Die Gesamtzielstellung des Teilprojektes besteht darin, entscheidende Prozessschritte für eine alternative auf Membrantrennprozessen basierende Produktionsroute für Soda und Natron zu entwickeln und zu erproben. Zentral sind dabei die Abtrennung und Reinigung von CO2 aus Biogas bzw. aus (biogenen) Verbrennungsgasen, die Entwicklung von elektrochemischen Membranverfahren und von Adsorptionseinheiten für die Überführung von Salzsole (NaCl) in Soda-/Natronlösung mittels Salzspaltung/Metathese und die Untersuchung des Einsatzes geothermischer Energie für die weiterhin notwendigen thermische Prozessschritte zur perspektivischen Substitution von Erdgas im Zuge der Produktreinigung und -konfektionierung. Die Prozesse sollen bis TRL 5 entwickelt und erprobt werden. Auf diese Weise ließen sich mehr als eine Mio. t/a CO2 vermeiden. Mit den gewonnenen Daten und Informationen werden eine LCA und die Planung der nächsten Umsetzungsstufe vorgenommen.
Das Ziel der Untersuchungen - die als Fortführung und Ergänzung eines vorhergehenden Projektes zum Einsatz von Keramikmembranen in der kommunalen Abwasserreinigung anzusehen sind - ist die Verbesserung der Durchsatzleistung der Membranen. Dieses Ziel soll durch eine Kombination von angepassten Membranmaterialen, Oberflächeneigenschaften sowie durch die verbesserte Kontrolle der Deckschichtbildung erreicht werden. Die geplanten Untersuchungen sollen Rückschlüsse auf die Membraneigenschaften und insbesondere die Eigenschaften von Stützschicht und Trennschicht bringen. Dazu sollen im Rahmen von orientierenden Untersuchungen im Sommer 2005 verschiedene Kombinationen von Materialien und Produktionsverfahren erprobt werden. Für die Untersuchungen der Material- und Membraneigenschaften wird eine Versuchsanlage in einem kleinen Maßstab ( Versuchsstand) konzipiert, an dem die Eigenschaften der Membran mit Hilfe von Kontaktoren mit kleinem Durchmesser getestet werden.
Das Vorhaben hat zum Ziel Melasse als Rohstoff für die elektrochemische Umsetzung zu Folgeprodukten zu verwenden. Bisher wird Melasse vor allem als Futtermittel oder als Kohlenstoffquelle für Fermentationen verwendet. Sie zeichnet sich durch einen hohen Anteil an Kohlenhydraten aus. Diese sollen durch anodische Oxidation zu Hydroxycarbonsäuren bzw. durch gepaarte Elektrolyse zu Polyolen umgesetzt werden, wobei katalytisch aktive Nickelhydroxidelektroden als innovativer Ansatz zur Anwendung kommen sollen. Dabei kommt es zunächst zu einer Spaltung der Kohlenhydrate und Oxidation zu Hydroxycarbonsäuren, welche anschließend kathodisch hydriert werden (Domino-Oxidationsreduktions-Sequenz, DoORs). Neben den im Mittelpunkt stehenden elektrochemischen Umsetzungen sind Untersuchungen zur Zusammensetzung der Melasse sowie zu den möglichen Reaktionsprodukten notwendig. Dazu werden einerseits Kopplungsmethoden wie LC- und GC-MS eingesetzt sowie direkt an die MS gekoppelte elektrochemische Durchflusszellen (EC-MS). Störende Komponenten, die entweder die elektrochemische Umsetzung verhindern oder zu störenden Nebenprodukten führen, sollen durch eine Vorbehandlung der Melasse abgetrennt werden. Hier kommen Membranverfahren wie Nanofiltration oder Elektrodialyse zum Einsatz. Für die Optimierung der Versuchs- und Prozessbedingungen werden notwendige kinetische Parameter bestimmt und auf Basis einfacher formalkinetischer Modelle die Reaktionen beschrieben. Daneben kommen statistische Methoden der Versuchsplanung zum Einsatz, um die komplexen Zusammenhänge im Hinblick auf Selektivität, Ausbeute und Energieverbrauch zu optimieren. In einem abschließenden Arbeitspaket soll in einem Durchflussreaktor unter GMP-Bedingungen Material im kg-Maßstab für Anwendungsuntersuchungen gewonnen werden.
Das Gesamtziel des hier vorgeschlagenen Projektes besteht im Nachweis und Erprobung eines weitgehend klimaneutralen Verfahrens zur Herstellung von Soda (Na2CO3) und Natron (NaHCO3) betrachtet. Als Carbonatquelle dient dabei reines CO2, welches aus Abgasen oder Biogas gewonnen wird. Ziel des Teilvorhabens ist es, ein Verfahren sowie die zugehörige Anlagentechnik für die CO2-Abtrennung aus gegebenen CO2-Quellen auf der Basis von Membranen mit keramischem Trägermaterial zu entwickeln, welche es erlaubt, Kohlendioxid mit einer durch die nachfolgende Verwendung definierten Reinheit aus Gasgemischen abzutrennen. Es wird momentan von einem CO2-Abgas und Biogas als CO2-Quelle ausgegangen. Die Arbeiten erfolgen im Technikumsmaßstab. Zur Realisierung der o. g. Aufgabenstellung soll eine zweistufige Membrantrennanlage für die Membranen geplant, gebaut und betrieben werden. Die Zweistufigkeit der Membrananlage wird notwendig sein, um die für die Sodaherstellung erforderlichen Reinheit zu erreichen.
MeDORA zielt entsprechend der Vorrangigen Forschungsrichtungen von Mission Innovation auf die beschleunigte Umsetzung umweltfreundlicher Prozesse zur CO2-Abscheidung ab und setzt die im 7. Energieforschungsprogramm 'Innovationen für die Energiewende' des Bundes in Abschnitt 3.15 'Technologien für die CO2-Kreislaufwirtschaft' genannte Zielsetzung der Weiterentwicklung von Komponenten und Werkstoffen für die CO2-Abtrennung konsequent um. In MeDORA soll mittels eines innovativen Membranverfahrens der in Amin-Waschmitteln von CO2-Abtrennungsanlagen gelöste Sauerstoff entfernt werden, um die oxidative Waschmittelzersetzung um 50% zu reduzieren und darüber hinaus den O2-Gehalt im abgetrennten CO2 auf kleiner als 10 ppmv zu begrenzen. Die angestrebte Erhöhung der Waschmittellebensdauer lässt eine Senkung der Betriebskosten für das Waschmittelmanagement um bis zu 70 % erwarten und kann damit die Umweltauswirkungen einer Abscheidungsanlage durch geringe Abfallmengen beim Waschmittelmanagement (Reclaiming) und reduzierte Emissionen (insbesondere des flüchtigen Zersetzungsprodukts NH3) deutlich senken. Die höhere Reinheit des CO2-Produkts erlaubt es die strengen Spezifikationen geologischer Speicherprojekte (z.B. Northern Lights in Norwegen) ohne aufwändige Nachbehandlung zu erfüllen und senkt entsprechend auch die Kosten für CCU-Anwendungen, bei denen O2-Spuren Katalysatoren schädigen. MeDORA, mit 6 Partnern aus 3 europäischen Ländern, wird von einem starken industriebasierten Konsortium geleitet, das die gesamte Wertschöpfungskette abdeckt. Die Langzeittests von MeDORA (TRL 7-8) in Niederaußem, hier erstmalig auch mit innovativen asymmetrischen Membranen, und bei HVC in den Niederlanden stellen die industrielle Anwendbarkeit sicher und werden begleitet von technisch-wirtschaftlichen Analysen, LCA, Vergleich mit anderen Techniken zur O2-Reduzierung im Waschmittel und im Produkt-CO2, werkstoffwissenschaftlichen Untersuchungen sowie der Entwicklung eines Verwertungsplanes.
Die Gesamtzielstellung des Teilprojektes besteht darin, entscheidende Prozessschritte für eine alternative auf Membrantrennprozessen basierende Produktionsroute für Soda und Natron zu entwickeln und zu erproben. Zentral sind dabei die Abtrennung und Reinigung von CO2 aus Biogas bzw. aus (biogenen) Verbrennungsgasen, die Entwicklung von elektrochemischen Membranverfahren und von Adsorptionseinheiten für die Überführung von Salzsole (NaCl) in Soda-/Natronlösung mittels Salzspaltung/Metathese und die Untersuchung des Einsatzes geothermischer Energie für die weiterhin notwendigen thermische Prozessschritte zur perspektivischen Substitution von Erdgas im Zuge der Produktreinigung und -konfektionierung. Die Prozesse sollen bis TRL 5 entwickelt und erprobt werden. Auf diese Weise ließen sich mehr als eine Mio. t/a CO2 vermeiden. Mit den gewonnenen Daten und Informationen werden eine LCA und die Planung der nächsten Umsetzungsstufe vorgenommen.
Origin | Count |
---|---|
Bund | 999 |
Land | 6 |
Wirtschaft | 2 |
Wissenschaft | 7 |
Type | Count |
---|---|
Förderprogramm | 954 |
Text | 45 |
Umweltprüfung | 1 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 12 |
offen | 950 |
unbekannt | 39 |
Language | Count |
---|---|
Deutsch | 966 |
Englisch | 93 |
Resource type | Count |
---|---|
Archiv | 39 |
Datei | 39 |
Dokument | 45 |
Keine | 583 |
Webseite | 373 |
Topic | Count |
---|---|
Boden | 613 |
Lebewesen & Lebensräume | 634 |
Luft | 461 |
Mensch & Umwelt | 1001 |
Wasser | 757 |
Weitere | 988 |