Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025
Die Extraktion ist als produktschonendes, niedrig-energetisches Trennverfahren prädestiniert für biotechnologische Prozesse. Die Anwendung der Extraktion im biotechnologischen Downstream kann eine Schlüsselrolle einnehmen, um den Weg zu Produkten und Produktionsprozessen der nächsten Generation zu ebnen. Im industriellen Maßstab wird die Extraktion vor allem in Gegenstromkolonnen realisiert, die häufig nur mit minimaler Instrumentierung ausgestattet sind. Daher fehlen Informationen über den inneren Zustand der Kolonne. Zusätzlich kann die obere Betriebsgrenze modellbasiert nur mit großen Unsicherheiten vorhergesagt werden. Dem entsprechend erfordern mögliche Unsicherheiten in der bisherigen Auslegung für einen stationären Betrieb signifikante Sicherheitsaufschläge und führen damit zu Effizienzverlusten, vor allem bei der nachgeschalteten, energetisch aufwendigen Regeneration des Lösungsmittels mittels Rektifikation. Im Hinblick auf biotechnologische Prozesse werden Schwankungen im Produktstrom die notwendigen Sicherheitsaufschläge und damit die Effizienzverluste deutlich erhöhen. Um die Anwendung der Extraktion im biotechnologischen Downstream zu realisieren und Effizienzverluste zu vermeiden, bedarf es einer Flexibilisierung des Betriebs und einer zuverlässigen Zustandsdiagnostik für Extraktionskolonnen. Ziel ist die Einhaltung der Produkt- bzw. Prozessspezifikationen bei optimalem Betrieb. Innerhalb des Projekts soll daher anhand einer Extraktionskolonne im technischen Maßstab ein optimaler und flexibler Betrieb realisiert werden. Dazu wird eine Kombination aus Messtechnik und schnellem, prädiktivem Modell die Kolonne zu einem smarten, gläsernen Apparat machen, der einen effizienten und autonomen Betrieb am energetischen Optimum (min. Lösemittelstrom) ermöglicht. Die enge Zusammenarbeit von Apparate- und Messtechnikherstellern, sowie Partnern aus der Prozessindustrie sichert außerdem die Übertragbarkeit der entwickelten Systematik in den industriellen Maßstab.
In OPTOP werden Design und Betrieb des Receivers als zentraler Schnittstelle der Solar Island eines Solarturmkraftwerks verbessert. Dafür wird innovative Messtechnik in ein Monitoringsystem basierend auf Machine Learning und Digital Twin integriert. Das Projekt OPTOP hat drei Kernthemen: a) Sensorik für Receiver: In einem integralen Messkonzept für den Receiver wird die verbesserte Erfassung der Receiveroberflächentemperatur mittels Infrarotkameras, eine nicht-invasive Erfassung der Fluidtemperatur im Receiver, eine betriebsbegleitende Strahlungsdichtemessung und die kamerabasierte Reflexionsgradvermessung des Receivers implementiert. Die Sensordaten werden gemäß den Prinzipien von Industrie 4.0 und dem IoT aufbereitet und für die Betriebsoptimierung und das Receivermonitoring bereitgestellt. b) Receivermonitoring und intelligente Betriebsstrategien: Basierend auf dem umfassenden Sensorinput und einem parallellaufenden Digital-Twin-Modell des Receivers wird ein Monitoringsystem entwickelt, das mittels Machine-Learning-Methoden ein Überschreiten der Receiver-Betriebsgrenzen im Voraus erkennt und dem Betreiber einen sicheren Betrieb erleichtert. Darauf aufbauend wird mit dynamischen Zielpunkt- und Defokussierstrategien und O&M-Zyklen eine intelligente Betriebsstrategie entwickelt, die den Betrieb der Solar Island sowohl energetisch als auch ökonomisch optimiert. c) Transientes Receiverdesign: Eine Methodik für das Design des Receivers als zentraler Schnittstelle der Solar Island wird entwickelt, welche das integrale System für maximalen Ertrag im transienten Kraftwerksbetrieb optimiert. Dafür wird der Einsatz variabler Flussschemata untersucht, für welche - um die Grenzen des erlaubten Einsatzbereichs nicht zu überschreiten - die umfassende Kenntnis des Receiverzustands im Betrieb basierend auf Sensorik und Digital Twin notwendig ist. Die entwickelte Sensorik und Simulations-Methodik wird im Labor und im Turmsystem Cerro Dominador in Chile implementiert und getestet.
Flussmündungen sind wichtige Knotenpunkte fluvialer Netzwerke und Hotspots der Biodiversität in Süßwasserökosystemen. Die Strömungsmuster an Flussmündungen sind sehr heterogen und produzieren komplexe Muster innerhalb der Durchmischungsbereiche, die durch intermodales Verhalten gekennzeichnet sind. Die Gesamtdurchmischungsrate, die den Grenzbereich bestimmt, hat erheblichen Einfluss auf die Ausbreitung potentiell schädlicher Stoffe, Wassertemperatur, Sedimente und Biota. Die vorgeschlagenen Forschungsarbeiten zielen darauf ab, das Wissen zur Durchmischung an Einmündungen zu verbessern, indem sie einen grundlegenden, theoriegestützten Einblick in die Auswirkungen von Strahlbildung, Rückströmung und Fließgewässerregulierung auf das intermodale Verhalten an Grenzzonen und deren Auswirkungen auf die Fischökologie geben. In diesem Projekt werden komplexe Durchmischungszonen flacher, grobsubstratiger Flussabschnitte in einem breiten Gradienten hydrologischer Bedingungen direkt im Feld mittels Fernerkundung und Messtechnik bestimmt. Der Vergleich von Feldbeobachtungen mit der Theorie des intermodalen Verhaltens ermöglicht das Verständnis komplexer Durchmischungs-Dynamiken, welches anhand der Ergebnisse der Feldexperimente und numerischer Simulationen erweitert und validiert wird. Diese Experimente werden auch Informationen zum Schwimmweg von Fischen und deren Verhalten in Durchmischungszonen liefern. Diese Informationen dienen zusammen mit der Theorie der Durchmischungsprozesse der Entwicklung eines agentenbasierten Modells zur Simulation der Überlebensmöglichkeit von Fischen während einer Schadstoffpassage. Die Simulationen werden anhand der Ergebnisse einer Fischuntersuchung in einem regulierten Fluss validiert, dessen Ökosystem kürzlich einem Massenfischsterben ausgesetzt war. Die theoretischen und empirischen Ergebnisse unserer Studie werden zur Weiterentwicklung von Vorhersagemethoden verwendet basierend auf der Fernerkundung der Durchmischung in Flüssen.
Wir werden das raum-zeitliche Wissen über wiedervernässte Niedermoortorfe und die entsprechenden Prozesse, die durch Fernerkundungstechniken beobachtet werden, vertiefen, indem wir die Mooratmung und die Abnahme der überschwemmten Fläche in wiedervernässten Niedermoortorfen über Raum und Zeit quantifizieren. Wir werden innovative Techniken wie die SBAS-Interferometrie mit der Moorentwicklung und der C-Sequestrierung verknüpfen. Die angewandten Techniken zur Beobachtung der räumlich-zeitlichen Muster von Torfoberflächenmerkmalen ermöglichen es uns, die Resilienz und Anfälligkeit von Mooren gegenüber Dürren und Überschwemmungen zu bewerten.
Im Bereich der Off-Shore-Technik und der Oelfoerderung in Meeren werden flexible Unterwasser-Oel-Pipelines eingesetzt. Diese Unterwasser-Oel-Pipelines bestehen zum Teil aus Hochdruckgummischlaeuchen bis zu 600 mm Durchmesser, die in Teilstuecken bis zu 15 m Laenge aneinandergeflanscht sind. Eine wichtige Aufgabe im Umweltschutz ist die Fruehwarnung vor eintretenden Lecks an diesen Unterwasser-Oel-Pipelines aus Gummi, um Meerwasserverschmutzungen durch austretendes Oel und wirtschaftliche Verluste durch Oel- und Pipelineausfall zu verhindern. Im Rahmen dieser Problemstellung hat das Forschungsvorhaben folgende Teilaufgaben zu loesen: Entwicklung von geeigneten Lecksensoren und deren Integration in die Wandungen der Gummipipelines, Verarbeitung der Sensorenwarnsignale durch eine ebenfalls in die Pipelinestuecke integrierte elektronische Logikschaltung, drahtlose Uebertragung der Leck-Warn-Signale aus der elektronischen Logik der Pipelinestuecke an die Wasseroberflaeche zu einer Bojenstation, autonome Langzeitversorgung der Pipelineelektronik, Uebertragung der Leck-Warn-Systeme von der Bojenstation an eine Kuestenkontrollstation, rechnergesteuerte Decodierung der Warnsignale in der Kuestenstation zur Erkennung der genauen Position (Pipelinestueck) des zu erwartenden Lecks, automatische selbstaendige Ueberwachung des Systems auf Funktionssicherheit, automatische Alarmanlage bei zu erwartendem Leck oder Funktionsausfall des Systems.
Jede Person ist im Alltag ionisierender Strahlung ausgesetzt, die natürlichen oder künstlichen Ursprungs sein kann. Die natürliche Strahlenbelastung in Deutschland beträgt im Durchschnitt ca. 2,1 Millisievert (mSv) im Jahr und setzt sich zusammen aus kosmischer Strahlung (0,3 mSv im Jahr), terrestrischer Strahlung (0,4 mSv im Jahr), der Aufnahme natürlicher radioaktiver Stoffe mit der Nahrung (0,3 mSv im Jahr) und dem Einatmen von Radon und seinen Folgeprodukten (1,1 mSv im Jahr). Sie hängt vor allem von Aufenthaltsort und Lebensgewohnheiten ab. Die künstliche Strahlenbelastung in Deutschland beträgt durchschnittlich ca. 1,9 mSv im Jahr und wird insbesondere durch technische und medizinische Anwendung ionisierender Strahlung verursacht. Weitere Informationen (Bundesamt für Strahlenschutz) Die Anwendung von ionisierender Strahlung und radioaktiven Stoffen in der Medizin umfasst verschiedene Verfahren und Techniken zur Untersuchung und Behandlung. Für Untersuchungen (diagnostische Medizin) wird Röntgen- und Gammastrahlung eingesetzt, um Organe und Strukturen des menschlichen Körpers sichtbar zu machen und dadurch Krankheiten oder Verletzungen zu identifizieren. Gängige Verfahren sind Röntgenaufnahme, Computertomographie (CT), Mammographie und nuklearmedizinische Bildgebung. Bei minimalinvasiven diagnostischen oder therapeutischen Eingriffen wird Röntgenstrahlung zur simultanen Bildgebung eingesetzt. Für Behandlungen (therapeutische Anwendung) werden ionisierende Strahlung und radioaktive Stoffe eingesetzt, um Krankheiten zu heilen und Schmerzen zu lindern. Zur Behandlung von Krebs werden bei der Strahlentherapie Tumorzellen gezielt zerstört und gleichzeitig gesundes Gewebe so weit wie möglich geschont. In der Strahlentherapie wirkt ionisierende Strahlung entweder von außen ein (Teletherapie) oder die Strahlung wird direkt in den Tumor eingebracht (Brachytherapie). In der palliativen Strahlentherapie wird ionisierende Strahlung nur noch zur Schmerzlinderung bei bösartigen Tumoren oder Metastasen eingesetzt. Dabei werden hohe Einzeldosen in wenigen Sitzungen appliziert. In der Nuklearmedizin werden dem Körper radioaktive Stoffe zugeführt, um Informationen über Organfunktionen oder Stoffwechselprozesse zu erhalten. Dies ermöglicht die Diagnose und Behandlung verschiedener Erkrankungen wie Krebs, Herzerkrankungen oder Schilddrüsen-Funktionsstörungen. Die Positronen-Emissions-Tomographie (PET), die Einzelphotonen-Emissionscomputertomographie (SPECT) oder die Radiojodtherapie sind nur einige Beispiele für nuklearmedizinische Techniken. Die Anwendung von ionisierender Strahlung und radioaktiven Stoffen in Technik und Industrie ist aus vielen Bereichen und Prozessen nicht mehr wegzudenken. In der zerstörungsfreien Werkstoffprüfung und Qualitätssicherung werden hochradioaktive Quellen eingesetzt, um Materialien auf ihre physikalischen, chemischen oder strukturellen Eigenschaften zu überprüfen. Röntgen- und Gammastrahlen ermöglichen die Durchleuchtung von Bauteilen sowie die Prüfung von Schweißnähten, Druckbehältern und Rohrleitungen, um mögliche Defekte identifizieren zu können. In der Messtechnik finden radioaktive Isotope bei Messungen des Füllstands, der Dichte oder des Durchflusses in Rohrleitungen oder Behältern Anwendung. Mit radioaktiven Messsonden (Troxlersonden) ermittelt man zerstörungsfrei die Dichte und die Feuchte im Hoch-, Straßen- und Tiefbau. In der Strahlensterilisation werden hochradioaktive Quellen verwendet, um z.B. Medizinprodukte, Lebensmittel (empfindliches Gemüse, Gewürze, etc.) oder Verpackungen von Mikroorganismen zu befreien. In großen Krankenhäusern und Blutbanken können Blutprodukte vor einer Transfusion mit hohen Dosen bestrahlt werden, um alle DNA-haltigen Zellen zu zerstören. Dadurch sollen seltene aber tödliche Transfusionsreaktionen bei Personen verhindert werden, die z.B. eine Knochenmark- oder Blut-Stammzelltransplantation hinter oder unmittelbar vor sich haben. Die Anwendung ionisierender Strahlung und radioaktiver Stoffe in der medizinischen Forschung spielt eine entscheidende Rolle für die Weiterentwicklung von Diagnose- und Behandlungsmethoden. Sie ermöglicht die Erforschung von Krankheitsmechanismen, die Entwicklung neuer Medikamente und die Bewertung der Wirksamkeit von Behandlungen. Bei all diesen Anwendungen sind die strikte Einhaltung von Strahlenschutzmaßnahmen und umfangreiche Qualitätskontrollen von höchster Bedeutung, um die Strahlenbelastung des Personals und der behandelten Personen so gering wie möglich zu halten, negative Auswirkungen auf die allgemeine Bevölkerung und die Umwelt zu vermeiden und die sichere Anwendung zu gewährleisten.
Origin | Count |
---|---|
Bund | 5268 |
Land | 98 |
Wissenschaft | 48 |
Type | Count |
---|---|
Daten und Messstellen | 23 |
Ereignis | 2 |
Förderprogramm | 5164 |
Text | 110 |
Umweltprüfung | 1 |
unbekannt | 93 |
License | Count |
---|---|
geschlossen | 173 |
offen | 5213 |
unbekannt | 7 |
Language | Count |
---|---|
Deutsch | 5019 |
Englisch | 705 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 11 |
Datei | 22 |
Dokument | 67 |
Keine | 3255 |
Unbekannt | 6 |
Webdienst | 8 |
Webseite | 2052 |
Topic | Count |
---|---|
Boden | 3244 |
Lebewesen und Lebensräume | 3146 |
Luft | 3044 |
Mensch und Umwelt | 5381 |
Wasser | 2803 |
Weitere | 5393 |