechenden Bewertungen hinsichtlich der Naturnähe (Stufen 1-10 nach Grenzius entsprechend Tab. 1) zugeordnet wurden. Für ausgewählte Flächennutzungen wie z.B. Grün- und Parkanlagen, Brachflächen usw. war eine individuelle Bewertung der Naturnähe erforderlich. Böden von Park- und Grünanlagen und von Brachflächen können in sehr unterschiedlichem Umfang verändert worden sein. Während Böden in der Innenstadt in der Regel stark verändert bzw. auf anthropogen geschüttetem Material völlig neu entstanden sind, finden sich im Außenbereich bei gleicher Nutzung vielfach naturnahe Böden mit z.T. sehr geringen Veränderungen. Die Naturnähe dieser Flächen wurde daher individuell unter Zuhilfenahme topographischer Karten, Schutzgebietskarten und Gutachten ermittelt. Für die Darstellung in der vorliegenden Karte erfolgte eine Bewertung und Zusammenfassung in vier Stufen, von sehr gering bis hoch (vgl. Tab. 2). 01.11.4 Austauschhäufigkeit des Bodenwassers Beschreibung Die Austauschhäufigkeit des Bodenwassers gibt an, wie oft das in der belebten Bodenzone vorhandene Wasser durch das zugeführte Niederschlagswasser ausgetauscht wird. Je geringer die Austauschhäufigkeit, desto länger ist die Verweilzeit des Wassers im Boden. Längere Verweilzeiten wirken ausgleichend auf die Grundwasserspende und erlauben einen stärkeren Abbau bestimmter eingetragener Stoffe. Methode Die Austauschhäufigkeit des Bodenwassers wurde als Verhältnis (Quotient) zwischen der Versickerung (in mm pro Jahr, langjährige Mittelwerte) und der nutzbaren Feldkapazität des effektiven Wurzelraums (mm) berechnet. Die Versickerung wurde mit Hilfe des Abflussbildungsmodells ABIMO der Bundesanstalt für Gewässerkunde als Differenz zwischen Niederschlag und Verdunstung errechnet. In dieses Modell gehen flächendifferenzierte Daten zu Niederschlag, Flächennutzung, Vegetationsstruktur, Feldkapazitäten (aus den Bodenarten) und Flurabständen (Abstand der Erdoberfläche zum Grundwasser) ein (Glugla et al 1999) (vgl. Karte 02.13.4 ). Für die Ermittlung der Versickerung im Zusammenhang mit der Bewertung von Bodenfunktionen blieb der Einfluss der Versiegelung hier unberücksichtigt, d.h. die Berechnung erfolgte unter der Annahme gänzlich unversiegelter Verhältnisse. In der Nachbarschaft versiegelter Böden erhöhen sich die Austauschhäufigkeiten durch abfließendes Niederschlagswasser nochmals deutlich. Die nutzbare Feldkapazität des effektiven Wurzelraumes wurde aus der Bodengesellschaftskarte und den Flächennutzungen unter Verwendung der bei Grenzius (1987) angegebenen schematischen Bodenprofile der Bodengesellschaften abgeleitet. Da die Austauschhäufigkeit des Bodenwassers nur selten ermittelt wird, liegen keine allgemeingültigen Bewertungsmaßstäbe vor. Die in Berlin ermittelten Werte wurden daher so bewertet, dass die einzelnen Stufen einen ähnlichen Flächenanteil im Stadtgebiet einnehmen. 01.11.6 Nährstoffspeichervermögen / Schadstoffbindungsvermögen Beschreibung Das Speicher- und Bindungsvermögen beschreibt die Fähigkeit eines Bodens, Nähr- oder Schadstoffe an der organischen Substanz oder an den Tonmineralien des Bodens zu binden. Sie hängt vom Tongehalt, der Art der Tonminerale und dem Humusgehalt ab. Die organische Substanz in Form von Humus und Torf hat eine deutlich höhere Bindungsfähigkeit als Tonminerale. Diese ist jedoch vom pH-Wert abhängig und sinkt mit abnehmendem pH-Wert. Eine hohe Bindungsfähigkeit für Nähr- und Schadstoffe haben daher Böden mit hohem Tongehalt und einem hohem Anteil an organischer Substanz bei schwach saurem bis neutralem pH-Wert. Methode Das Nährstoffspeichervermögen / Schadstoffbindungsvermögen der Böden wird aus den Stufen der ermittelten effektiven Kationenaustauschkapazität, die die o. g. Kennwerte weitestgehend beinhalten, abgeleitet (vgl. Karte 01.06.9 ). Die Bewertung des Bindungsvermögens erfolgt in drei Stufen nach Tab. 1 aus den Stufen der effektiven Kationenaustauschkapazität, wobei die Stufen 1 und 2 als gering, 4 und 5 als hoch zusammengefasst wurden. 01.11.7 Nährstoffversorgung Beschreibung Die Nährstoffversorgung eines Standortes ergibt sich aus dem Vorrat an Nährstoffen und den für die Pflanzen verfügbaren Nährstoffen. Der Nährstoffvorrat besteht aus den vorhandenen Mineralen des Ausgangsgesteins, die bei Bodenverwitterung freigesetzt werden. Die aktuell verfügbaren Nährstoffe als basische Kationen Calcium (Ca), Magnesium (Mg), Kalium (K) und Natrium (Na) in der Bodenlösung können aus der Summe der austauschbaren Kationen (S-Wert) (vgl. Karte 01.06.8 ) abgeleitet werden. Dabei kann nur eine Aussage über die Gesamtmenge der basischen Kationen getroffen und keine Angabe über das Verhältnis der Kationen untereinander gemacht werden. So kann z.B. ein Standort eine gute Nährstoffversorgung mit Ca und Mg, aber einen Mangel an K aufweisen. Die Nährstoffe Phosphor (P) und Stickstoff (N), die näherungsweise über den Gehalt der organischen Substanz bestimmt werden könnten, werden hier nicht berücksichtigt, sondern ausschließlich der Anteil basischer Kationen. Methode Um eine grobe Aussage über die aktuelle Nährstoffversorgung der Bodengesellschaften zu erhalten, werden die Stufen der Summe der austauschbaren Kationen des Oberbodens zur Bewertung herangezogen (vgl. Karte 01.06.8 ). Die vereinfachte Bewertung der Nährstoffversorgung durch die Basensättigung erfolgt nach Tab. 1 für die Stufen 1 bis 6 als nährstoffarm, für die Stufe 7 als Mittel und für die Stufen 8 bis 10 als nährstoffreich. 01.11.8 Wasserversorgung Beschreibung Die Wasserversorgung der Pflanzen durch den Boden wird durch seine Fähigkeit bestimmt, Niederschlagswasser im Wurzelbereich halten und wieder an die Pflanzenwurzeln abgeben zu können. Die Wassermenge, die der Boden festhalten kann, hängt von der Bodenart, dem Humusgehalt, der Lagerungsdichte und dem Grobbodenanteil ab. Bei Böden, die Grundwasseranschluss haben, kann das aus dem Grundwasser aufsteigende Kapillarwasser die Wasserversorgung der Pflanzen entscheidend begünstigen. Zur Bewertung der Böden hinsichtlich ihrer Wasserversorgung, wird die durchschnittliche nutzbare Feldkapazität der Flachwurzelzone herangezogen. Methode Die Wasserversorgung der Standorte und Bodengesellschaften wird aus der mittleren nutzbaren Feldkapazität (nFk) der Flachwurzelzone (0-3 dm) abgeleitet (vgl. Karte 01.06.2 ), da dieses Kriterium nur zur Bewertung der Ertragsfunktion für Kulturpflanzen (vgl. Karte 01.12.2 ) und der Lebensraumfunktion für naturnahe und seltene Pflanzengesellschaften (vgl. Karte 01.12.1 ) benötigt wird. Die Wasserversorgung für Tiefwurzler (> 3 bis 15 dm), wie z.B. Bäume, wird hier nicht eingeschätzt. Die Bewertung ergibt sich nach Tab. 1. Um den kapillaren Aufstieg zu berücksichtigen, wird bei einem Grundwasserflurabstand < 0,8 m die Bewertung um eine Stufe erhöht (wenn sie nicht bereits als hoch bewertet wird). 01.11.9 Filtervermögen Beschreibung Unter dem Filtervermögen eines Bodens wird die Fähigkeit verstanden, gelöste und suspendierte Stoffe im Boden festzuhalten und sie nicht in das Grundwasser gelangen zu lassen. Entscheidend ist dabei die Bodenart und die daraus ableitbare Geschwindigkeit mit der sich das Niederschlagswasser im Boden mit der Schwerkraft bewegt. Bei kiesigen und sandigen Böden mit hoher Wasserdurchlässigkeit ist daher das Filtervermögen gering, da im wassergesättigten Boden das Wasser über 2 Meter pro Tag wandert, während die Wanderungsgeschwindigkeit bei Böden aus Geschiebelehm nur rd. 0,1 bis 0,2 Meter pro Tag beträgt. Ob und wie viel Wasser sich aber tatsächlich in Richtung Grundwasser bewegt (abhängig von der Verdunstung / Vegetation), ist bei der Bewertung des Filtervermögens nicht berücksichtigt worden. Dies wird z.T. beim Kriterium Austauschhäufigkeit des Bodenwassers (vgl. Karte 01.11.4) berücksichtigt. Methode Das Filtervermögen der Böden wird anhand der gesättigten Wasserdurchlässigkeit (kf-Werte) ermittelt (vgl. Karte 01.06.10 ). Die Mächtigkeit der Filterstrecke bis zum Grundwasser findet bei diesem Verfahren keine Berücksichtigung. Die Bewertung erfolgt in drei Kategorien anhand Tab. 1. Dabei erhalten Böden mit hoher gesättigter Wasserdurchlässigkeit mit den kf-Stufen 4-6 ein geringes Filtervermögen und schwer durchlässige Böden mit den kf-Stufen 1-2 eine hohe Bewertung. 01.11.10 Bindungsstärke für Schwermetalle Beschreibung Die Bindung von Schwermetallen erfolgt durch Adsorption an Huminstoffe, Tonminerale und Sesquioxide. Die Löslichkeit der Schwermetalle ist von deren Gesamtgehalt und vom pH-Wert der Bodenlösung abhängig. Generell nimmt bei zunehmender Versauerung die Löslichkeit der Schwermetallverbindungen zu. Dies hängt damit zusammen, dass die Metalle dazu neigen, bei höheren pH-Werten stabile Oxide zu bilden oder durch Fällung schwer lösliche Bindungsformen, z.B. PbCaCO 3 , einzugehen. Als ein Kriterium zur Bewertung der Filter- und Pufferfunktion (vgl. Karte 01.12.3 ) wird die relative Bindungsstärke von Schwermetallen herangezogen. Die einzelnen Schwermetalle werden sehr unterschiedlich gebunden (DVWK, 1988). Cadmium geht vergleichsweise schnell in Lösung und ist als Hintergrundbelastung in Berlin verbreitet und hinsichtlich seiner Schädlichkeit relevant. Deswegen und in Anlehnung an die von der Behörde für Umwelt und Gesundheit Hamburg (2003) vorgeschlagene Methode wird hier die Bindungsstärke des leicht löslichen Cadmium als Maß der Bindungsstärke für Schwermetalle verwendet. Methode Zur Beurteilung der Empfindlichkeit der Böden gegenüber Metallbelastungen wurde von Blume und Brümmer (1987, 1991) ein Konzept entwickelt, das nun flächendeckend für Berlin angewandt wird. Prinzip der Prognose ist die relative Bindungsstärke einzelner Metalle in Abhängigkeit vom pH-Wert der Bodenlösung, ausgehend von den Verhältnissen eines sorptionsschwachen, humusarmen Sandbodens. Über Zu- und Abschläge werden höhere Humus-, Ton- und Eisenhydroxidgehalte berücksichtigt. Die Berechnung erfolgt bis 1 m Tiefe. Hierzu werden schrittweise Kennwerte für den Ober- und Unterboden in Abhängigkeit vom pH-Wert, vom Humusgehalt und vom Tongehalt ermittelt, deren Summe die Bindungsstärke BS SM ergibt. Dieser Wert erfährt noch eine Korrektur durch den Grobbodenanteil und die Horizontmächtigkeit und kann Werte zwischen 0 und 5 annehmen, die keine bis zu sehr hoher Bindungsstärke für Schwermetalle darstellen. 01.11.11 Puffervermögen im organischen Kohlenstoffhaushalt Beschreibung Der Boden stellt im globalen organischen Kohlenstoffkreislauf einen wesentlichen Puffer, teilweise auch eine Senke dar, die die Freisetzung von CO 2 verringert und dadurch einen Beitrag zur Minderung der globalen Erwärmung zu leisten vermag. Diese Leistung des Bodens ist an seinen Humus- und Torfanteil gebunden, der sich durch Einträge vor allem aus der Vegetation bildet. Eine Erhöhung dieses Anteils mindert die CO 2 -Freisetzung, wohingegen die Zersetzung von Humus und Torf eine CO 2 -Quelle darstellt. Unter natürlichen Bedingungen stellt sich langfristig meist ein Gleichgewicht zwischen Auf- und Abbau von Humus ein. Eine Erhöhung des Humus- und Torfanteils erfolgt bei sich entwickelnden, relativ jungen Böden und in intakten Mooren. Zerstörungen von Bodenstrukturen, intensive agrarische Nutzung und (bei Mooren) Entwässerung führen zum Abbau der organischen Substanz und somit zur Freisetzung von CO 2 und Methan (CH 4 ). Behutsame agrarische und gärtnerische Nutzung und spontane Entwicklung städtischer (Roh-) Böden führen zu einer Akkumulation organischer Substanz und stellen somit eine CO 2 -Senke dar. In Hinblick auf den organischen Kohlenstoffhaushalt könnten somit zwei Bodenformen mit hohem Puffervermögen ausgezeichnet werden: Rohböden, die bei ungestörter Entwicklung noch viel organischen Kohlenstoff zu binden vermögen sowie Böden mit aktuell hohem Humus- bzw. Torfgehalt, deren Störung bzw. Zerstörung zu einer Freisetzung von CO 2 führt. Ersteres, die Bindung von organischem Kohlenstoff in jungen Böden, ist ein langsamer Prozess, letzteres, die Freisetzung von CO 2 nach Zerstörung der Bodenstruktur, geschieht vergleichsweise schnell. Diese Freisetzung wird deswegen als vorrangig angesehen und hier deswegen als einziges Kriterium bewertet. Die insgesamt in den Berliner Böden gespeicherten Torf- und Humusmengen entsprechen ca. 17,6 Mio. t CO 2 . Die Berliner CO 2 -Emissionen betragen ca. 16,5 Mio. t/Jahr (Stand 2015, Amt für Statistik Berlin-Brandenburg, 2018). Methode Die Bewertung des Puffers bezüglich des organischen Kohlenstoffhaushaltes erfolgt auf Basis der Stufen des organischen Kohlenstoffvorrates (vgl. Karte 01.06.6 ).
Umweltbundesamt legt langfristige Strategie für den nachhaltigen Einsatz von Biomasse vor Das UBA-Forschungsprojekt Bio-global zeigt eine langfristige Strategie auf, mit der die Produktion und energetische Nutzung von Biomassen im Sinne der Nachhaltigkeit erfolgen kann. "Bioenergie kann nur dann sinnvoll sein, wenn deutlich weniger Treibhausgase entstehen als bei fossilen Energieträgern und keine Nachteile für die Umwelt auftreten.“ sagt Jochen Flasbarth, Präsident des Umweltbundesamtes. Das Umweltbundesamt fordert ein Umdenken beim Einsatz von Biomassen. Langfristig sollen weltweit alle Biomassen nachhaltig angebaut, verarbeitet und eingesetzt werden. Für dieses Ziel setzt sich das UBA mit weiteren Forschungsarbeiten ein. Ein wesentlicher Baustein in der Langfriststrategie ist die Mehrfachnutzung von Biomassen vor der energetischen Nutzung. Ab dem 1.1.2011 müssen Hersteller von Biokraftstoffen und Biostrom einen verbindlichen Nachweis über die nachhaltige Herstellung des Bioenergieträgers liefern. In der Erneuerbaren-Energien-Richtlinie 2009 hat die EU für Biokraftstoffe und flüssige Bioenergieträger Nachhaltigkeitskriterien für den Klima - und Biodiversitätsschutz festgelegt. Biomasse wird heute vorwiegend direkt zu Strom, Wärme und Kraftstoff umgewandelt. Biomasse ist aber eine knappe Ressource, daher sollten Nachwachsende Rohstoffe wie zum Beispiel Holz oder Pflanzenöle zunächst stofflich - also zur Herstellung von Produkten - genutzt werden. Anstelle des heute vorherrschenden Anbaus von Biomasse zur direkten Umwandlung in Bioenergie sollte daher künftig die Nutzungskaskade etabliert werden. Das bedeutet: Erst nach einer Mehrfachnutzung werden die Abfall- und Reststoffe für die Energiegewinnung eingesetzt. So sollte zum Beispiel Holz zuerst stofflich in Form von Möbeln oder Bauholz verarbeitet werden, mithin im Sinne der Nutzungskaskade als Ausgangsmaterial für die Holzwerkstoffindustrie Verwendung finden, und erst danach energetisch genutzt werden. Langfristig sollen Nachwachsende Rohstoffe vorrangig auf Flächen angebaut werden, die sich für die Nahrungs- und Futtermittelproduktion nicht oder nur eingeschränkt eignen. Auf degradierten Flächen kann mit dem Biomasseanbau viel Kohlenstoff gebunden werden. Der Anbau von Energiepflanzen darf nicht negativ auf die Biodiversität wirken und keine indirekten Landnutzungsänderungen auslösen. „Aus Umweltschutzgründen ist es wichtig, dass der Anbau von Energiepflanzen in extensiver Form geschieht und ohne negative Wirkungen auf Böden und den Wasserhaushalt.“ sagt Jochen Flasbarth. Ein weiterer strategischer Ansatz ist es, verbindliche projektbezogene Nachhaltigkeitsstandards für internationale und bilaterale Finanzierungsinstitute zu entwickeln. Speziell geht es um Nachhaltigkeitsanforderungen für Boden, Wasser und Biodiversität und die Einhaltung von Sozialstandards. Solche projektbezogenen Standards sind unberührt von WTO-Regelungen und können auch lokale Umwelt- sowie soziale Fragen umfassen. Langfristig müssen Nachhaltigkeitsanforderungen für alle Biomassen etabliert werden. Das UBA setzt sich dafür mit weiteren Forschungsprojekten ein. Die ersten Ergebnisse und Erfahrungen mit der Bioenergiezertifizierung bieten eine Chance, Nachhaltigkeitsanforderungen für alle Biomassen auf globaler Ebene zu entwickeln und für alle gehandelten Agrarrohstoffe zu verankern. Bislang ist die Global Bioenergy Partnership (GBEP), eine G8-Initiative, die einzige Institution die Nachhaltigkeitsstandards für Bioenergie international abstimmt. Darum ist es nötig, auch in andere bestehende globale Konventionen wie zum Beispiel den clean development mechanism (CDM) des Kyoto-Protokolls zur UN -Klimarahmenkonvention sowie in die Diskussion um REDD (reduced emissions from deforestation and forest degradation) Nachhaltigkeitskriterien für die Biomasse zu verankern. Der Forschungsbericht „Entwicklung von Strategien und Nachhaltigkeitsstandards zur Zertifizierung von Biomasse für den internationalen Handel“ erschien in der Reihe UBA-Texte als Nr. 48/2010 (deutsch) und Nr. 49/2010 (englisch).
Derzeit bestehen Datenlücken zu Arzneimittelrückständen in Klärschlämmen und daraus erzeugten Phosphor-Recyclingprodukten (P- Rezyklate ). Ziel des Projektes war es, Phosphorrückgewinnungs- und Karbonisierungsanlagen in Deutschland hinsichtlich folgender Arzneimittel Ciprofloxacin, Levofloxacin, Clarithromycin, Carbamazepin, 17-α-Ethinylestradiol, Diclofenac, Cefuroxim, Sulfamethoxazol, 17-β-Estradiol, Metoprolol und Bezafibrat zu untersuchen. Die Studie zeigt klar, dass Phosphor-Rückgewinnungsverfahren die Arzneimittelbelastung in P-Rezyklaten im Vergleich zu den Ausgangsmaterialien wie Klärschlamm signifikant reduzieren. Die Ergebnisse wurden auf einem technischen Workshop diskutiert. Veröffentlicht in Texte | 31/2019.
Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe
Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe
Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe
Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe
Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe
Origin | Count |
---|---|
Bund | 1812 |
Land | 45 |
Type | Count |
---|---|
Förderprogramm | 1775 |
Text | 54 |
Umweltprüfung | 3 |
unbekannt | 18 |
License | Count |
---|---|
geschlossen | 62 |
offen | 1778 |
unbekannt | 10 |
Language | Count |
---|---|
Deutsch | 1846 |
Englisch | 296 |
unbekannt | 3 |
Resource type | Count |
---|---|
Archiv | 6 |
Datei | 7 |
Dokument | 24 |
Keine | 780 |
Webdienst | 2 |
Webseite | 1051 |
Topic | Count |
---|---|
Boden | 1275 |
Lebewesen & Lebensräume | 1137 |
Luft | 1104 |
Mensch & Umwelt | 1850 |
Wasser | 807 |
Weitere | 1843 |