Die Untersuchungsgebiete liegen in den alpinen bis nivalen Höhenstufen der Nördlichen Kalkalpen. Dort existieren auf verkarsteten Kalken (CaCO3-Gehalte größer 96 Prozent) unterschiedliche Entwicklungsstufen der humusreichen Rendzina (A-C-bzw. O-C Profile) sowie verbraunte und braune Bodentypen (A-B-C-Profile). Alle Böden, besonders die braunen Varianten, weisen allochthone Glimmer, Silikate und Schwerminerale auf. So wird der Einfluß von Flugstäuben auf die Solumbildung evident. Aus diesem Sachverhalt resultieren als Forschungsschwerpunkte die rezente Flugstaubdynamik und die dadurch beeinflußte Bodengenese auf Kalkstein. Im Rahmen des geplanten Projekts ergeben sich folgende Kernfragen: 1. Wie sind die Flugstäube durch die beeinflußten Böden in den einzelnen Höhenstufen verbreitet? Welche Geofaktoren steuern die räumliche Verteilung? 2. Wieviel Flugstaub wird rezent (Größenordnung, (mm/a) eingetragen? Welche Hauptliefergebiete gibt es? Wie korrelieren Staubmenge und Solummächtigkeit? 3. Wie verändern die Stäube die Böden? Welchen Anteil haben autochthone Terrae fuscae, allochthone Braunerden und Mischformen? Welche Divergenzen und Konvergenzen der Bodenbildung gibt es in den einzelnen Untersuchungsgebieten? Gibt es Anhaltspunkte für mögliche Bildungszeiträume eine Alterseinstufung der Böden?
Die Felbertal Scheelit-Lagerstätte ist eine der weltweit größten Wolfram-Mineralisationen. Sie ist zwar generell schichtgebunden, ist aber als eine Stockwork-Mineralisation mit diffuser Verteilung des Scheelits in Metabasiten der frühpaläozoischen Habach-Serie im penninischen Tauernfenster der Ostalpen zu beschreiben. Scheelit tritt (1) in stratiformer Verteilung in einer östlichen Vererzungszone (EOZ, ehemaliger Tagebau), (2) in Erzkörpern die an Orthogneise mit karbonischen Protolith-Altern gebunden sind die in einer westlichen Vererzungszone (WOZ, Tiefbau) vorkommen, und (3) in Erzkörpern K7 und K8 ohne besondere lithologische Präferenz in der WOZ auf. Es konnten bisher vier Scheelit-Generationen mit UV- und Kathodolumineszenz und unterschiedlichen Molybdän-Gehalten unterschieden werden. Mit ausführlichen Voruntersuchungen der Mineralchemie des Scheelits mit REM, EPMA und LA-ICP-MS lässt sich eine mehrphasige Entwicklung mit magmatischen, hydrothermalen, metamorphen und tektonischen Abschnitten unter wechselnden physiko-chemischen Bedingungen aufzeigen. Eine U-Pb-Datierung der Scheelit-Generationen in den verschiedenen Verbreitungsdomänen mit LA-ICP-MS kann die wichtige Frage nach der primären Herkunft der Wolfram-Mineralisation beantworten. Mit den Datierungen soll auch die weitere Entwicklung des Scheelits bei Kristallisations-Auflösungs-Wiederausfällungs-Prozessen (CDR), Rekristallisation und Deformation zeitlich aufgelöst werden. Scheelit-Datierungen mit Sm-Nd und Lu-Hf Analysen mit MC-ICP-MS sind weitere Ziele die aber weitere Vorstudien erfordern. Die Element-Mobilität, der Transport und die Verteilung des Wolframs wird weiterhin mit LA-ICP-MS Spurenelement-Analysen von Epidot, Amphibol, Feldspat und Glimmern in den Scheelit-Wirtsgesteinen Amphibolit unf Orthogneis untersucht.
Die europäischen Varisziden beherbergen zahlreiche magmatisch-hydrothermale Greisensysteme, die bedeutende Li, Sn, W und/oder Mo Ressourcen darstellen. Die zentraliberische Zone (Portugal/Spanien), Cornwall (Großbritannien), das Zentralmassiv (Frankreich) und das Erzgebirge/Krušné Hory (Deutschland/Tschechische Republik) gelten als die wichtigsten Li-Sn-W-Provinzen Europas, von denen das Erzgebirgssystem besonders reich an Li Vorkommen ist. Obwohl Greisenvorkommen seit vielen Jahrhunderten bekannt sind und abgebaut werden, sind grundlegende Aspekte, wie die Zusammensetzung der Greisenfluide (Spurenelemente und Gaskomponenten) und die genauen erzbildenden Mechanismen, nicht ausreichend erforscht.Während der magmatischen Phase führt fraktionierte Kristallisation zu einer starken Anreicherung von Elementen wie Li, Sn, B und F in der Restschmelze und in den davon entmischten Greisenfluiden. Anschließend wird durch Gesteins-Wasser-Wechselwirkung die Zusammensetzung der freigesetzten Fluide erheblich verändert. Elemente werden durch den Vergreisungsprozess in der hydrothermalen Lösung an- und abgereichert. Insbesondere die Auflösung der im magmatischen oder metamorphen Nebengestein enthaltenen primären Glimmer (z.B. Biotit) kann während der frühen Vergreisungsphase die Li-, F-, B- und Sn-Konzentrationen im Fluid signifikant erhöhen, bevor diese Elemente durch das Ausfallen typischer Greisenminerale wie Zinnwaldit, Kassiterit, Topas, Turmalin und Fluorit endgültig aus dem Fluid entfernt werden. Die hydrothermale Phase ist daher von besonderer Bedeutung, um das Verhalten von leichten und mobilen Elementen in Greisensystemen entschlüsseln zu können. Um ein besseres Verständnis für die Mobilität von Elementen während des hydrothermalen Stadiums zu erlangen, ist ein breitgefächerter methodischer Ansatz notwendig. Dieser Ansatz beinhaltet die Kombination von in-situ geochemischen Analysen von Greisenmineralen (Haupt-, Spuren- und Isotopenzusammensetzungen mittels LA-ICPMS), Flüssigkeitseinschlussuntersuchungen (Mikrothermometrie, Crush-Leach und LA-ICPMS) sowie die Analyse von Gasen (Crush Fast Scan Massenspektrometrie).Das daraus gewonnenen Verständnis über a) Spuren- und Leichtelementsystematiken in Greisensystemen, b) die Zusammensetzung und Veränderung von Greisenfluiden und c) die Rolle der mit diesen Fluiden assoziierten Gase ist essentiell, um die raum-zeitliche Entwicklung von Greisensystemen nachvollziehen zu können. Darüber hinaus ermöglicht dieser ganzheitliche Ansatz die Identifizierung der Prozesse und chemischen Mechanismen, die für die Erzbildung (z.B. Li und Sn) entscheidend sind.
Die Bildung von Sn- und W-Lagerstätten in entwickelten Graniten ist aufgrund der Komplexität und des Zusammenspiels mehrerer Prozesse während der magmatisch-hydrothermalen Entwicklung dieser Systeme nicht geklärt. In diesem Projekt möchten wir einen Beitrag zum Verständnis dieser Prozesse leisten, indem wir ein hochentwickeltes Aluminium-, Lithium- und Phosphor-reiches Granitsystem im mineralisierten Distrikt von Argemela in Portugal untersuchen. Dieses Beispiel ist eine ideale Fallstudie, um die Entwicklung von Sn- und W-Konzentrationen in Fluiden eines magmatisch-hydrothermalen orthomagmatischen Systems zu verfolgen (keine signifikante Beteiligung externer Fluide).Der Forschungsansatz basiert auf der Untersuchung natürlicher Gesteine, Minerale und Flüssigkeitseinschlüsse, die durch experimentelle Arbeiten ergänzt wird. Die Konzentrationen von Sn und W werden in Flüssigkeitseinschlüssen in Quarz ermittelt. Die Quarzminerale werden so ausgewählt, dass sie unterschiedliche Stadien der magmatisch-hydrothermalen Entwicklung repräsentieren. Die Spurenelementkonzentrationen in Quarz und weiteren Mineralen (z. B. Glimmer) werden verwendet, um die verschiedenen Stadien zu charakterisieren. Experimente bei hohem Druck und hoher Temperatur, die für das Argemela System relevant sind, werden durchgeführt, um (1) die Verteilung von Sn und W zwischen Fluiden und Silikatschmelze und (2) die Löslichkeit von Cassiterit und Wolframit in Li- und P-reichen Silikatschmelzen und Fluiden zu bestimmen. Von besonderer Bedeutung ist die Untersuchung des Einflusses von Li und P auf den Transport von Sn und W in Fluiden, sowie des Einflusses der Temperatur auf W. Der komplementäre geochemische und experimentelle Ansatz wird hilfreich sein, um die Anreicherung von Sn und W in Fluiden während der verschiedenen Entwicklungsstadien des magmatisch-hydrothermalen Systems zu verfolgen und um die Ablagerung von Kassiterit und Wolframit während der unterschiedlichen Stadien zu quantifizieren.
A compilation of 29,574 published radiometric dates for metamorphic rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from igneous and sedimentary rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.006, respectively.
A compilation of 39,070 published radiometric dates for igneous rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from sedimentary and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.006 and https://doi.org/10.5880/digis.e.2023.007, respectively.
6 - Steine und Erden ( einschl. Baustoffe) 61 Sand, Kies, Bims, Ton, Schlacken Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 611 Industriesand 6110 Formsand, Gießereisand, Glassand, Klebsand, Quarzsand, Quarzitsand, Industriesand, nicht spezifiziert A 612 Sonstiger natürlicher Sand und Kies 6120 Kies, auch gebrochen, Sand, sonstiger A 613 Bimsstein, -sand und -kies 6131 Bimsstein, Bimssteinmehl A 6132 Bimskies, -sand A 614 Lehm, Ton und tonhaltige Erden 6141 Betonit, Blähton, Tonschiefer, Kaolin, Lehm, Porzellanerde, Ton, Walkerde, roh und unverpackt, Dinasbrocken, Dinasbruch (Silikabrocken, -bruch) A 6142 Betonit, Blähton, Tonschiefer, Kaolin, Lehm, Porzellanerde, Ton, Walkerde, roh und verpackt, Schamotte, Schamottenmehl A 615 Schlacken und Aschen nicht zur Verhüttung 6151 Hochofenasche, Müllasche, Räumasche aus Zinköfen (Muffelrückstände), Aschen von Brennstoffen, Flugasche, Kesselasche, Rostasche, Bodenasche, nicht spezifiziert X X S 6152 Eisenschlacken, Hochofenschlacke, Kohlen-, Koksschlacken, Schlacken, eisenhaltig, manganhaltig, Schweißschlacke, Splitt von Hochofenschlacke, Schlacken von nicht spezifizierten Brennstoffen X A 18) 6153 Hüttenbims A 6154 Schlackensand (= Hüttensand) A 6155 Holzasche, Kohlen-, Koksasche (auch Flugasche oder Kesselasche davon) X A 18) 6156 Schlacken aus Blei- und Kupferöfen, Müllschlacken, Schlacken nicht spezifiziert X X S 62 Salz, Schwefelkies, Schwefel Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 621 Stein- und Salinensalz 6210 Natriumchlorid (Chlornatrium), Auftausalz, Siedesalz, Speisesalz, Steinsalz, Viehsalz, Salz, auch vergällt, nicht spezifiziert A 622 Schwefelkies, nicht geröstet 6220 Schwefelkies, nicht geröstet A 623 Schwefel 6230 Schwefel, roh A 63 Sonstige Steine, Erden und verwandte Rohmaterialien Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 631 Findlinge, Schotter und andere zerkleinerte Steine 6311 Feldsteine, Findlinge, Lavaschlacken, Schotter, Steine, Steinblöcke, roh, aus Steinbrüchen A 6312 Grubensteine, Schüttsteine, Steinabfälle, -grus, -mehl, -sand, Steinsplitt, bis 32 mm Durchmesser, Lavasplitt, Rohperlite A 6313 Lavakies A 632 Marmor, Granit und andere Naturwerksteine, Schiefer 6321 Basaltblöcke, -platten, Marmorblöcke, -platten, Phonolit, Schieferblöcke, -platten, Tuffsteinmaterial, Quadersteine und sonstige Steine, roh behauen A 6322 Phonolitgrus, -splitt, Schmelzbasalt, -bruch, -steine, Schiefer, gebrannt, gemahlen, zerkleinert, bis 32 mm Durchmesser A 633 Gips- und Kalkstein 6331 Dolomit (Calcium-Magnesiumcarbonat), Dunit, Kalkspat, Olivin A 6332 Dolomit (Calcium-Magnesiumcarbonat), Dunit, Kalkspat, Olivin, sämtlich zerkleinert, gemahlen, bis 32 mm Durchmesser A 6333 Gipssteine A 6334 Gipssteine, zerkleinert, gemahlen, bis 32 mm Durchmesser A 6335 Düngekalk, Düngemittel, kalkhaltig, (phosphatfrei), Kalkrückstände, Mergel A 634 Kreide 6341 Kreide, roh (Calciumcarbonat, natürlich) A 6342 Kreide, zum Düngen A 639 Sonstige Rohmineralien 6390 Asbest, roh (-erde, -gestein, -mehl, -fasern, -generat), Asbestabfälle X X S 6391 Asphalt (Asphaltite), Asphalterde, -steine, Asphalterzeugnisse, zum Straßenbau X X S 6392 Baryt (Bariumsulfat), Schwerspat, Witherit A 6393 Borax, Bormineralien, Feldspat, Kristallspat X B 6394 Bittererde, -spat, Magnesit, auch gebrannt, gesinert, Talkerde (Magnesia) A 6395 Erden, unbelasteter Schlamm, z. B. Klärschlamm aus kommunalen Kläranlagen, Abraum, Brackwasser, Gartenerde, Humus, Infusorienerde, Kieselerde, Molererde, Schlick X A 18) 6396 Belasteter Schlamm, z. B. Klärschlamm aus industriellen Kläranlagen, Bauschutt, verunreinigte Aushubmaterialien, Hausmüll, Hüttenschutt, Müll X X S 6397 Waschberge A 6398 Kalirohsalze, nicht zum Düngen, z. B. Kainit, Karnallit, Kieserit, Sylvinit, Montanal A 6399 Sonstige Rohmineralien, z. B. Farberden, Glaubersalz (Natriumsulfat), Glimmer, Kernit, Kryolith, Quarz, Quarzit, Speckstein, Steatit, Talkstein, Trass, Ziegelbrocken, Ziegelbruch, Flussspat (Fluorit) A 64 Zement und Kalk Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 641 Zement 6411 Zement B 6412 Zementklinker A 642 Kalk 6420 Kalk, in Brocken, auch gebrannt, Kalkhydrat, Löschkalk A 65 Gips Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 650 Gips 6501 Gips, gebrannt A 6502 Gips, roh, zum Düngen A 6503 Gips aus Rauchgasentschwefelungsanlagen, sonstiger Industriegips A 69 Sonstige mineralische Baustoffe (ausgenommen Glas) Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 691 Baustoffe und andere Waren aus Naturstein, Bims, Gips, Zement u. ä. Stoffen 6911 Faserzementwaren, z. B. Bausteine und -teile, Fliesen, Gefäße, Platten A 6912 Beton- und Zementwaren, Kunststeinerzeugnisse, z. B. Bausteine, Bauteile, Bordsteine, Fertigbauteile, Fliesen, Leichtbauplatten, Mauersteine, Platten, Schwellen, Stellwände, Werkstücke A 6913 Bimswaren, z. B. Bausteine, -teile A 6914 Gipswaren, z. B. Bauplatten, -steine, -teile A 6915 Mineralische und pflanzliche Isoliermittel, z. B. Bauteile aus Schaumstoffen, Dämmplatten, Formstücke, Glasvlies-Dachbahnen, Matten und Platten aus Mineralfasern, Glasseide, Glaswatte, Glaswolle, Perlite, Vermiculite, Wärmeschutzmasse A 6916 Natursteine (Werksteine), bearbeitet und Waren daraus, z. B. Bordsteine, Mosaiksteine, Pflasterplatten, -steine, Platten, Prellsteine, Verblendsteine, Werkstücke aus Stein A 6917 Asphalterzeugnisse X X S 6918 Steinholzerzeugnisse, Steinholzmasse B 6919 Waren aus anderen mineralischen Stoffen, Schlackenwolle A 692 Grobkeramische und feuerfeste Baustoffe 6921 Dach- und Mauerziegel aus gebranntem Ton, z. B. Backsteine, Bausteine, Dachziegel, Hohlziegel, Klinker, Verblendsteine, Ziegelsteine A 6922 Feuerfeste Bauteile und Steine, keramische Boden- und Wandplatten, z. B. Fliesen, Kacheln, Platten, Schammottekapseln, Schamotteplatten, -steine, -waren, Silikatsteine, Steinzeugwaren A 6923 Feuerfeste Mörtel und Massen, z. B. Ausstampfmasse, Gießereiformmasse, Gusshilfsstoffe, Mörtelmischungen A 6924 Brocken von feuerfesten keramischen Erzeugnissen, Schamottebrocken, -bruch A 6929 Sonstige Baukeramik aus gebranntem Ton, z. B. Drainröhren, Kabeldecksteine, Pflasterplatten, -steine A Bemerkungen: 18) Alternativ ist für den Fall, dass auf eine Reinigung in Verbindung mit dem geforderten Entladungsstandard verzichtet werden soll, auch ein Aufspritzen auf Lagerhaltung möglich. Stand: 28. Dezember 2022
| Origin | Count |
|---|---|
| Bund | 46 |
| Land | 2 |
| Wissenschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Förderprogramm | 20 |
| Gesetzestext | 1 |
| Text | 26 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 19 |
| offen | 23 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 45 |
| Englisch | 9 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Datei | 8 |
| Dokument | 24 |
| Keine | 15 |
| Webseite | 12 |
| Topic | Count |
|---|---|
| Boden | 50 |
| Lebewesen und Lebensräume | 30 |
| Luft | 17 |
| Mensch und Umwelt | 50 |
| Wasser | 16 |
| Weitere | 46 |