The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the sulphur dioxide (SO2) concentration around the globe. Sulphur dioxide enters the atmosphere through volcanic eruptions and human-related activities. Daily observations are binned onto a regular latitude-longitude grid. This product is created in the scope of the project INPULS. The DLR INPULS project develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Derzeitige radar-basierte Nowcastingverfahren basieren auf der Annahme, dass die zeitliche Entwicklung von Hagelereignissen in erster Linie durch Advektionsvorgänge gesteuert ist; die relevanten physikalischen Prozesse, die für die Entstehung und das Größenwachstum von Hagel entscheidend sind, bleiben dabei unberücksichtigt. In Verbindung mit der komplexen internen Struktur und Dynamik von Hagelstürmen ergeben sich daraus große Unsicherheiten bei der Vorhersage der Hagelgrößenverteilung und der von Hagel betroffenen Fläche am Boden. Das Ziel des Projekts LIFT (Large Hail Formation and Trajectories) ist es, die Hagelentstehung und Hageltrajektorien besser zu verstehen, um daraus als wichtige Komponenten eines physikalisch-basierten Nowcastings erstmals ein radar-basiertes Verfahren für das Hagelwachstums zu entwickeln. Zu diesem Zweck wird im Rahmen von LIFT eine Messkampagne Süddeutschland durchgeführt, wo die größte Hagelwahrscheinlichkeit in Deutschland auf vielfältige Beobachtungssysteme trifft, die im Rahmen der Messkampagne Swabian MOSES mit einem dichten Netzwerk betrieben werden. Zum ersten Mal werden im Rahmen von LIFT moderne Radargeräte, In-situ Messgeräte, Fotogrammetrie und numerische Modellierung synergistisch kombiniert und ein umfassender Datensatz zur Rekonstruktion der zeitlichen Entwicklung des Hagelwachstums erstellt. Betroffene Bürger werden aktiv in die Messaktivitäten mit einbezogen und aufgerufen, Hagelkörnern einschließlich ihrer Haupteigenschaften in die WarnWetter App des DWD zu melden. Die Messkampagne mit ihrem mobilen und flexiblen Konzept beinhaltet die Anwendung neuer, innovativer Messtechniken, darunter Lagrangesche Trajektorien mittels kleiner Messsysteme, die in die Wolken eingebracht werden, und dronengesteuerte Luftbildaufnahmen zur Bestimmung der Hagelspektren. Aus Fernerkundungsdaten gewonnene Signaturen von Hagelereignissen liefern Informationen über die Charakteristika der Hagelereignisse und werden mittels numerischer Simulationen sorgfältig auf Messungenauigkeiten und Sensitivitäten bzgl. atmosphärischer Umgebungsvariablen evaluiert. Indikatoren für die Hagelentstehung und das Hagelwachstum werden aus Beobachtungsdaten und Simulationen identifiziert, und liefern die Grundlage für ein beobachtungs-basiertes Hagelwachstumsmodell. Schließlich wird dieses Multi-Parameter Hagelwachstumsmodell mit den bestimmten Hageltrajektorien und Schmelzprozessen kombiniert, um zu bestimmen, welche Prozesse am wichtigsten sind für das Nowcasting von Hagel. Das Projekt LIFT liefert damit einen wichtigen Betrag für zukünftige radar-basierte Hagelwarnsysteme mit einer verbesserten Vorhersagezeit und Vorhersagequalität.
Das Oberflächenwassermessnetz besteht aus Pegeln an denen die Wasserstände und Durchflussmengen der Flüsse ermittelt werden. Beobachtungsschwerpunkt sind die Hochwasserpegel. Die Leistungen umfassen: - Wasserstandsmessungen sowie Durchflussmessungen zur Kontrolle und Korrektur der Wasserstands-/Durchflussbeziehungen, - Erfassung, Prüfung und statistische Aufbereitung der hydrologischen Daten, - Bau und Instandhaltung von Pegelanlagen inkl. Ausrüstung mit neuer Messtechnik wie Datenfernübertragung (DFÜ), ggf. Rückbau nicht mehr benötigter Pegel, - Erfassung und Pflege der Pegelstammdaten, - Schulung und Betreuung der ehrenamtlichen Beobachter.
Global change not only affects the long-term mean temperature, but may also lead to further changes in the frequency distribution and especially in their tails. The study of the whole frequency distribution is important as, e.g., heat and cold waves are responsible for a considerable part of morbidity and mortality due to meteorological events. Daily datasets are essential for studying such extremes of weather and climate and therefore the basis for political decisions with enormous socio-economic consequences. Reliably assessing such changes requires homogeneous observational data of high quality. Unfortunately, however, the measurement record contains many non-climatic changes, e.g. homogeneities due to relocations, new weather screens or instruments. Such changes affect not only the means, but the whole frequency distribution. To increase the quality and reliability of global daily temperature records, we propose to develop an automatic homogenisation method for daily temperature data that corrects the frequency distribution. We propose to describe homogenisation as an optimisation problem and solve it using a genetic algorithm. In this way, entire temperature networks can be homogenised simultaneously leading to an increase in sensitivity, while avoiding setting false (spurious) breaks. By not homogenising the daily data directly, but by homogenising monthly indices (probably the monthly moments), the full power and understanding of monthly homogenization methods can be carried over to the homogenisation of daily data. Furthermore, in an optimisation framework, the optimal temporal correction scale can be determined objectively and straightforwardly, that is whether the corrections are best applied annually (all twelve months get the same correction), semi-annually, seasonally or monthly. All three aspects are new: the simultaneous homogenisation of an entire network, the objective selection of the degrees of freedom of the adjustments and of the temporal averaging scale of the correction model. This new method will be applied to homogenise the temperature datasets of the International Surface Temperature Initiative. This large dataset necessitates an automatic homogenisation method. To validate the method, we will generate an artificial climate dataset with known inhomogeneities. To be able to generate such a validation dataset with realistic inhomogeneities, we need to understand the nature of inhomogeneities in daily data much better. Therefore, we intend to collect and study parallel measurements (two set-ups at one location), which allow us to study the changes in the frequency distribution if one set-up is replaced by the other. Finally, we will study and quantify the uncertainties due to persistent errors remaining in the dataset after homogenisation and utilise this to improve the accuracy of the homogenisation algorithm. The knowledge of uncertainties is also indispensable for climatologists using the homogenised data.
In OPTOP werden Design und Betrieb des Receivers als zentraler Schnittstelle der Solar Island eines Solarturmkraftwerks verbessert. Dafür wird innovative Messtechnik in ein Monitoringsystem basierend auf Machine Learning und Digital Twin integriert. Das Projekt OPTOP hat drei Kernthemen: a) Sensorik für Receiver: In einem integralen Messkonzept für den Receiver wird die verbesserte Erfassung der Receiveroberflächentemperatur mittels Infrarotkameras, eine nicht-invasive Erfassung der Fluidtemperatur im Receiver, eine betriebsbegleitende Strahlungsdichtemessung und die kamerabasierte Reflexionsgradvermessung des Receivers implementiert. Die Sensordaten werden gemäß den Prinzipien von Industrie 4.0 und dem IoT aufbereitet und für die Betriebsoptimierung und das Receivermonitoring bereitgestellt. b) Receivermonitoring und intelligente Betriebsstrategien: Basierend auf dem umfassenden Sensorinput und einem parallellaufenden Digital-Twin-Modell des Receivers wird ein Monitoringsystem entwickelt, das mittels Machine-Learning-Methoden ein Überschreiten der Receiver-Betriebsgrenzen im Voraus erkennt und dem Betreiber einen sicheren Betrieb erleichtert. Darauf aufbauend wird mit dynamischen Zielpunkt- und Defokussierstrategien und O&M-Zyklen eine intelligente Betriebsstrategie entwickelt, die den Betrieb der Solar Island sowohl energetisch als auch ökonomisch optimiert. c) Transientes Receiverdesign: Eine Methodik für das Design des Receivers als zentraler Schnittstelle der Solar Island wird entwickelt, welche das integrale System für maximalen Ertrag im transienten Kraftwerksbetrieb optimiert. Dafür wird der Einsatz variabler Flussschemata untersucht, für welche - um die Grenzen des erlaubten Einsatzbereichs nicht zu überschreiten - die umfassende Kenntnis des Receiverzustands im Betrieb basierend auf Sensorik und Digital Twin notwendig ist. Die entwickelte Sensorik und Simulations-Methodik wird im Labor und im Turmsystem Cerro Dominador in Chile implementiert und getestet.
In infrastrukturtechnischen Anlagen zur Abwasser- und biologischen Abfallbehandlung ist das Mischen der miteinander in Kontakt zu bringenden Stoffe eine zentrale verfahrenstechnische Aufgabe. Eine hinreichende Durchmischung in diesen Fluidsystemen ist erforderlich, um stabile und effiziente Prozessabläufe in diesen Anlagen zu gewährleisten. Nachteile der gegenwärtigen Ansätze zur energieeffizienten Vermischung in den oben genannten Anlagen bestehen darin, dass die fluiddynamischen Prozessabläufe nur ungenügend an die physikalischen und rheologischen Eigenschaften des Mediums und deren zeitliche und örtliche Schwankungen angepasst werden. In der Regel erfolgt die Bewertung des Rührerfolgs durch punktuelle Messungen der Bodenfließgeschwindigkeit, wobei der Einfluss von Schlüsselfaktoren wie Beckengeometrie und -volumen, nicht-Newtonsche Flüssigkeitsrheologie und mögliche Wechselwirkungen mit anderen Prozessen (e.g. Belüftung) unberücksichtigt bleiben. Dadurch bleibt ein großes Potenzial zur Energieoptimierung unausgeschöpft. Ziel des skizzierten Projekts ist die Definition neuartiger Kriterien für den Rührerfolg in Abwasser- und Abfallbehandlungsanlagen basierend auf messbaren Prozessparametern und die Entwicklung von Technologien, die die energetische Optimierung in diesen Anlagen über den Stand der Technik hinaus ermöglichen.
Für eine zuverlässige Modellierung des globalen Kohlenstoffkreislaufs (und somit des globalen Wärmehaushalts) sind detaillierte Kenntnisse über die Menge an Treibhausgasemission/-absorption durch die Wasseroberfläche erforderlich. Die meisten Modelle zur Vorhersage des Gastransferkoeffizienten an der Wasser-/Luftgrenzfläche beruhen nach wie vor hauptsächlich auf empirisch ermittelten Gleichungen, in denen nur die Windgeschwindigkeit als Parameter in Betracht gezogen wird, obwohl der Beitrag des temperaturbedingten Auftriebs zum Gesamttransfer signifikant ist, vor allem bei niedrig bis mittleren Windbedingungen. Um die Genauigkeit der Bestimmung des Gastransferkoeffizienten an der Grenzfläche zu verbessern, wird eine detaillierte Beschreibung des auftriebsgesteuerten Gasaustausches in tiefen Wasserkörpern benötigt. Da bei mäßig bis schwer löslichen Gasen (z.B. Kohlendioxid, Sauerstoff, Methan) der Stofftransfer in einer sehr dünnen Schicht an der Wasseroberfläche stattfindet, ist es eine besondere Herausforderung die Transportprozesse innerhalb dieser dünnen Schicht aufzulösen. Trotz fortgeschrittener Entwicklung der optischen Messtechnik, liegen keine Daten von simultanen Vermessungen der Temperatur- und Gaskonzentrationsfelder unter gut-kontrollierten Laborbedingungen vor. In diesem Projekt wird der Transferprozess von Wärme- und Gas, induziert durch Oberflächenkühlung bei gleichzeitigem Messen der dynamischen Verteilung von Temperatur- und Gaskonzentration (i) auf der Wasseroberfläche und (ii) in einem vertikalen Schnitt im Wasserkörper, untersucht. Hierzu wird ein komplettes lifetime-based laser induced fluorescence System, geeignet um die Sauerstoffdynamik auch innerhalb der dünnen Grenzschicht aufzulösen, entwickelt. Um die Dynamik der Wärmestrukturen an der Oberfläche zu erfassen, wird eine hochpräzise Infrarot Kamera eingesetzt. Für die Ermittlung der 2D Wärmestrukturen im Wasserkörper wird eine intensitätsbasiertes LIF-Thermometrie System angewendet. Neue erste synoptische Labordaten von Wärme- und Gaskonzentrationsfeldern unter konvektionsinduzierter Strömung im relativ tiefen Wasser können damit dargestellt werden. Die Korrelation zwischen thermal und gas Plumes wird bestimmt und deren geometrischen Merkmale sowohl an der Wasseroberfläche als auch im Wasserkörper ermittelt. Des Weiteren wird der Zusammenhang zwischen diesen Merkmalen und der Wärme- und Gasflüsse ermittelt. Eine Reihe von Messungen im Wasserkörper werden zur Bestimmung der Transfergeschwindigkeit (k) über eine große Bandbreite von Temperaturunterschieden zwischen Wasserkörper und Luft durchgeführt. Dies ermöglicht den Zusammenhang zwischen k und der Rayleighzahl des Wasserkörpers zu bestimmen und mit den k-Werten, die durch direkte Quantifizierung anhand der detaillierten simultanen Messungen ermittelt werden, zu vergleichen. Dazu, werden für ausgewählte Fälle PIV- Messungen durchgeführt, um Informationen zum overall Geschwindigkeitsfeld zur Verfügung zu stellen.
Im Bereich der Off-Shore-Technik und der Oelfoerderung in Meeren werden flexible Unterwasser-Oel-Pipelines eingesetzt. Diese Unterwasser-Oel-Pipelines bestehen zum Teil aus Hochdruckgummischlaeuchen bis zu 600 mm Durchmesser, die in Teilstuecken bis zu 15 m Laenge aneinandergeflanscht sind. Eine wichtige Aufgabe im Umweltschutz ist die Fruehwarnung vor eintretenden Lecks an diesen Unterwasser-Oel-Pipelines aus Gummi, um Meerwasserverschmutzungen durch austretendes Oel und wirtschaftliche Verluste durch Oel- und Pipelineausfall zu verhindern. Im Rahmen dieser Problemstellung hat das Forschungsvorhaben folgende Teilaufgaben zu loesen: Entwicklung von geeigneten Lecksensoren und deren Integration in die Wandungen der Gummipipelines, Verarbeitung der Sensorenwarnsignale durch eine ebenfalls in die Pipelinestuecke integrierte elektronische Logikschaltung, drahtlose Uebertragung der Leck-Warn-Signale aus der elektronischen Logik der Pipelinestuecke an die Wasseroberflaeche zu einer Bojenstation, autonome Langzeitversorgung der Pipelineelektronik, Uebertragung der Leck-Warn-Systeme von der Bojenstation an eine Kuestenkontrollstation, rechnergesteuerte Decodierung der Warnsignale in der Kuestenstation zur Erkennung der genauen Position (Pipelinestueck) des zu erwartenden Lecks, automatische selbstaendige Ueberwachung des Systems auf Funktionssicherheit, automatische Alarmanlage bei zu erwartendem Leck oder Funktionsausfall des Systems.
Origin | Count |
---|---|
Bund | 5194 |
Land | 109 |
Wirtschaft | 2 |
Wissenschaft | 64 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 5088 |
Messwerte | 21 |
Strukturierter Datensatz | 23 |
Text | 116 |
unbekannt | 88 |
License | Count |
---|---|
geschlossen | 176 |
offen | 5134 |
unbekannt | 7 |
Language | Count |
---|---|
Deutsch | 4950 |
Englisch | 677 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 11 |
Datei | 22 |
Dokument | 36 |
Keine | 3247 |
Unbekannt | 6 |
Webdienst | 6 |
Webseite | 2015 |
Topic | Count |
---|---|
Boden | 3195 |
Lebewesen & Lebensräume | 3111 |
Luft | 2995 |
Mensch & Umwelt | 5306 |
Wasser | 2753 |
Weitere | 5317 |