Kurzbeschreibung Ziel ist die Definition des Begriffs „Mikroplastik“ aus Reifenabrieb. Ableitung von Aussagen über „Mikroplastik“ aus Reifenabrieb aus einem Fact Sheet zum Thema Reifenabrieb und Feinstaub. In dem Feinstaub-Papier finden sich grundsätzliche Aussagen dazu, wie sich Reifenabrieb zusammensetzt (Konglomerat aus Gummi, Straßenbelag, Metallspuren etc.), dass neben dem Reifen auch Straßenbelag und Fahrstil entscheidende Faktoren sind und dass die Reifenhersteller durch abriebsärmere Mischungen bereits die Langlebigkeit der Reifen erhöht und den Abrieb gesenkt haben. Seit 2005 befasst sich auch das Tire Industry Project (TIP) unter dem Dach des Weltwirtschaftsrats für Nachhaltige Entwicklung (World Business Council for Sustainable Development – WBCSD) damit (Ergebnisse: Straßen- und Reifenpartikel grundsätzlich zu groß für Feinstaub http://www.wbcsd.org/Projects/Tire-Industry-Project/Tire-Road-Wear-Particles-TRWP; https://www.youtube.com/watch?v=qdn8mFnxDtY) Ergebnisse Fact Sheet zum Thema Reifenabrieb und Feinstaub
Mikroplastik wird zwischen Land- und Wasseroberflächen und der Atmosphäre ausgetauscht und kann luftgetragen über weite Strecken transportiert werden, bevor die Mikroplastikpartikel wieder aus der Atmosphäre entfernt und abgelagert werden. Obwohl diese Transportprozesse für die Verteilung und die wirksamen Abbaumechanismen von Mikroplastik sehr wichtig sind, gibt es bislang keine systematischen Untersuchungen zum atmosphärischen Transport von Mikroplastik. Der luftgetragene Transport von Mikroplastik wird im vorliegenden Teilprojekt in einem Windkanal als idealisiertem Modellsystem experimentell untersucht und mit einem strömungsauflösenden Transportmodell numerisch simuliert, um die grundlegenden Prozesse verstehen und quantifizieren zu können.
Chemisches Recycling von Kunststoffabfällen wird seit Jahren intensiv diskutiert. In einem laufenden Refoplan-Vorhaben werden die thermochemischen Technologien des chemischen Recyclings (Pyrolyse, Verölung, Vergasung) evaluiert und mit dem werkstofflichen Recycling sowie der energetischen Verwertung verglichen. Neben diesen für gemischte Kunststoffabfälle eingesetzte Verfahren gibt es auch Verfahren die Lösemittel nutzen. Dabei bleiben entweder Polymere erhalten (lösemittelbasiertes Recycling) oder in Monomere zerlegt (Solvolyse). Solche Verfahren fokussieren im Regelfall auf bestimmte Kunststoffarten (z.B. PUR, PET). Mit diesem Vorhaben soll die Lücke geschlossen werden, die nach dem laufenden Refoplan-Vorhaben verbleibt, und auch diese Arten des Recyclings adressiert werden. Geeignete Technologien des solvolytischen und lösemittelbasierten Recyclings von Kunststoffabfällen sollen identifiziert und bewertet werden. Dafür sollen geeigneten Abfallströme identifiziert und die vorhandenen Mengen abgeschätzt werden. Hierbei muss eine eindeutige Abgrenzung zu den mittels herkömmlichen Methoden des werkstofflichen Recyclings ökologisch und ökonomisch sinnvoller zu behandelten Abfällen gezogen werden. Weiterhin sollen bereits existierende Anlagen/Techniken im Detail untersucht und deren Praxistauglichkeit evaluiert werden. Neben den Techniken für das Recycling sollen hierbei die notwendigen Vorbehandlungs- und Produktaufreinigungsschritte im Detail betrachtet werden. Anhand verfügbarer Daten sollen dann Energie- und Massenbilanzen für ausgewählte, als sinnvoll erachtete Prozesse erstellt werden. In einem weiteren Schritt solle Kriterien für die Feststellung der ökologischen Vorteilhaftigkeit der Verfahren anhand der detaillierten Energie- und Massenbilanzen abgeleitet werden. Auch die Behandlungs- und Investitionskosten für die im Detail betrachteten Verfahren sollen abgeschätzt werden.
Die ubiquitäre Kontamination der Umwelt durch Mikroplastik (MP), die damit verbundenen potenziellen Risiken für Ökosysteme und letztendlich für unsere Gesundheit ist in letzter Zeit sehr stark in den Blickpunkt des öffentlichen und wissenschaftlichen Interesses gerückt. Das junge Forschungsfeld MP hat sich bis dato vorwiegend auf die Entwicklung geeigneter Monitoringverfahren, auf die quantitative Abschätzung der Kontamination der Umwelt, auf die Identifikation relevanter Eintragspfade und auf erste Eintragsminimierungsansätze beschränkt. Ökotoxikologische Fragestellungen wurden zumeist mit Hilfe fabrikneuer Kunststoffe untersucht. Bei all diesen Ansätzen fehlte jedoch bislang ein fundamentales Verständnis von den physikalischen, chemischen und biologischen Prozessen, denen MP in der Umwelt unterworfen ist. Die wissenschaftliche Komplexität der Thematik MP erfordert für ein ebensolches Verständnis jedoch einen interdisziplinären Ansatz, der die traditionellen Fachgrenzen überbrückt. Das Ziel dieser SFB-Initiative ist es daher - ausgehend von Modellsystemen für Kunststoffe, Organismen und Umweltkompartimente - ein grundlegendes Verständnis jener Prozesse und Mechanismen zu erlangen, die in Abhängigkeit von den physikalischen und chemischen Eigenschaften der Kunststoffe (A) die biologische Effekte von MP in limnischen und terrestrischen Ökosystemen bedingen, (B) die Migrationsbewegungen der MP-Partikel in und zwischen Umweltkompartimenten beeinflussen sowie (C) die Bildung von MP ausgehend von makroskopischen Kunststoffen verursachen. Diese Erkenntnisse werden erstmals eine wissenschaftlich fundierte Grundlage für die Bewertung der Umweltrisiken von MP existierender Massenkunststoffe bieten. Darauf aufbauend sollen - bereits in der ersten Antragsphase beginnend - neue umweltfreundliche Kunststoffe im Sinne einer nachhaltigen Polymerchemie entwickelt und anhand von Modellsystemen verifiziert werden. Diese neuen Kunststoffe werden unter anderem schnellere Abbauprozesse durch die Applikation von Beschleunigern und strukturellen Modifikationen aufweisen und werden zur Vermeidung bzw. Reduzierung von MP beitragen. Aufgrund der gewonnenen umfassenden Erkenntnisse aus Phase I sollen zudem auf längere Sicht (Phase II und III) Kunststoffe gezielt so modifiziert werden, dass sie aufgrund ihrer neuen Eigenschaften keine schädigenden Effekte auf Organismen und auf die Umwelt insgesamt mehr aufweisen. Die Komplexität der untersuchten Modellsysteme soll im Verlauf des SFB 1357 gesteigert werden, um eine möglichst hohe Relevanz in Bezug auf reale Ökosysteme zu erreichen.
Die globale Industrieproduktion und das Konsumentenverhalten führen zu einer immer stärkeren Verschmutzung der Ozeane. Daher ist ein Verständnis der Verbreitung von Schadstoffen und ihrer Auswirkungen auf Ökosysteme zunehmend wichtig. Das betrifft auch besonders entlegene, bisher als weitgehende unbelastet geltende Gebiete wie die Antarktis und den Südlichen Ozean. Um die Belastung mit Plastikrückständen von Antarktischen und Subantarktischen Seevögeln zu vergleichen, werden wir Weichmacher-Rückstände im Bürzeldrüsensekret mit einem kürzlich etablierten GC-MS Protokoll bestimmen. Zusätzlich werden wir von den gleichen Vögeln Quecksilber bestimmen, und dazu einerseits Federn nutzen, welche die Monate vor und während der Mauser repräsentieren, und andererseits Blutproben, um die Belastung während der Brutperiode zu erfassen. Wir werden unsere Analysen auf kleine Röhrennasen (Procellariiformes: Sturmschwalben, Walvogel und Blausturmvögel) fokussieren, und vergleichend ebenfalls Proben eines bekanntlich hoch mit Plastikmüll belasteten Gebiets im Nordost-Pazifik untersuchen. Wir werden daher Unterschiede in der Schadstoffexposition zwischen verschiedenen Verbreitungsgebieten und in Abhängigkeit von der trophischen Stufe (durch komponentenspezifische Stabilisotopenanalysen). Weiterhin werden wir die Weichmacher-Konzentrationen in der zeitigen und späten Antarktischen Brutsaison (November versus März) vergleichen, um Carry-Over-Effekte aus dem Überwinterungsgebiet in die Antarktis zu erfassen.
Zielsetzung: Die Textilindustrie gilt als eine der umwelt- und klimaschädlichsten Branchen weltweit. Durch ihre Vielstufigkeit und Vielfältigkeit fallen in verschiedenen Schritten Umweltprobleme an. Im Naturfaseranbau kommen Pestizide zum Einsatz und der Wasserverbrauch ist enorm. Aus den Färbereien und den Ausrüstungsbetrieben gelangen umweltschädliche Chemikalien in die Wasserkreisläufe. Weltumspannende Lieferketten führen durch den Warentransport zu immensen Emissionen klimaschädlicher Gase. In der Wäsche löst sich Mikroplastik ab. Und bei vielen Textilabfällen sind Naturfasern und Chemiefasern gemischt, sodass ein sortenreines Recycling ohne Wertverlust nahezu unmöglich ist. Gleichzeitig steigen die Mengen an Alttextilien aus den Privathaushalten von Jahr zu Jahr an. Für viele dieser Herausforderungen gibt es bereits erste Lösungsansätze. Die Wahl von Naturfasern mit geringem Wasserbedarf aus biologischem Anbau verringert die Umweltbelastung im Anbau. Der Verzicht auf Farben oder die Umstellung auf umweltfreundliche Färbeprozesse schonen die Gewässer. Werden Lieferketten wieder regional organisiert, können Emissionen vermieden werden. Spezielle Waschbeutel fangen Mikroplastik auf. Designansätze wie Cradle To Cradle, die auf Mono-Materialien und Kreislauffähigkeit setzen, erfreuen sich immer größerer Beliebtheit. Gleichzeitig werden für immer mehr Faserarten Recyclingverfahren entwickelt. Und auch bei den Verbraucher:innen macht sich ein Bewusstseinswandel bemerkbar, der durch Leih-, Reparier- und Tauschmodelle gefördert wird. Diese Lösungen können nur dann zu einer Verminderung der Umweltprobleme beitragen, wenn sie vernetzt gedacht und weltweit angewendet werden. Eine lokale Naturfaserproduktion ergibt nur Sinn, wenn es auch die entsprechenden Abnehmer:innen gibt. Designer:innen können nur dann kreislauffähige Produkte entwickeln, wenn es entsprechende Verfahren gibt. Deswegen ist es wichtig, dass die einzelnen Akteur:innen entlang des Produktlebenszyklus miteinander ins Gespräch kommen. Die Lösung der Umweltprobleme verlangt dringend Änderungen im Verhalten. Grundlagen dafür sind das Infragestellen gängiger Praktiken, der Austausch über Lösungen und das Vernetzen derer, die etwas bewirken wollen und können. Fachwissen wird u. a. häufig durch die Lektüre (digtialer) Bücher generiert. Doch eine wesentliche Säule des Fachwissens steht in keinem Buch, sondern ist Erfahrungswissen der beteiligten Akteure, das häufig 'nur' in der 'eigenen Blase' weitergeben wird. Hier setzt das Vorhaben durch das neuartige Veranstaltungsformat der lebendigen Textilbibliothek 'LiveTexBibo' an. Verfügbares Erfahrungswissen wird am Beispiel der Textilbranche mit dem Ziel eine Verhaltensveränderung hin zu einer nachhaltigen Textilbranche motiviert; globale Herausforderungen wie z. B. der Biodiversitätsverlust und der Klimawandel werden bezogen auf die Branche thematisiert. Neben technologischen Lösungsansätzen geht es insbesondere auch um politische, soziale und ethische Fragen und um persönliche Lebens- und Arbeitsrealitäten von Textil-Akteuren, z. B. Unternehmen der Produktion, Logistik, Handel und Konsument*innen. Durch die Auseinandersetzung mit obigen Themen im Dialog mit Expert*innen sollen notwendige Veränderungen fachlich fundiert initiiert werden. Neue und zum Teil bereits erprobte Perspektiven und Einzelbeispiele werden durch Kenntnis dieses Spezial-Wissens greifbar und Dialoge zwischen Menschen, die sich sonst nie begegnet wären, werden ermöglicht.
Das Konzept von Refill Deutschland ist simpel und einfach: Läden mit dem Refill Aufkleber am Fenster oder der Tür füllen kostenfrei Leitungswasser in jedes mitgebrachte Trinkgefäß. Im März 2017 in Hamburg gestartet, ist Refill Deutschland inzwischen zu einer deutschlandweiten Bewegung geworden! Durch das großartige Engagement von vielen Ehrenamtlichen helfen wir aktiv mit, dem Plastikwahnsinn ein Ende zu bereiten und auf die Ressourcenverschwendung und Verschmutzung durch Plastikmüll hinzuweisen.
Zielsetzung: Der Gesundheitssektor zu dem HygCen Germany als akkreditiertes Prüflabor für Desinfektionsmittel und Medizinprodukte gehört ist für 4,4% der Treibhausgase verantwortlich. Besonders hoch ist der Anteil der Emissionen im Scope 3. Diese Emissionen umfassen sonstige indirekte Treibhausgas-Emissionen, die schwerpunktmäßig mit den Unternehmenstätigkeiten verbunden sind. Für HygCen Germany beinhaltet das insbesondere den hohen Verbrauch von hochwertigen Einmal-Kunststoffartikeln, die aktuell nach Gebrauch zunächst autoklaviert werden und anschließend als Abfall entsorgt werden. Infektiöse Abfälle aus dem Gesundheitsbereich werden in Deutschland als gefährlicher Abfall mit dem Abfallschlüssel 18 01 03* zunächst mit in der RKI-Liste aufgeführten Verfahren inaktiviert und müssen anschließend als Abfall mit dem Abfallschlüssel 18 01 04 thermisch verwertet werden. Die Krankenhäuser in Deutschland produzieren im Jahr rund 4,8 Millionen Tonnen Müll. Die gemeinnützige Organisation Practice Greenhealth geht davon aus, dass rund 25 Prozent des anfallenden Abfalls in Krankenhäusern aus Plastik besteht. Das sind 1,2 Millionen Tonnen Plastik. Wenn es mit unserem Verfahren perspektivisch gelingt 10% davon stofflich zu recyclen, wären das etwa 100 000 Tonnen Plastik und somit ein ganz erheblicher Beitrag zum Klimaschutz. Gemeinsam mit den Projektpartnern, dem Maschinenbauer Ermafa Environmental Technologies GmbH und dem Institut für Polymer- und Produktionstechnologien e. V. IPT möchten wir die Machbarkeit dieses Vorhabens prüfen.
| Origin | Count |
|---|---|
| Bund | 1291 |
| Kommune | 1 |
| Land | 251 |
| Wirtschaft | 12 |
| Wissenschaft | 227 |
| Zivilgesellschaft | 34 |
| Type | Count |
|---|---|
| Daten und Messstellen | 344 |
| Ereignis | 48 |
| Förderprogramm | 989 |
| Gesetzestext | 1 |
| Kartendienst | 3 |
| Text | 247 |
| Umweltprüfung | 12 |
| unbekannt | 121 |
| License | Count |
|---|---|
| geschlossen | 506 |
| offen | 1051 |
| unbekannt | 208 |
| Language | Count |
|---|---|
| Deutsch | 1455 |
| Englisch | 401 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 2 |
| Datei | 56 |
| Dokument | 348 |
| Keine | 979 |
| Unbekannt | 6 |
| Webdienst | 1 |
| Webseite | 459 |
| Topic | Count |
|---|---|
| Boden | 958 |
| Lebewesen und Lebensräume | 1013 |
| Luft | 1269 |
| Mensch und Umwelt | 1765 |
| Wasser | 1089 |
| Weitere | 1662 |