API src

Found 33 results.

Similar terms

s/methanotrophe-bakterien/Methanotrophe Bakterien/gi

Bioökonomie International 2024: MAGMA - Abbau von Seltenen Erden durch Bioökonomie-Ansätze

Oligotrophische Adaptationen methanotropher Bakterien: Messung von relevanten Wachstumsparametern verschiedener Stämme und Nachweis der dominanten Methanotrophen in methanlimitierten Systemen

Methanoxidierende Bakterien existieren vor allem in den (mikro)oxischen Grenzflächen anoxischer methanogener Standorte. Sie sind aber auch in nicht gefluteten Böden gegenwärtig, welche nur selten als methanogene Quelle fungieren. Solche Böden wirken oft als mikrobielle Senke für atmosphärisches Methan (Konzentration ca. 1.7 ppmv). Bisher ist nicht bekannt, wie sich methanotrophe Bakterien an solche substratarmen Bedingungen anpassen bzw. diese überdauern. Wir beabsichtigen daher zu untersuchen, welche methanotrophen Bakterien unter oligotrophen Bedingungen fähig sind zu überleben oder gar zu wachsen. Ausgangspunkt dieser Analysen wird eine Sammlung von über 100 Stämmen sein, welche von Mitarbeitern des Instituts aufgebaut worden ist. Es soll die spezifische Affinität zum Methan, die Minimalkonzentration an Methan notwendig zum Wachstum und die Fähigkeit dieser Stämme die Nichtverfügbarkeit von Methan zu überdauern bestimmt werden. Ferner wird untersucht, ob zwischen den physiologischen Eigenschaften und der Phylogenie der untersuchten Stämme eine Korrelation besteht. Im zweiten Forschungsschwerpunkt soll die Übertragbarkeit der im Labormaßstab erzielten Ergebnisse auf die Freilandsituation überprüft werden. Dabei soll unter Anwendung molekularökologischer Techniken der Frage nachgegangen werden, ob in solchen Böden, welche eine Senke für atmosphärisches Methan darstellen, nur definierte Species bzw. phylogenetisch koherente Gruppen an methanoxidierenden Bakterien nachweisbar sind. Gensonden und PCR-gestützte Nachweissysteme für methanotrophe Gruppen werden in definierten Mischungen methanotropher Bakterien gewachsen unter methanlimitierten Bedingungen die dominanten Methanotrophen zu identifizieren.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Einfluss von Landnutzungsintensität auf Methanumsetzende Mikroorganismen in Grünland- und Waldböden

Methan (CH4) ist, neben CO2 das zweitwichtigste Treibhausgas (GHG). Die aktuelle atmosphärische Methankonzentration steigt seit 2007, vermutlich aufgrund von anthropogenem Einfluss bedingt durch intensivierte landwirtschaftliche Lebensmittelproduktion, stark an. Eine wichtige Aufgabe wird es zukünftig sein, die heutige Intensität der Landwirtschaft produktiv, aber auch gleichzeitig klimaneutral zu gestalten um dem Lebensmittelbedarf einer wachsenden Weltbevölkerung zu entsprechen. Zwei fundamental unterschiedliche Gruppen von Prokaryoten sind für den CH4 Umsatz in Böden verantwortlich. Methanotrophe Bakterien (MOB) wirken durch die Oxidation von atmosphärischem CH4, und von CH4, das durch methanogene Archaea im Boden produziert wurde bevor es die Atmosphäre erreicht, als biologische Filter. Derzeit ist nicht geklärt, inwieweit sich Unterschiede in der Landnutzungsintensität auf die funktionelle Diversität und die Aktivität dieser im Methanzyklus wichtigen Mikroorganismengruppen auswirken. Erste Untersuchungen zeigen einen negativen Effekt von hoher Nutzungsintensität auf die Methanaufnahme von gut belüfteten Grünlandböden. Allerdings ist wenig bekannt über den Einfluss der Landnutzungsintensität auf die räumliche und zeitliche Dynamik methanotropher und methanogener Bodenmikroorganismen. Wir haben ein interdisziplinäres Konsortium aus Experten der Bodenkunde, der Mikrobiologie und der Metagenomik mit komplementären Expertisen zu bodenbürtigen Treibhausgasen, methanotrophen und methanogenen Prokaryoten zusammengestellt. Durch die Kombination von aktuellen Methoden wollen wir die Biodiversitätsexploratorien als ideale Plattform nutzen, um die Frage zu beantworten, inwieweit Landnutzungsintensität die funktionelle Diversität und Aktivität von Methanumsetzenden Mikroorganismen beeinflusst.Die zugrundeliegenden Hypothesen wollen wir in zwei Arbeitspaketen (WP) überprüfen. Innerhalb von WP1 wollen wir untersuchen, welche Auswirkungen die Landnutzungsintensität von Grünland und Waldflächen auf die Methanflüsse und die Abundanz und Diversität von methanotrophen Bakterien (quantitative PCR) hat, und inwieweit dies von Umweltfaktoren abhängt. In WP2 wollen wir die jahres- und tageszeitliche Dynamik der Aktivität von methanogenen und methanotrophen Prokaryoten (mittels Metatranskriptomik und Methanfluss Messungen) untersuchen, und inwieweit diese durch Grünlandnutzungsintensität beeinflusst wird. Hierbei wird unser Fokus auf dem Vergleich auf Grünlandflächen auf wasserbeeinflussten Histosolen und gut durchlüfteten Leptosolen liegen. Unser Projekt BE-CH4 wird zu dem dringend benötigten Wissen um den Einfluss von Grünland- und Waldnutzungsintensität auf die räumliche und zeitliche Dynamik von den Methanfluss aus, und in Böden bedingenden Mikroorganismen beitragen.

Untersuchungen des Methan Paradoxons in Seen

Methan ist ein höchst potentes Treibhausgas, dennoch ist das globale Methanbudget durch die vielen unbekannten CH4-Quellen und -senken sehr unsicher. Die Höhe der CH4-Anreicherung in der Wassersäule hängt von komplexen Interaktionen zwischen methanogenen Archaeen und methanotrophen Bakterien ab. Das bekannte Methan Paradoxon, das die CH4-Übersättigung im oxischen Oberflächenwasserkörper von Seen und Meeren darstellt, weckt Zweifel, dass die mikrobielle CH4-Bildung nur im anoxischen Milieu stattfindet. Im oligotrophen Stechlinsee haben wir eine wiederkehrende Methanübersättigung im Epilimnion gefunden. Unsere Studien zeigen, dass das CH4 aktiv in der oxischen Wassersäule produziert wird. Die Produktion scheint dabei an die autotrophe Produktion von Grünalgen und Cyanobakterien gekoppelt zu sein. Zur gleichen Zeit sind keine methanotrophen Bakterien im Epilimnion vorhanden, so dass das CH4 nicht oxidiert wird. Unsere Haupthypothese ist, dass pelagische Methanogene hydrogenotroph sind, wobei sie den Wasserstoff aus der Photosynthese und/oder Nitrogenaseaktivität nutzen. Unsere Untersuchungshypothesen sind:1) Die CH4-Produktion ist mit der Photosynthese und/oder N-Fixierung gekoppelt, wobei hydrogenotrophe methanogene Archaeen mit den Primärproduzenten assoziiert sind. Die Methanogenen können angereichert und kultiviert werden, um Mechanismen der epilimnischen CH4-Produktion detailliert zu untersuchen.2) Die CH4-Oxidation ist durch die Abwesenheit der Methanotrophen und/oder der Photoinhibition in den oberen Wasserschichten reduziert.3) Die CH4-Produktion innerhalb mikro-anoxischer Zonen, z. B. Zooplankton und lake snow, ist nicht ausreichend für die epilimnische CH4-Produktion.Die saisonale Entwicklung des epilimnischen CH4-Peaks soll in Verbindung mit den Photoautotrophen und der Seenschichtung im Stechlinsee untersucht werden. Dabei soll eine neu-installierte Mesokosmosanlage (www.seelabor.de) genutzt werden, um CH4-Profile bei unterschiedlichen autotrophen Gemeinschaften und Seenschichtungen zu studieren. Die Verknüpfung zwischen methanogenen Archaeen und den Photoautotrophen soll in Inkubationsexperimenten mittels Hochdurchsatz-Sequenzierung und qPCR für funktionelle Gene untersucht werden. Methanotrophe werden quantifiziert und die Photoinhibition der CH4-Oxidation durch Inkubationsexperimente gemessen. In Laborexperimenten sollen die methanogenen Archaeen angereichert und kultiviert werden mittels dilution-to-extinction und axenischen Cyanobakterien und Grünalgen. Physiologische Studien an Anreicherungs- oder Reinkulturen sollen die zu Grunde liegenden molekularen Mechanismen ermitteln. Feld- und Laborexperimente sollen helfen, das Methan Paradoxon zu entschlüsseln, um die bisherige und potentiell wichtige CH4-Quelle zu charakterisieren und zu quantifizieren. Die Studien sollen helfen, unser Verständnis des globalen CH4-Kreislaufes zu verbessern, damit zukünftige Prognosen realistischer werden.

Bentho-pelagischer Transport methanotropher Mikroorganismen über Gasblasen

Gasblasenfreisetzende Seep-Gebiete sind äußerst bedeutende Methanquellen in aquatischen Systemen. Einen wesentlichen Beitrag zur Kontrolle der Methanemission in die Atmosphäre liefern methanotrophe Mikroorganismen, die sowohl im Sediment als auch in der Wassersäule in der Umgebung dieser Seeps angesiedelt sind. Im Vergleich zum Hintergrundwasser sind im Nahfeld dieser Seeps die Abundanz und die Aktivität dieser Organismen in der Wassersäule stark erhöht. Unsere Pilotstudie im DFG Projekt Transport Methan-oxidierender Mikroorganismen aus dem Sediment in die Wassersäule über Gasblasen (Bubble Shuttle) an einer Seep Lokation im Coal Oil Point Seep Gebiet (Kalifornien, USA) konnte erstmals zeigen, dass methanotrophe Bakterien über Gasblasen vom Sediment in die Wassersäule transportiert werden können. Das übergeordnete Ziel des hierauf aufbauenden Projektes besteht darin, die Bedeutung dieses Transportprozesses für den pelagischen Methanumsatz an diesen Seep-Gebieten einzuschätzen. Dafür sollen uns multidisziplinäre Studien an verschiedenen Seep Gebieten in Santa Barbara (Kalifornien, USA) und der Nordsee ermöglichen, die Umweltfaktoren zu diskutieren, die auf die Effizienz des bentho-pelagischen Gasblasentransports einwirken. Durch laborbasierte Inkubationsexperimente planen wir die Aktivität benthischer methanoxidierender Bakterien, die wir an verschiedenen Seep-Gebieten beprobt haben, in pelagischer Umgebung zu untersuchen. Zusammen mit molekularbiologischen Untersuchungen wollen wir zusätzlich Antworten auf die Frage erhalten, ob der Gasblasentransport einen bentho-pelagischen Austauschprozess darstellt, der einen Einfluss auf die Diversität der pelagischen methanotrophen Gemeinschaft im Umfeld von Seep-Gebieten nimmt. Durch Feldstudien an einer Blowout Lokation in der Nordsee und der Einbindung ozeanographischer Messungen und Modelle wollen wir letztlich ein Budget für pelagische methanotrophe Bakterien in der Umgebung eines Seeps erstellen, mit dessen Hilfe wir die Bedeutung des bentho-pelagischen Gasblasentransports auf die Abundanz methanotropher Bakterien und den pelagischen Methanumsatz abschätzen können.

Entwicklung eines biologischen Verfahrens zur Reduktion des Methanschlupfes von Gasaufbereitungsanlagen mittels Einsatz methanotropher Mikroorganismen^Teilvorhaben 2, Teilvorhaben 1

Ziel des Forschungsvorhaben ist die Entwicklung eines alternativen Verfahrens zur Reduktion des Methanschlupfes aus Gasaufbereitungsanlagen zur Biomethanproduktion. Bei verschiedenen gängigen Verfahren zur Aufbereitung von Biogas auf Erdgasqualität (PSA, DWW) ergibt sich das Problem eines erhöhten Methanschlupfes im Abgas von ca. 2 Prozent. Nach den Vorgaben des EEG ist der Methanschlupf jedoch auf einen Wert von maximal 0,5 Prozent zu begrenzen. Um diesen Grenzwert zu erreichen, ist derzeit eine technisch aufwendige und kostenintensive Nachbehandlung des Abgases in Form einer thermischen oder katalytischen Nachverbrennung notwendig. Im Rahmen des geplanten Projektes soll eine wirtschaftlichere Alternative auf der Grundlage einer biologischen Entmethanisierung des Abgases mit Hilfe methanotropher Bakterien entwickelt werden. Zunächst soll die Entmethanisierung von Abgasen im Labormaßstab mit verschiedenen methanotrophen Stämmen demonstriert und optimiert werden. Parallel hierzu werden Untersuchungen zur Gewinnung und Ausschleusung des Stoffwechselzwischenproduktes Ameisensäure durchgeführt. Die Ameisensäure ließe sich über Rückführung in den Biogasfermenter zur erneuten Biogasproduktion nutzten, da sie ein Substrat bestimmter methanogener Bakterien darstellt. Parallel hierzu ist die Entwicklung eines Pilotreaktors im Technikumsmaßstab vorgesehen mit dem eine Umsetzung in einen industriellen Maßstab unter technischen und wirtschaftlichen Aspekten simuliert werden kann.

Methan in der Grundwasseraufbereitung: Charakterisierung von methanotrophen bakteriellen Populationen in Trinkwasseraufbereitungsanlagen mit molekularbiologischen Methoden

Problemstellung: Grundwasser stellt mit einem Anteil von 65 % den am häufigsten für die Trinkwasseraufbereitung genutzten Rohwassertyp dar. Dabei ist der Großteil der Grundwässer als reduziert einzustufen und kann Methan aufweisen, welches bei unzureichender Entfernung die Wasseraufbereitung negativ beeinflussen kann. Dabei stellt nicht das Methan selber, sondern das Wachstum von Methan oxidierenden Bakterien (MOB) das eigentliche Problem dar. MOB oxidieren Methan unter aeroben Bedingungen zu Kohlenstoffdioxid (CH4 + 2 O2 ? CO2 + 2 H2O), was zu einer starken Sauerstoffzehrung im Wasser führt und eine unvollständige Eisen-, Ammonium- und Manganoxidation mit sich ziehen kann. Desweiteren kann es auf Grund der hohen Energieausbeute der Reaktion zu einem starken Wachstum der MOB in Form von schleimigen Biofilmen kommen. Die starke Biomasse- und Schleimproduktion kann insbesondere in Trinkwasserfiltern negative Auswirkungen haben, da sie filterhydraulische Probleme wie die Zunahme des Filterwiderstands, beschleunigtes Filterkornwachstum, Verbackungen des Filtermaterials und eine Verschlechterung der chemischen Filtratqualität hervorrufen kann. Daneben kann eine erhöhte Ablagerung von organischem Material im Filterbett mikrobiell-hygienische Probleme hinsichtlich einer Vermehrung von aeroben heterotrophen Bakterien und hygienisch relevanten Bakterien als Sekundärbesiedler bewirken. Vorgehensweise: Methan oxidierende Bakterien in Trinkwasseraufbereitungsanlagen sollen mit molekularbiologischen Methoden charakterisiert und in Zusammenhang mit Problemen in methanbelasteten Aufbereitungen gebracht werden. Die molekularbiologischen Untersuchungen gliedern sich dabei in folgende Hauptaspekte: 1. QUANTIFIZIERUNG: Etablierung eines quantitativen real-time PCR (qPCR)-basierten Nachweises von MOB in Trinkwasseraufbereitungsanlagen - Methodenvergleich: Gegenüberstellung der quantitativen Ergebnisse der qPCR mit Ergebnissen der bereits etablierten Methodik der Fluoreszenz-in-situ-Hybridisierung (FISH) - 2. DIVERSITÄT: Molekularbiologische Populationsanalysen der Trinkwasserfilter mittels (Pyro-)Sequenzierung und anschließenden phylogenetischer Analysen auf Basis von 16S rRNA und funktionellen Genen - 3) AKTIVITÄT: Ermittlung der Methanabbauaktivität der MOB durch Methanoxidationstests - Identifizierung von MOB mit aktiven Stoffwechsel durch stable isotope probing (SIP): Einbau von Isotopen (13C)-markierten Substraten in Zellkomponenten (Nukleinsäuren, Lipide)

Methandynamik in Hartwasserseen am Beispiel des Willersinnweihers in Ludwigshafen

Als Treibhausgas ist Methan ca. 20-mal wirksamer als Kohlendioxid. Obwohl sein atmosphärischer Gehalt viel geringer als der atmosphärische Gehalt an Kohlendioxid ist, wird sein Anteil an der gesamten 'radiative forcing' zwischen 15 und 23 Prozent geschätzt (Wuebbles et al. 2000). Während bislang viele Untersuchungen den anteilsmäßig wichtigsten Methanquellen (natürliche Feuchtgebiete, Reisanbau, Wiederkäuer) gewidmet wurden, besteht noch großer Forschungsbedarf bei den geringeren jedoch in ihrer Summe signifikanten Methanquellen. Zu diesen als weniger wichtig eingestuften Quellen, bei den die Unsicherheit über die eigentlichen Emissionen noch sehr groß ist, gehören auch Seen (Khalil & Shearer 2000). Einige Forscher, die sich mit den Methanemissionen von Seen beschäftigen, vermuten, dass die globalen Methanemissionen aus Seen bisher noch unterschätzt werden (e.g. Casper et al. 2000). Der Willersinnweiher ist ein Baggersee (ca. 17 ha, max. Tiefe: 20 m) in der Oberrheinischen Tiefebene im Stadtgebiet von Ludwigshafen. Dieser Hartwassersee kann als Beispiel für zahlreiche, häufig eutrophe Baggerseen in der Rheinebene angesehen werden. Die hohe Produktivität und die sommerliche Schichtung führen zur hypolimnischen Anoxie und zur reichen organischen Sedimentation, also Bedingungen unter denen man Methanbildung erwarten kann. Methan kann über drei Wege aus einem See entweichen: Über Transport durch emerse Makrophyten, über Diffusion oder über Ebullition. Da der Uferbereich des Willersinnweihers sehr steil ist und nur wenige emerse Makrophyten aufweist, ist der Transport durch Makrophyten zu vernachlässigen. Die anderen beiden Wege werden in dieser Arbeit untersucht, wobei in der Regel nur wenig Methan über Diffusion entweichen kann, da die Oxidation durch methanotrophe Bakterien an der Grenze oxisch/anoxisch eine effektive Sperre darstellt. Ebullition von Gasblasen aus dem Sediment dagegen umgeht Oxidation in der Wassersäule und ist deswegen meist der wichtigste Weg der Methanemission aus Gewässern. Abgesehen von der potentiell wichtigen Rolle für den globalen Methankreislauf spielt die Methandynamik eine Rolle im Kohlenstoffkreislauf des Sees. Durch die Oxidation von Methan an der Sauerstoff-Sprungschicht wird zusätzliches Kohlendioxid dem System zugeführt, welches das Kalk-Kohlensäure-Gleichgewicht verschiebt und dabei die Calcitlöslichkeit beeinflusst. Der Methankreislauf wird im Zusammenhang mit laufenden Untersuchungen zur Zirkulations- und Ausgasungsfällung von Calcit am Willersinnweiher untersucht. Durch regelmäßige Beprobungen wird der saisonale Verlauf des im Wasser gelösten Methans in verschiedene Tiefen in der Wassersäule verfolgt, um die Diffusion und Oxidation von Methan aus dem Sediment und Tiefenwasser zu erfassen. Um die Methan-Entweichung über Ebullition zu erfassen, werden Gasfallen an verschiedenen Stellen im See installiert und regelmäßig beprobt. Die Zusammensetzung der Gase wird gaschromatographisch ermittelt.

GH II: MUMM, Methan in marinen gashydrathaltigen Sedimenten - Umsatzraten und Mikroorganismen - Vorhaben: Identifizierung methanotropher Gemeinschaften - Sonderprogramm GEOTECHNOLOGIEN

Ein zentraler Prozess des globalen Methankreislaufs ist der mikrobielle Umsatz von Methan in marinen Sedimenten. An methanreichen Standorten wie über Gashydrat und an submarinen Schlammvulkanen kontrollieren Gemeinschaften neu entdeckter methanotropher Mikroorganismen fast vollständig die Emission von Methan. Ziele des Projektes MUMM sind: - In-situ-Quanitfizierung mikrobieller Umsatz- und Transportprozesse in methanreichen GeoBio-Systemen - Experimentelle Untersuchung von Regulationsfaktoren zum Methanumsatz und zum mikrobiellen Wachstum in Bioreaktoren - In-situ-Identifizierung von Biodiversität und räumlicher Verteilung methanzehrender Mikroorganismen unter Einsatz von diagnostischen organischen Molekülen und Nukleotidsequenzen - Untersuchung von Schlüsselenzymen und metabolischen Fähigkeiten anaerober Methanoxidierer Ergebnisse: - In der ersten Phase des MUMM-Projektes (Methan in marinen gashydrathaltigen Sedimenten - Umsatzraten und Mikroorganismen) wurden Umsatzraten und Mikroorganismen weitgehend mit ex-situ-Methoden untersucht. Neben Tiefsee-Methanquellen im Golf von Mexiko, am Hydrate Ridge vor Oregon und am arktischen Schlammvulkan Haakon Mosby wurden verschiedene andere gashaltige Sedimente in Küstenbereichen wie dem Wattenmeer untersucht. Die Identifizierung einer größeren Vielfalt methanotropher Archaeen und sulfatreduzierender Bakterien gelang. Der Vergleich von AOM-Raten zeigte, dass an Tiefseestandorten mit hohem Methanfluss die Methanumsatzraten um zwei bis drei Größenordnungen höher waren als an Standorten mit geringem Methanfluss. An Lokationen mit hoher Freisetzung an Methan, an denen Methan gleichzeitig die einzige Kohlenstoffquelle darstellt, sind AOM und Sulfatreduktion (SRR) eng aneinander gekoppelt und das stöchiometrische Verhältnis zwischen Sulfatreduktion und Methanoxidation wird deutlich. An Standorten mit Erdölfreisetzung ist die Sulfatreduktion von der AOM, die anteilig nur noch weniger als 10% zur Sulfatreduktion beiträgt, entkoppelt (z. B. im Guaymas-Becken, an einigen der Austrittsstellen im östlichen Mittelmeerraum und im Golf von Mexiko). An Standorten mit hoher AOM oberhalb von dissozierenden Gashydraten und hoher Gasaustritte ist Sulfat der limitierende Faktor und wird im Bereich von 1-3 cm unterhalb der Sedimentoberfläche aufgezehrt. Eine maßgebliche Minderung der AOM wurde beobachtet, wenn die Sulfatkonzentration in Bereiche unter 3 mM absank. Eine ausgeprägte laterale Heterogenität der AOM an Standorten mit Gasaustritt ist typisch, die durch eine instationäre Gasinjektion, die inhomogene Verteilung von Gashydraten, ausgefällte Karbonate und Bioturbations-Prozesse hervorgerufen wird. Die Untersuchung von AOM-Matten von Gasquellen im Schwarzen Meer hat weitere Belege für die direkte Beziehung zwischen AOM und der Bildung von Karbonatausfällungen erbracht. (Text gekürzt)

Zusammensetzung und Umsatzdynamik der organischen Sedimentfraktion und ihre Rolle bei der Entwicklung sauerstoffarmer Ablagerungsraeume (DYSMON)

Im Rahmen des Forschungsvorhabens sind Herkunft, Menge und Dynamik der organischen Fraktion in Sedimenten des Ostsee untersucht worden, um biogeochemische Prozesse in ihrer zeitlichen Aufloesung zu dokumentieren. Begleitend zu diesen Arbeiten sind Biomarkeruntersuchungen an Kulturmaterialien durchgefuehrt worden. Die Gehalte an organischem Kohlenstoff, anorganischem Kohlenstoff, Stickstoff und Schwefel wurden in Sedimenten aus Kernen der Standorte Boiensdorf und Hiddensee und dem Gotlandtief bestimmt. Die zeitliche Variation der Sedimente wurde an 200 Proben aus einem ALKOR 72 Fahrt gewonnenen Kern erfasst. Die deutlichen Schwankungen in unterschiedlichen Zeitfrequenzen wurden auf Basis von Datierungen eingeordnet und interpretiert. Der extrahierbare organische Anteil in den unterschiedlichen Proben wurde mit Gaschromatographie und Gaschromatographie-Massenspektrometrie eingehend analysiert. Anhand der Biomarker lassen sich hoehere Pflanzen und Algen (Diatomeen) als Quellen des organischen Materiales erkennen (Boiensdorf). Die Sedimentproben des Gotlandtiefes zeigen einen wechselnden Eintrag von organischem Material aus hoeheren Pflanzen, Algen und Bakterien. Zudem weist die Zusammensetzung der sedimentaeren organischen Fraktion in einzelnen Horizonten auf stark reduzierende Ablagerungbedingungen hin.Die Biomarkerzusammensetzung von Kulturmaterial von Cyanobakteien (Prof. Dr. U. Fischer), methanotrophen Bakterien (Dr. J. Heyer) und von aus der Wassersaeule der Ostsee isolierten Bakterien (Prof. Dr. J.F. Imhoff) wurde analysiert.

1 2 3 4