Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Changes in agroecosystem management (e.g. landscape diversity, management intensity) affect the natural control of pests. The effects of agricultural change on this ecosystem service, however, are not universal and the mechanisms affecting it remain to be understood. As biological control is effectively the product of networks of interactions between pests and their natural enemies, food web analysis provides a versatile tool to address this gap of knowledge. The proposed project will utilize a molecular food web approach and examine, for the first time, how changes in plant fertilisation and landscape complexity affect quantitative aphid-parasitoid-hyperparasitoid food webs on a species-specific level to unravel how changes in food web interactions affect parasitoid aphid control. Based on the fieldderived data, cage experiments will be conducted to assess how parasitoid diversity and identity affect parasitoid interactions and pest control, complementing the field results. The work proposed here will take research on parasitoid aphid control one step further, as it will provide a clearer understanding of how plant fertilization affects whole aphid-parasitoid food webs in both simple and complex landscapes, allowing for further improvements in natural pest control.
Deviant behaviour on various levels of the food supply chain may cause food risks. It entails irregular technological procedures which cause (increased probabilities of) adverse outcomes for buyers and consumers. Besides technological hazards and hitherto unknown health threats, moral hazard and malpractice in food businesses represent an additional source of risk which can be termed 'behavioural food risk'. From a regulatory perspective, adverse outcomes associated with deviance represent negative externalities that are caused by the breaking of rules designed to prevent them. From a rational choice perspective, the probability of malpractice increases with the benefits for its authors. It decreases with the probability of detection and resulting losses. It also decreases with bonds to social norms that protect producers from yielding to economic temptations. The design of mechanisms that reduce behavioural risks and prevent malpractice requires an understanding of why food businesses obey or do not obey the rules. This project aims to contribute to a better understanding of malpractice on the restaurant/retail level through comparative case studies and statistical analyses of food inspection and survey data. Accounting for the complexity of economic behaviour, we will not only look at economic incentives but consider all relevant behavioural determinants, including social context factors.
Farm structures are often characterized by regional heterogeneity, agglomeration effects, sub-optimal farm sizes and income disparities. The main objective of this study is to analyze whether this is a result of path dependent structural change, what the determinants of path dependence are, and how it may be overcome. The focus is on the German dairy sector which has been highly regulated and subsidized in the past and faces severe structural deficits. The future of this sector in the process of an ongoing liberalization will be analyzed by applying theoretical concepts of path dependence and path breaking. In these regards, key issues are the actual situation, technological and market trends as well as agricultural policies. The methodology will be based on a participative use of the agent-based model AgriPoliS and participatory laboratory experiments. On the one hand, AgriPoliS will be tested as a tool for stakeholder oriented analysis of mechanisms, trends and policy effects. This part aims to analyze whether and how path dependence of structural change can be overcome on a sector level. In a second part, AgriPoliS will be extended such that human players (farmers, students) can take over the role of agents in the model. This part aims to compare human agents with computer agents in order to overcome single farm path dependence.
Soil microorganisms can mobilize and immobilize phosphorus (P), and therefore strongly affect the availability of P to plants. In this project we hypothesize that the ratio of labile P to microbial P increases during the transition from acquiring to recycling ecosystems. Microbial and plant P uptake will be studied with 33P that will be quantified in microbial and plant biomass as well as in lipids. To what extent microorganisms immobilize and mobilize P during decomposition of soil organic matter will be explored with a 14C/33P labeled monoester. Seasonal dynamics of actual and potential P mineralization (33P dilution and phosphatase activity), and microbial P immobilization will be studied with soils of the transition from acquiring to recycling ecosystems. The contribution of litter-derived P will be explored in a litter exclusion experiment in the field. Spatial patterns of microbial and plant P mineralization in the rhizosphere will be explored by analyses of areas of high acid and alkaline (=microbial-derived) phosphatase activity by soil zymography, and their relations with areas of high rhizodeposition (14C imaging). In conclusion, we will analyse mechanisms of actual and potential microbial P mineralization and immobilization, localization, and consequences for P uptake by plants.
Chlorinated ethylenes are prevalent groundwater contaminants. Numerous studies have addressed the mechanism of their reductive dehalogenation during biodegradation and reaction with zero-valent iron. However, despite insight with purified enzymes and well-characterized chemical model systems, conclusive evidence has been missing that the same mechanisms do indeed prevail in real-world transformations. While dual kinetic isotope effect measurements can provide such lines of evidence, until now this approach has not been possible for chlorinated ethylenes because an adequate method for continuous flow compound specific chlorine isotope analysis has been missing. This study attempts to close this prevalent research gap by a combination of two complementary approaches. (1) A novel analytical method to measure isotope effects for carbon and chlorine. (2) A carefully chosen set of well-defined model reactants representing distinct dehalogenation mechanisms believed to be important in real-world systems. Isotope trends observed in biotic and abiotic environmental dehalogenation will be compared to these model reactions, and the respective mechanistic hypotheses will be confirmed or discarded. With this hypothesis-driven approach it is our goal to elucidate for the first timdehalogenation reactions.
Almond in California represents an agroecosystem pollinated solely by a single species, the European honey bee, a species that is becoming increasingly difficult and expensive to manage due to substantial, unpredictable mortality. Therefore, sustainable and high output production require a more integrated approach that diversifies sources of pollination. For this purpose, detailed data of our understanding how diversity can stabilize pollination are required. The project will identify alternative wild pollinator species and collect high quality data contributing to our understanding of how diversity (pollen and insects) can bolster honey bee pollination during stable and unstable climatic conditions. The research will be carried out on almond orchards in Northern California known to be either pollinator species rich (up to 30 species) or depauperate (honey bees only). The replicated extremes in pollinator diversity represent a unique opportunity to study the effects of diversity on pollination in real agroecosystems combined with laboratory and glasshouse experiments. The overall goal is to provide basic research that is essential for our general understanding of how insect diversity can affect high-quality pollination under land use and climate change.
Pilze sind eine der am diversesten, jedoch am wenigsten untersuchten mikrobiellen Gruppen in marinen Gewässern. Eine Untergruppe der Pilze, kurz als Chytridien bekannt, umfasst häufig auftretende Parasiten auf Phytoplankton, welche eine starke Belastung für das Phytoplanktonwachstum, die Entwicklung von Algenblüten und deren Populationsdynamiken darstellen. Parasitäre Chytridien befallen alle Hauptgruppen von Phytoplankton und treten bevorzugt in Küstenregionen mit hoher Phytoplanktonbiomasse und Produktivität auf. Die Auswirkungen von parasitären Pilzen auf Stoffkreisläufe und die Funktion von Ökosystemen sind jedoch kaum bekannt bzw. quantifiziert. Die Emmy Noether-Nachwuchsgruppe wird die funktionelle und quantitative Rolle parasitärer Pilze für die Phytoplanktonproduktivität und den Stoffkreislauf in Brack- und Meerwasser untersuchen. Unsere Ziele sind (1) Betrachtung der Wechselwirkungen zwischen Phytoplankton und Chytridien auf Einzelzell-Ebene, (2) Untersuchungen der integrativen Rolle von Chytridien in aquatischen Nahrungsnetzen und (3) Aufklärung der Auswirkungen von parasitären Pilzen auf Remineralisierungs- und Sedimentationsprozesse. Unser umfassender Ansatz beinhaltet experimentelle Studien mit Phytoplanktonâ€ÌPilz Co-Kulturen sowie mit natürlichen Planktongemeinschaften, mittels Analysen auf Zell- und Mikoskalen-Ebene bis hin zu mesoskaligen Stoffflüssen entlang der Wassersäule. Im Wesentlichen werden wir den Transfer von Kohlenstoff und Stickstoff vom Phytoplankton durch das pelagische Nahrungsnetz innerhalb der photischen Zone bis hin zum Absinken als Detritus in die Tiefe verfolgen. Das Projektergebnis soll ein ganzheitliches Verständnis der Rolle von Chytridien an der Basis aquatischer Nahrungsnetze und Produktivität fördern, einschließlich der zugrunde liegenden Mechanismen und Größenordnungen. Angesichts der potenziellen Signifikanz parasitärer Pilze für die Abschwächung von Produktivität, Sinkstoffflüssen aber auch von toxischen Algenblüten in Küstengebieten, sollen die gewonnenen Daten mit lokalen und globalen Stoffkreisläufen verknüpft und in zukünftige Entscheidungen zum Küstenmanagement implementiert werden.
We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.
The detritusphere is an excellent model to study microbial-physicochemical interactions during degradation of the herbicide MCPA. Whereas during the first phase of SPP 1315 we focused on bacterial and fungal abundance at the soil litter interface and carbon flow between different compartments, the second phase will be devoted to elucidating complex regulation mechanisms of MCPA degradation in the detritusphere: (1) At the cellular level, co-substrate availability and laccase abundance might be important regulators, (2) at the community level, bacteria harbouring different classes of tfdA genes might control degradation of MCPA and (3) at the microhabitat level, interaction between MCPA degraders and organo-mineral surfaces as well as transport processes might be important regulators. The concept of hierarchical regulation of MCPA degradation will be included into the modelling of small-scale microbial growth, MCPA transport and MCPA degradation near the soil-litter interface.
| Origin | Count |
|---|---|
| Bund | 258 |
| Type | Count |
|---|---|
| Förderprogramm | 258 |
| License | Count |
|---|---|
| offen | 258 |
| Language | Count |
|---|---|
| Deutsch | 50 |
| Englisch | 248 |
| Resource type | Count |
|---|---|
| Keine | 203 |
| Webseite | 55 |
| Topic | Count |
|---|---|
| Boden | 214 |
| Lebewesen und Lebensräume | 249 |
| Luft | 198 |
| Mensch und Umwelt | 258 |
| Wasser | 196 |
| Weitere | 258 |