Dieses Methodenpapier skizziert für die Umweltpolitik, wie das Instrument der "Trendanalyse" für die Untersuchung von umweltrelevanten Entwicklungen nutzbar gemacht werden kann. Durch Trendanalysen können die verschiedenen Facetten eines Trends beschrieben werden und diese systematisch hinsichtlich ihrer Wirkungen auf die Umwelt analysiert werden. Trendanalysen können so dazu beitragen, die Umweltpolitik im Sinne einer antizipativen Politikgestaltung handlungsfähig zu machen. Quelle: Forschungsbericht
Die Publikation enthält die Ergebnisse einer EU-weiten Recherche zu den statistischen Methoden, die zur Erfüllung der Berichtspflichten gegenüber der EU genutzt werden. Recherchiert wurden die Methoden, die für die Erhebung der erneuerbaren Strom- und Wärmemengen, die nicht in zentrale Netze eingespeist werden, genutzt werden. In 27 EU-Mitgliedstaaten sowie der Schweiz und Großbritannien wurden durch muttersprachliche Rechercheure*Rechercheurinnen in Interviews mit Experten*Expertinnen des jeweiligen Landes Informationen zu den eingesetzten Methoden erhoben. Den Interviews wurden Literatur- und Internetrecherchen vorangestellt. Die statistischen Methoden sind in der Publikation transparent beschrieben und vergleichend dargestellt. Es sind Informationen zu den folgenden Energieträgern enthalten: zur Stromerzeugung aus Windkraft, Photovoltaik, Wasserkraft, Geothermie, fester und flüssiger Biomasse und Biogasen sowie zur Wärme- und Kälteerzeugung aus fester und flüssiger Biomasse, aus Biogasen, Biokraftstoffen jenseits des Verkehrssektors, Solarthermie, Umweltwärme und Geothermie. Für die Wärmenutzung wurde außerdem nach den Sektoren Private Haushalte, Industrie, Dienstleistungen und Landwirtschaft unterschieden. Vier der recherchierten Methoden wurden nach festgelegten Kriterien ausgewählt und näher analysiert; eine Übertragbarkeit auf Deutschland wurde geprüft. Abschließend wurden Empfehlungen für nächste Schritte abgeleitet. Quelle: Forschungsbericht
Das Projekt "Fire - climate feedback in the Earth System" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Fires are an integral Earth System process, which is controlled by climate and at the same time impacts climate in multiple ways. As such fires form a feedback mechanism in the Earth System, which might amplify or dampen climate change. At present this feedback is not well understood nor is it represented in current generation Earth System models used to study climate change. The proposed research project aims to quantify the fire-climate feedback by incorporating the integral role of fires into an Earth System Model (ESM). Together with improved observational based process understanding the project will analyze how fires have developed throughout Earth history and how single fire driven processes contribute to the overall fire climate impact. A mechanistic terrestrial biosphere fire model will be implemented into the ESM and fire mediated climate relevant processes will be coupled between the different ESM compartments, including the atmosphere, ocean and cryosphere. This cross-disciplinary research project will foster the understanding of past climate change and will hopefully allow a better assessment of human induced future climate change by further constraining the climate sensitivity of the Earth system.
Das Projekt "Towards a Guideline for Digital Soil Mapping in Ecuador" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Abteilung Bodenphysik durchgeführt. Research experience in digital soil mapping (DSM) shall be extended and deepened in two further research areas in order to develop a guideline for DSM in Ecuador. The guideline will give an overview: a) about the DSM approach, b) the different sampling designs developed according to the area size, accessibility and terrain complexity, c) the various methods from the field of supervised machine learning to develop digital soil maps, and d) the implementation with open source software. The soil-landscapes of the three investigation areas will be analysed and soil-landscape models will be developed by supervised machine learning techniques, in order to spatially predict soil properties from point data based on environmental prediction parameters. By using the so developed digital soil maps as principal input, a functional soil-landscape analysis is carried out to determine landslide, erosion and anthropogenic disturbance risk zones as well as estimate the soil organic carbon stocks and soil fertility.
Das Projekt "B 2: Lateral water flow and transport of agrochemicals - Phase 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The project aims at developing a model of the dynamics of agrochemicals (fertilisers, pesticides) and selected heavy metals on a regional scale as a function of cropping intensity in the highland areas of Northern Thailand. The model shall predict the effects of cropping intensity on mobility and leaching of agrochemicals in the agriculturally used system itself but also on the chemical status of neighbouring ecosystems including downstream areas. The methods for measuring and estimating the fluxes of agrochemicals in soils will be adapted to the conditions of the soils and sites in Northern Thailand. Fluxes of agrochemicals will be measured in fruit tree orchards on the experimental sites established together with projects B1, C1 and D1. Also, processes governing the dynamics of agrochemicals will be studied. The objectives for the first phase are as follows: - To identify suitable study sites - To establish the methods for measuring the fluxes of agrochemicals in the study sites - To adopt the analytical procedures for pesticides - To identify and parametrise the processes governing the mobility of agrochemicals - To identify the major chemical transformation processes for agrochemicals in the soils of the project area - To establish models of the fate of agrochemicals an the plot scale. Dynamics of agrochemicals include processes of mobilisation/immobilisation, degradation and transport. Both, experiments and field inventories are needed to elucidate the complex interaction of the various processes. Field measurements of the fluxes of nutrient elements (N, P, K, Ca, Mg, Mn, Zn, Cu), pesticides and some heavy metals will be conducted at different regional scales (plot, agricultural system, small catchment, region). Laboratory and field experiments consider chemical, physicochemical and biological processes. Biological processes and degradation of pesticides will not be considered in the first phase of the project, however, they should be included later on. The project as a whole is broken down into three essential parts, which consecutively follow each other. The subproject is methods- and processes-orientated. Methods, which were developed in Hohenheim to quantify the fluxes of chemicals in soils have to be adapted to meet the requirements of the specific conditions in the study area. Recently, these methods are already under development in tropical environments (Vietnam, Costa Rica). After adaptation the methods will be used to yield flux data on the plot scale. These data are needed to help deciding which of the hypothesised processes are of major importance for modelling the dynamics of agrochemicals. The final outcome of this project phase are models of the fate of agrochemicals as a function of management intensity on the plot scale.
Das Projekt "Standardization of Ice Forces on Offshore Structures Design (STANDICE)" wird vom Umweltbundesamt gefördert und von Dr. J. Schwarz durchgeführt. Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.
Das Projekt "Impact of transgenic crops on fertility of soils with different management history" wird vom Umweltbundesamt gefördert und von Forschungsinstitut für biologischen Landbau Deutschland e.V. durchgeführt. What impact does transgenic maize have on soil fertility? Among the factors that determine soil fertility is the diversity of the bacteria living in it. This is in turn affected by the form of agriculture practiced on the land. What role do transgenic plants play in this interaction? Background Soil fertility is the product of the interactions between the parental geological material from which the soil originated, the climate and colonization by soil organisms. Soil organisms and their diversity play a major role in soil fertility, and these factors can be affected by the way the soil is managed. The type of farming, i.e. how fertilizers and pesticides are used, has a major impact on the fertility of the soil. It is known that the complex interaction of bacterial diversity and other soil properties regulates the efficacy of plant resistance. But little is known about how transgenic plants affect soil fertility. Objectives The project will investigate selected soil processes as indicators for how transgenic maize may possibly alter soil fertility. The intention is in particular to establish whether the soil is better able to cope with such effects if it contains a great diversity of soil bacteria. Methods Transgenic maize will be planted in climate chambers containing soils managed in different ways. The soil needed for these trials originates from open field trials that have been used for decades to compare various forms of organic and conventional farming. These soils differ, for example, in the way they have been treated with pesticides and fertilizers and thus also with respect to their diversity of bacteria. The trial with transgenic maize will measure various parameters: the number of soil bacteria and the diversity of their species, the quantity of a small number of selected nutrients and the decomposition of harvest residues. It will be possible to conclude from this work how transgenic plants affect soil fertility. Significance The project will create an important basis for developing risk assessments that incorporate the effects of transgenic plants on soil fertility.
Das Projekt "Protected Areas Management Effectiveness Assessments in Europe: a review of data, methods and results - Durchführung einer internationalen Tagung an der INA Vilm vom 01.11. bis 05.11.2009" wird vom Umweltbundesamt gefördert und von Bundesamt für Naturschutz durchgeführt.
Das Projekt "Formation of brine channels in sea ice" wird vom Umweltbundesamt gefördert und von Fachhochschule Münster, Fachbereich Physikalische Technik durchgeführt. Within this interdisciplinary project the formation of brine channels in sea ice will be explored. The microscopic properties of sea ice, especially the permeability plays an important role for the energy exchange between ocean and atmosphere and is determined by the brine channel volume. The brine channel structure will be measured by computer tomography and image analysis. We intend to describe the channel structure by two phenomenological models, a morphogenesis approach of Alan Turing in connection with the phase transition theory of Ginzburg and Landau, and the phase field method with respect to the Cahn-Hilliard equation. We solve these nonlinear evolution equations in two and three dimensions and compare the size and texture of the brine channels with the measurements. In addition to the phenomenological equations we support our studies with molecular dynamics simulations and the density functional theory in order to obtain deeper insights at the molecular scale. Comparative first-principles studies will then enhance the trust in the extracted parameters and will lead to classical density functional for the two phases. We will discuss the phase transitions in terms of a phenomenological theory based on microscopic parameters and try to extract the underlying mechanism for the formation of water-ice boundaries. Specifically, we want to explore three theoretical questions: (i) How are ice-water melting fronts moving, (ii) How are brine channels formed and (iii) How do surface properties influence the structure formation of brine channels. The project is based on the experiences of three fields, the theoretical biological physics, chemical physics and the many-body theory. The final aim of the project is to provide input parameters for global climate models.
Das Projekt "Improvement of oil palm wood by bio resin application" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Forstwissenschaften, Institut für Forstnutzung und Forsttechnik, Professur für Forstnutzung durchgeführt. Reinforcement of oil palm wood by using Bioresin to improve its physical, mechanical and machinery properties. Concerning the utilization of oil palm wood, which is available in large number throughout the year, especially when the mature plants has reached its economic life span (approx. 25 years). Normally, this mature plant should be replanting. According to the projection of oil palm plantation development in Indonesia, there are more than 16 million cubic meter of this bulky material starting 2010. This large amount of biomass, if no real effort, will become a serious problem. Unfortunately, the current replanting method (push-felled) sounds risky and in several companies follow by burning method, which is really not solve problem, but creating the other serious problem, such as air pollution. The oil palm wood characteristics as a monocotyledons species is naturally quite different compare to the common wood (dicotyledonous). Originally the oil palm tree has various densities along the trunk and its density decreased linearly with trunk height and towards the centre of the trunk. Green oil palm trunk is also very susceptible to fungal and insect attack due to the high sugar and starch content. Hence, the utilization of this material is not fully utilized yet and still poses a serious environmental problem. Yet, compared to the various intensive researches and the economically important of the oil palm, processing technology and diversification of palm oil based products mainly from CPO and PKO, the oil palm solid waste, particularly the oil palm wood, has received relatively little research attention. This might be due to lack or insufficient the scientific information and Know-How of this material and might be also due to the difficulties of using with the OPT. Although several investigations have already conducted in the field of OPT, but a sufficient knowledge shall be achieved in order to design and establish the new tailor-made wood products based on oil palm wood. Hence, this study was directed to focus the characteristics of OPT including anatomical, physical, mechanical and machinery properties, and in order to use the OPT for structural purposes, the wood properties of OPT were improved and reinforced with Bioresin through the development of wood modification techniques.
Origin | Count |
---|---|
Bund | 611 |
Type | Count |
---|---|
Förderprogramm | 609 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 609 |
Language | Count |
---|---|
Deutsch | 611 |
Englisch | 506 |
Resource type | Count |
---|---|
Keine | 443 |
Webseite | 168 |
Topic | Count |
---|---|
Boden | 529 |
Lebewesen & Lebensräume | 570 |
Luft | 459 |
Mensch & Umwelt | 611 |
Wasser | 459 |
Weitere | 611 |