API src

Found 193 results.

Similar terms

s/metalloxid/metalloid/gi

Related terms

Natuerliche Gehalte einiger Metall- und Halbmetallionen in ausgewaehlten Grundwasservorkommen Hessens und deren Schwankungen

Schwermetalldepositionen

<p>Bei den Schwermetallen Blei, Cadmium und Quecksilber ist ein Rückgang der atmosphärischen Einträge (Deposition) zu verzeichnen. Modellrechnungen zeigen: In Deutschland liegen die Schwermetalleinträge aus der Atmosphäre an den UBA Stationen im ländlichen Hintergrund im Jahr 2023 im Bereich von 0,14 – 0.54 kg Blei pro km², 7,4 – 16.1 g Cadmium pro km² und 3,2 – 10,2 g Quecksilber pro km².</p><p>Herkunft der Schwermetalle</p><p>Die Schwermetalle Blei (Pb), Cadmium (Cd) und Quecksilber (Hg) sind gekennzeichnet durch Toxizität und chemische Stabilität. Diese Eigenschaften führen dazu, dass sich diese Stoffe in der Umwelt anreichern, Schäden an Ökosystemen verursachen und auch schädliche Auswirkungen auf die menschliche Gesundheit zeigen können. Sie werden in erheblichem Umfang ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=anthropogen#alphabar">anthropogen</a>⁠ (durch menschliche Tätigkeiten) in die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ ausgestoßen/abgegeben. In der Atmosphäre können sie weiträumig und grenzüberschreitend transportiert werden. Durch Depositionsvorgänge (Ablagerung) gelangen sie aus der Atmosphäre auch in andere Umweltmedien. Ein erheblicher Teil der Schwermetalle gelangt aber auch durch erneute Freisetzung bereits früher deponierter Mengen in die Atmosphäre. Es finden somit eine Resuspension (Blei, Cadmium) und Reemission (Quecksilber) statt. In Deutschland sind im Zeitraum 1990 bis 2023 grundsätzlich rückläufige <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/schwermetall-emissionen">Schwermetallemissionen</a> zu beobachten. Dies zeigt sich auch in den gemessenen und modellierten Depositionsdaten.</p><p>Im Rahmen des europäischen Überwachungsprogramms <a href="http://www.emep.int/">EMEP</a> wird mittels atmosphärischer Chemie-Transportmodelle die gesamte Ablagerung (nasse und trockene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠) ausgewählter Schwermetalle flächendeckend für die EMEP-Region (Europa und Zentralasien) berechnet. Die Daten der Modellrechnungen werden in jährlichen Berichten durch das <a href="https://msc-east.org/publications/">Meteorological Synthesizing Centre - East</a> (⁠<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=MSC#alphabar">MSC</a>⁠-E) veröffentlicht.</p><p> Gesamtdepositionen von Blei</p><p>Die Gesamtdeposition von Blei in der EMEP Region lag 2022 in der Größenordnung von 0,1 bis 1 kg/km²/Jahr mit den höchsten Werten in Zentraleuropa und niedrigsten im nördlichen Teil der EMEP Region. Saisonale Änderungen in der Depositionsrate spiegeln den Einfluss von staubgetragener ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ aus Afrika und Zentralasien wider, die am stärksten auf Südeuropa auswirkt. In Zentral-sowie Südeuropa dominieren außerdem die Depositionen aus EMEP Regionen und primären anthropogenen Quellen, insbesondere in Ländern mit bedeutenden eigenen nationalen Emissionen wie Deutschland oder Polen. In kleineren Nachbarländern hingegen tragen grenzüberschreitende Transporte maßgeblich zu den Depositionen bei. Insgesamt beläuft sich der Anteil der grenzüberschreitenden Deposition in der EMEP Region auf über 50%.</p><p>Innerhalb Deutschlands traten die niedrigsten Pb-Depositionen (&lt; 0,5 kg Pb/km²) vorwiegend im Norden und in der Mitte sowie am Alpenrand auf (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Gesamtdepositionen von Cadmium</p><p>Die Cadmium-Gesamtdepositionen in der EMEP Region variieren im Bereich von 5 bis 60 g Cd/km². In Deutschland traten die höchsten Cd-Depositionen (z. T. &gt;&nbsp;60&nbsp;g Cd/km²) in Westdeutschland (NRW), die niedrigsten Cd-Depositionen (z.&nbsp;T. &lt;&nbsp;15&nbsp;g Cd/km²) vorwiegend in Teilen Nord-, Süd und Mitteldeutschlands (MV, TH, BY) auf (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Gesamtdepositionen von Quecksilber </p><p>Die Quecksilber-Gesamtdepositionen im EMEP Gebiet lagen in 2022 größtenteils im Bereich von bis zu 25 g Hg/km² mit einzelnen Hotspots im Osten Europas. Die höchsten Hg-Depositionen in Deutschland traten großräumig in Westdeutschland (NRW), die niedrigsten Hg-Depositionen (&lt; 10 g Hg/km²) großräumig vorwiegend in der Mitte Süd- und Norddeutschlands (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Messungen des Luftmessnetzes des Umweltbundesamtes</p><p>Schwermetalldepositionen werden auch im <a href="https://www.umweltbundesamt.de/luft/luftmessnetze/ubamessnetz.htm">Luftmessnetz des Umweltbundesamtes</a> (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) bestimmt. Dabei wird die nasse ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ erfasst, d. h. die mit Regen und Schnee eingetragenen Schwermetalle. Die nasse Deposition trägt ca. ¾ zur Gesamtdeposition bei.</p><p>Die <a href="https://ebas-data.nilu.no/">„EBAS“ Datenbank</a> enthält unter anderem auch Schwermetalldepositions-Daten aller deutschen Messstationen. Die nasse Schwermetalldepositionen an sechs UBA-Luftmessstationen im Jahr 2023 sind in der Tabelle „Nasse Jahresdepositionssummen von Schwermetallen und Halbmetallen im Luftmessnetz des Umweltbundesamtes 2023“ zusammengefasst. Die nassen Depositionen von Blei (0,14 – 0.54 kg/km²), Cadmium (7,4 – 16.1 g/km²) und Quecksilber (3,2 – 10,2 g/km²) liegen meist unter den mit dem EMEP-Modell für Deutschland berechneten Gesamtdepositionen, welche zusätzlich die trockenen Depositionen beinhalten..</p>

GcBÜK400 - Arsen im Oberboden

Arsen ist ein zu den Halbmetallen zählendes, ubiquitäres und toxisch wirkendes Element. Es kommt in der Natur weit verbreitet in verschiedenen Mineralisationen als Arsensulfid bzw. -oxid und als Kupfer-, Nickel- und Eisenarsenat vor. Der durchschnittliche As-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 2 mg/kg. In der Fachliteratur werden As-Gehalte 20 mg/kg als Normalgehalte beschrieben, wobei die mittleren Gehalte etwa 5 mg/kg betragen. Unter den toxisch wirkenden Elementen kommt dem Arsen auf Grund seiner großflächigen Verbreitung erhöhter Gehalte in sächsischen Böden eine besondere Bedeutung zu. Die Ursachen sind zweifellos in der geochemisch-metallogenetischen Spezialisierung der Fichtelgebirgisch Erzgebirgischen Antiklinalzone zu suchen. Der flächenbezogene mittlere As-Gehalt der Hauptgesteinstypen (petrogeochemische Komponente) beträgt ca. 13 mg/kg. Eine besondere Bedeutung erlangt im Erzgebirge die chalkogene Komponente. Neben der Elementanreicherung in der Vererzung selbst, die Gegenstand des Bergbaus war, kam es darüber hinaus zu einer großflächigen Beeinflussung der Nebengesteine bzw. deren Verwitterungsprodukte (primäre und sekundäre geochemische Aureole). Bei der anthropogenen Beeinflussung der natürlichen Böden sind vor allem die Erzaufbereitungsanlagen und die Emissionen der Buntmetallhütten zu nennen. Während in den Oberböden Nord- und in Teilen Mittelsachsens niedrige Gehalte dominieren (As-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen infolge der höheren petrogenen As-Komponente zu einer relativen Anreicherung. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum (Osterzgebirge), dem bedeutendsten Standort des Bergbaus und der Verhüttung polymetallischer Erze, sowie im Westerzgebirge (Raum Aue - Ehrenfriedersdorf). Die große Extensität und Intensität der Verbreitung von As-Mineralen in den polymetallischen-, Zinn-Wolfram- und Bi-Co-Ni-Ag-U-Erzformationen sowie ihre Verhüttung führten zu großflächigen geogenen und anthropogenen Anreicherungen. Getrennt werden beide Bereiche durch die Nordwest-Südost streichende Flöha-Zone, einem Bereich, in dem kaum Erzmineralisationen auftreten und somit die chalkogene Komponente nur selten entwickelt ist. Großflächig erhöhte As-Gehalte in Böden der Vorerzgebirgssenke (Zwickau - Chemnitz) sind auf die geochemisch spezialisierten Rotliegendsedimente (u. a. Abtragungsprodukte des Erzgebirges) zurückzuführen. Besonders hohe As-Gehalte sind in den Auenböden der Freiberger Mulde, Zschopau, Zwickauer Mulde und der Vereinigten Mulde verbreitet. Durch den geologischen Prozess der Abtragung von Böden aus den erzgebirgischen Lagerstättengebieten sowie anthropogenen Einträgen durch die Erzaufbereitung und Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu einer ständigen As-Anreicherung in den Auenböden. Infolge der beschrieben geogenen und anthropogenen Prozesse werden im Erzgebirge und in den Auenböden des Muldensystems die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Arsen z. T. flächenhaft überschritten.

GcBÜK400 - Arsen im Oberboden

Arsen ist ein zu den Halbmetallen zählendes, ubiquitäres und toxisch wirkendes Element. Es kommt in der Natur weit verbreitet in verschiedenen Mineralisationen als Arsensulfid bzw. -oxid und als Kupfer-, Nickel- und Eisenarsenat vor. Der durchschnittliche As-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 2 mg/kg. In der Fachliteratur werden As-Gehalte 20 mg/kg als Normalgehalte beschrieben, wobei die mittleren Gehalte etwa 5 mg/kg betragen. Unter den toxisch wirkenden Elementen kommt dem Arsen auf Grund seiner großflächigen Verbreitung erhöhter Gehalte in sächsischen Böden eine besondere Bedeutung zu. Die Ursachen sind zweifellos in der geochemisch-metallogenetischen Spezialisierung der Fichtelgebirgisch Erzgebirgischen Antiklinalzone zu suchen. Der flächenbezogene mittlere As-Gehalt der Hauptgesteinstypen (petrogeochemische Komponente) beträgt ca. 13 mg/kg. Eine besondere Bedeutung erlangt im Erzgebirge die chalkogene Komponente. Neben der Elementanreicherung in der Vererzung selbst, die Gegenstand des Bergbaus war, kam es darüber hinaus zu einer großflächigen Beeinflussung der Nebengesteine bzw. deren Verwitterungsprodukte (primäre und sekundäre geochemische Aureole). Bei der anthropogenen Beeinflussung der natürlichen Böden sind vor allem die Erzaufbereitungsanlagen und die Emissionen der Buntmetallhütten zu nennen. Während in den Oberböden Nord- und in Teilen Mittelsachsens niedrige Gehalte dominieren (As-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen infolge der höheren petrogenen As-Komponente zu einer relativen Anreicherung. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum (Osterzgebirge), dem bedeutendsten Standort des Bergbaus und der Verhüttung polymetallischer Erze, sowie im Westerzgebirge (Raum Aue - Ehrenfriedersdorf). Die große Extensität und Intensität der Verbreitung von As-Mineralen in den polymetallischen-, Zinn-Wolfram- und Bi-Co-Ni-Ag-U-Erzformationen sowie ihre Verhüttung führten zu großflächigen geogenen und anthropogenen Anreicherungen. Getrennt werden beide Bereiche durch die Nordwest-Südost streichende Flöha-Zone, einem Bereich, in dem kaum Erzmineralisationen auftreten und somit die chalkogene Komponente nur selten entwickelt ist. Großflächig erhöhte As-Gehalte in Böden der Vorerzgebirgssenke (Zwickau - Chemnitz) sind auf die geochemisch spezialisierten Rotliegendsedimente (u. a. Abtragungsprodukte des Erzgebirges) zurückzuführen. Besonders hohe As-Gehalte sind in den Auenböden der Freiberger Mulde, Zschopau, Zwickauer Mulde und der Vereinigten Mulde verbreitet. Durch den geologischen Prozess der Abtragung von Böden aus den erzgebirgischen Lagerstättengebieten sowie anthropogenen Einträgen durch die Erzaufbereitung und Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu einer ständigen As-Anreicherung in den Auenböden. Infolge der beschrieben geogenen und anthropogenen Prozesse werden im Erzgebirge und in den Auenböden des Muldensystems die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Arsen z. T. flächenhaft überschritten.

GcBÜK400 - Arsen im Oberboden

Arsen ist ein zu den Halbmetallen zählendes, ubiquitäres und toxisch wirkendes Element. Es kommt in der Natur weit verbreitet in verschiedenen Mineralisationen als Arsensulfid bzw. -oxid und als Kupfer-, Nickel- und Eisenarsenat vor. Der durchschnittliche As-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 2 mg/kg. In der Fachliteratur werden As-Gehalte 20 mg/kg als Normalgehalte beschrieben, wobei die mittleren Gehalte etwa 5 mg/kg betragen. Unter den toxisch wirkenden Elementen kommt dem Arsen auf Grund seiner großflächigen Verbreitung erhöhter Gehalte in sächsischen Böden eine besondere Bedeutung zu. Die Ursachen sind zweifellos in der geochemisch-metallogenetischen Spezialisierung der Fichtelgebirgisch Erzgebirgischen Antiklinalzone zu suchen. Der flächenbezogene mittlere As-Gehalt der Hauptgesteinstypen (petrogeochemische Komponente) beträgt ca. 13 mg/kg. Eine besondere Bedeutung erlangt im Erzgebirge die chalkogene Komponente. Neben der Elementanreicherung in der Vererzung selbst, die Gegenstand des Bergbaus war, kam es darüber hinaus zu einer großflächigen Beeinflussung der Nebengesteine bzw. deren Verwitterungsprodukte (primäre und sekundäre geochemische Aureole). Bei der anthropogenen Beeinflussung der natürlichen Böden sind vor allem die Erzaufbereitungsanlagen und die Emissionen der Buntmetallhütten zu nennen. Während in den Oberböden Nord- und in Teilen Mittelsachsens niedrige Gehalte dominieren (As-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen infolge der höheren petrogenen As-Komponente zu einer relativen Anreicherung. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum (Osterzgebirge), dem bedeutendsten Standort des Bergbaus und der Verhüttung polymetallischer Erze, sowie im Westerzgebirge (Raum Aue - Ehrenfriedersdorf). Die große Extensität und Intensität der Verbreitung von As-Mineralen in den polymetallischen-, Zinn-Wolfram- und Bi-Co-Ni-Ag-U-Erzformationen sowie ihre Verhüttung führten zu großflächigen geogenen und anthropogenen Anreicherungen. Getrennt werden beide Bereiche durch die Nordwest-Südost streichende Flöha-Zone, einem Bereich, in dem kaum Erzmineralisationen auftreten und somit die chalkogene Komponente nur selten entwickelt ist. Großflächig erhöhte As-Gehalte in Böden der Vorerzgebirgssenke (Zwickau - Chemnitz) sind auf die geochemisch spezialisierten Rotliegendsedimente (u. a. Abtragungsprodukte des Erzgebirges) zurückzuführen. Besonders hohe As-Gehalte sind in den Auenböden der Freiberger Mulde, Zschopau, Zwickauer Mulde und der Vereinigten Mulde verbreitet. Durch den geologischen Prozess der Abtragung von Böden aus den erzgebirgischen Lagerstättengebieten sowie anthropogenen Einträgen durch die Erzaufbereitung und Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu einer ständigen As-Anreicherung in den Auenböden. Infolge der beschrieben geogenen und anthropogenen Prozesse werden im Erzgebirge und in den Auenböden des Muldensystems die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Arsen z. T. flächenhaft überschritten.

Tracing the Fate of Contaminants in a Model Ecosystem

Scientists from the Palestinian authority, Israel and Germany, all involved in different aspects of analytical research, have joined in order to conduct an environmental study, which aims to understand the fate of selected contaminants in a model ecosystem. For this purpose, two typical terrestrial sites in the Middle East, one in the Palestinian authority and the other in Israel, have been selected, comprising a partially polluted area and a natural reserve as a reference. In these areas, the fate (chemical and physical transformations) of typical pollutants such as heavy metals (Pb, Cu, Zn, Cd, Fe), metalloids (As, Sn, Sb), organic dyes and air contaminants (O3, NOx, SO2) will be studied. This will also involve the determination of all the environmental conditions for the chemical transformation, which should shed some light on the dynamics of the ecosystems. At the same time novel inexpensive sensors and analytical procedures will be developed, which are necessary for the analysis of contaminants in this area. The goals will be accomplished by combined efforts of all partners.

Erbohrung des Brothers Vulkans - einem aktiven submarinen Inselbogen-Vulkan Neuseelands, Vorhaben: Petrologisch-mikrobiologische Untersuchungen hydrothermaler Prozesse

WIR! - rECOmine - ResuS, TP4: Entwicklung von Verwertungskonzepten für aufbereitete, subhydrische Sedimente

WIR! - rECOmine - ResuS, TP1: Entwicklung von verwertungsorientierten Aufbereitungsverfahren für subhydrische Sedimente

Schwerpunktprogramm (SPP) 2238: Dynamik der Erzmetallanreicherung, Teilprojekt: Ein intern-konsistentes thermodynamisches Modell für den hydrothermalen Transport von Pb-Zn-Ag-Au-As-Sb: Modellentwicklung und Anwendung auf Bildungsprozesse von sedimentgebundenen Pb-Zn und epithermalen Ag-Au-As-Sb Lagerstätten

Hydrothermale Erzlagerstätten stellen grosse Metallanreicherungen in der Erdkruste dar und die Bildung von weltweit bedeutenden Lagerstätten erfordert Extraktion von Metallen aus grossen Gesteinsvolumina, effizienten Transport durch hydrothermale Fluide und lokalisierte Metallabscheidung. Fluid-Mineral-Interaktionen sind hierbei wesentliche Prozesse, die zur Bildung von weltweit bedeutenden Lagerstätten wie magmatisch hydrothermale porphyrische Cu-Au-Mo und epithermale Ag-Au-As-Sb Lagerstätten, und sedimentgebundene Pb-Zn Lagerstätten. Geochemische Modellierung von Fluidprozessen ist eine wesentliche Methode, um konzeptionell neue Modelle für erzbildende hydrothermale Systeme zu entwickeln. Dies setzt robuste thermodynamische Daten voraus, um zuverlässig Metall- und Mineralöslichekeiten und Fluid-Mineral-Reaktionen zu simulieren. Das beantragte Projekt beinhaltet daher die Entwicklung eines intern-konsistenten thermodynamischen Modells für den hydrothermalen Transport von Pb-Zn Ag-Au-As-Sb, was unseren vorhandenen Datensatz wesentlich erweitern wird. Der neue Datensatz wird in numerischen Simulationen der für die Bildung von sedimentgebundenen Pb-Zn und epithermalen Ag-Au-As-Sb Lagerstätten kritischen Prozesse zur Anwendung kommen. Die Modellierung wird wichtige Fragestellungen zur Bildung weltweit bedeutender Lagerstätten-Typen beantworten, wie die relative Rolle von reduzierenden sauren und oxidierenden Fluiden in sedimentgebunden Pb-Zn Systemen, die Verbindung zwischen exhalativen und carbonatgebundenen Pb-Zn Lagerstätten, und die Bedeutung der Metalloide As und Sb für den hydrothermalen Transport von Cu, Pb, Zn, Ag und Au. Das Projekt besteht aus 3 Modulen, die gemeinsam zu einem fundamental besseren Verständnis der Bildung von hydrothermalen Pb-Zn und Ag-Au-As-Sb Lagerstätten führen werden. Modul A beinhaltet die Entwicklung eines intern-konsistenten thermodynamischen Modells für den hydrothermalen Transport von Pb-Zn-Ag-Au-As-Sb. Unter Anwendung einer neuen globalen Regressionsmethode werden alle Standard-Gibbsenergien der wässrigen Metallspezies aus kritisch ausgewählten experimentellen Löslichkeits- und Spektroskopie Daten simultan abgeleitet. In den Modulen B und C werden mittels geochemischer Modellierung mit der GEM3 Software die wesentlichen Prozesse simuliert, die zur Bildung von sedimentgebundenen Pb-Zn Lagerstätten und intrusionsgebundenen epithermalen Ag-Au-As-Sb Lagerstätten führen. Das Projekt wird wesentlich zu den Zielen des DOME Schwerpunktprogramms beitragen, durch Kooperation mit einem Partnerprojekt, das die Bildung epithermaler Lagerstätten untersucht, durch Erstellung des thermodynamischen Datensatzes, der für andere DOME-Projekte direkt anwendbar ist, und durch Modellierungsergebnisse, die unmittelbar in geländebasierten Studien anderer DOME Projekte getestet werden können.

1 2 3 4 518 19 20