Mikroplastik (Partikel im µm Bereich) entsteht durch verschiedenste Prozesse, insbesondere jedoch durch Abrieb und Erosion von Plastik. Dabei ist ein Eintrag über den Wasser- und Bodenpfad mittlerweile unbestritten. Jedoch weiterhin ungeklärt ist der tatsächliche Eintrag über den Luftpfad. Zwar belegen Studien das Vorkommen von Mikroplastik an weitentfernten Orten und lassen auch den Schluss eines zumindest teilweisen Transportes über die Luft zu, aber wie hoch dieser Beitrag tatsächlich ist bleibt zurzeit ungeklärt. Darüber hinaus spielt die Identifikation der Polymere und somit die Erfassung der Quellbeiträge eine entscheidende Rolle. Ziel des Projektes ist es den luftgetragenen Eintrag von Mikroplastik und deren Quellen an Hintergrundstationen des Luftmessnetzes zu bestimmen. Dafür sollen an ausgewählten Messstationen des Luftmessnetzes des Umweltbundesamts (UBA) plastikfreie Niederschlagssammler sowie Vorrichtungen zur Feinstaubprobenahme installiert und über den Projektzeitraum repräsentativ PM10 Feinstaub- und Niederschlagsproben gesammelt und deren chemische Zusammensetzung analysiert werden. Zusätzlich sind Analysen von Niederschlagsproben zu Vergleichszwecken vorzusehen. In der Studie soll zudem die Ergebnisse statistisch (deskriptiv und beurteilend) ausgewertet und eine mögliche Quellenidentifikation über die Inhaltsstoffe erarbeitet werden.
Das Konzept von Refill Deutschland ist simpel und einfach: Läden mit dem Refill Aufkleber am Fenster oder der Tür füllen kostenfrei Leitungswasser in jedes mitgebrachte Trinkgefäß. Im März 2017 in Hamburg gestartet, ist Refill Deutschland inzwischen zu einer deutschlandweiten Bewegung geworden! Durch das großartige Engagement von vielen Ehrenamtlichen helfen wir aktiv mit, dem Plastikwahnsinn ein Ende zu bereiten und auf die Ressourcenverschwendung und Verschmutzung durch Plastikmüll hinzuweisen.
Verpackungen von Lebensmitteln beispielsweise Tiefkühlprodukten sind längst ein Bestandteil unseres täglichen Lebens geworden. Gerade bei Tiefkühlprodukten begegnen dem Endverbraucher dabei aber immer wieder teils große Kunststoffbestandteile in den Verpackungen. Der stetige wachsende Hunger nach Tiefkühlpizza und generell nach Tiefkühlprodukten sowie sonstigen industriell verarbeiteten Lebensmitteln hat aber auch eine Schattenseite: Zur Verpackung der Tiefkühlpizza werden sogenannte Pizzafolien eingesetzt um die Tiefkühlpizza vor allem zur Vermeidung des direkten Kontakts fettiger Lebensmittel mit Recyclingkarton und somit gegen die Kontaktmigration von Mineralölbestandteilen in die Lebensmittel zu schützen. Zusätzlich wirken diese Folien als Wasserdampfsperre, um die Lebensmittel vor dem Austrocknen oder Aufweichen zu schützen. Dadurch entstehen alleine durch Tiefkühlpizzen in Deutschland mehr als 2.500 t Kunststoffabfälle pro Jahr - Tendenz steigend. Ziel des vorliegenden Projektes ist die Entwicklung eines neuartigen Verfahrens zur Beschichtung von Verpackungskarton-Material aus recyclingfähigen GD2-Kartonagen mit mehreren Schichten sogenannter Barrierelacke zur Verhinderung der Migration von Mineralölen aus Druckfarben in die Lebensmittel hinein. Die neuentwickelte Beschichtung fungiert erstmals gleichzeitig als Wasserdampfsperre. Durch die neuartige Beschichtung werden die Folienverpackungen daher bei gleicher Funktionalität der Verpackung obsolet, womit eine signifikante Reduzierung von Kunststoffabfällen einher gehen wird. Die Entwicklung beinhaltet: 1.) Die Entwicklung anwendungsspezifischer, funktional optimierter Rezepturen für die Barrierelacke. 2.) Die Entwicklung des Verfahrens zum Aufbringen der neuartigen Beschichtung. 3.) Die Entwicklung einer hochautomatisierten Beschichtungsanlage, die kurze Umrüstzeiten sowie den lokalen Einsatz direkt am Produktionsort der Verpackungen ermöglicht.
Veranlassung Methoden des maschinellen Lernens kommen in der gewässerkundlichen Praxis der BfG bisher nur vereinzelt zum Einsatz. Der Einsatz von ML entspricht in vielen Bereichen aber bereits dem Stand von Wissenschaft und Technik und hält zunehmend Einzug auch in gewässerkundliche Fragestellungen. ML besitzt das Potenzial, zum einen bestehende Aufgaben und Methoden qualitativ zu optimieren (z. B. in Form verbesserter Prognosemethoden). Zum anderen werden durch den Einsatz von ML arbeitsaufwändige, mit klassischen Ansätzen nicht leistbare Analysen erst möglich, wodurch auch gänzlich neue oder substanziell erweiterte Leistungen und Produkte entstehen. Der unmittelbare Anwendungs- und Aufgabenbezug von MALPROG lässt diesbezüglich konkrete Ergebnisse für relevante Fachaufgaben sowie zielführende Erkenntnisse für eine Übertragung auf weitere Arbeitsfelder der BfG erwarten. Ziele Die übergeordneten Ziele von MALPROG sind - wissenschaftliche Erkenntnis und Datenharmonisierung: Untersuchung praktischer Anwendbarkeit von Methoden des maschinellen Lernens für ausgewählte BfG-Fachaufgaben (Messdatenplausibilisierung, Abfluss- und Wasserstandsvorhersage, Vegetationskartierung, Ölerkennung) - Technologietransfer: Überführung zielführender Methoden des maschinellen Lernens in zentrale Dienste und Applikationen der BfG - Konsolidierung des Wissens: Initiierung einer BfG-weiten Arbeitsgruppe "KI" zwecks Beratung, Unterstützung, Austausch und Koordination zukünftiger Anwendungen mit Bezug zu Methoden der künstlichen Intelligenz Für die konkrete Anwendung der ML-Methoden für die Fach- und Beratungsaufgaben der BfG sollen - eine weitere Steigerung der Vorhersagegüte erzielt, längerfristige Vorhersageskalen erschlossen und innovative Beratungsprodukte generiert werden, - eine intelligente Vorbeurteilung von Öl-Verschmutzungen ermöglicht werden, die z. B. einen effizienteren Einsatz unbemannter Systeme ermöglicht und den teuren Datentransfer für weitfliegende Systeme wesentlich reduziert, - durch die Anwendung auf digitale Orthofotos eine Identifizierung von Vegetation mit erhöhtem Automatisierungsgrad auf großer Fläche ermöglicht werden, z. B. für eine effiziente Erstellung von Biotoptypenkartierungen und für ein stringentes Vegetationsmonitoring bei Entwicklungsmaßnahmen, - durch Kameraaufnahmen automatisch Makroplastik in fließenden Gewässern identifiziert und klassifiziert werden, - Messfehler von Bodenfeuchtemessungen identifiziert und korrigiert werden. Die vertiefte Befassung mit den Möglichkeiten und Grenzen von ML-Methoden soll die BfG unterstützen, um die rasant zunehmende Menge an (Umwelt-)Daten unter Nutzung steigender Rechenressourcen in eine verbesserte Leistungsfähigkeit ihres Beratungsangebots (z. B. für die WSV, das BMDV, das BMUV) zu überführen. Die Entwicklung von Anwendungsfeldern im Bereich der künstlichen Intelligenz (KI) ist ein zentrales Ziel der Bundesregierung (KI-Strategie für Deutschland), welches das BMDV für den Verkehrssektor in seinem Aktionsplan "Digitalisierung und Künstliche Intelligenz in der Mobilität" aufgegriffen und weiter konkretisiert hat. Pilothafte Anwendungen belegen aber neben dem hohen Bedarf auch das große Potenzial von Methoden des maschinellen Lernens im Bereich der Gewässerkunde (Prognose, Klassifikation, Regression). Im Rahmen von MALPROG wird die Nutzung KI- bzw. ML-basierter Methoden für konkrete Anwendungsfelder in der Gewässerkunde systematisch untersucht. Als zielführend identifizierte Ansätze werden in die praktische Facharbeit integriert, um letztlich deren Potenzial für konkrete Anwendungen in der Analyse- und Beratungspraxis der BfG und WSV ausschöpfen zu können.
Die Bundesregierung strebt die qualitativ und quantitativ hochwertige Verwertung von Bioabfällen an, um dadurch Klima und Ressourcen zu schonen. Im Hinblick auf eine mögliche Weiterentwicklung der Bioabfallverordnung, sollen in diesem Forschungsprojekt verschiedene Themenfelder untersucht werden, die direkt oder indirekt mit der Erzielung möglichst reiner Komposte und Gärreste in Verbindung stehen und somit die Grundlage für eine hochwertige Verwertung darstellen. In Arbeitspaket (AP) 1 sollen geeignete Techniken zur Detektion von Fremdstoffen bei der haushaltsnahen Erfassung von Bioabfall ermittelt und bewertet werden. AP 2 legt den Fokus auf die Abtrennung von Fremdstoffen und insbesondere Kunststoffen vor der eigentlichen Bioabfallbehandlung und umfasst verschiedene Eingangsstoffströme wie Bioabfall aus Haushalten, verpackte Lebensmittel und anlagenintern rezyklierte Stoffströme. In AP 3 sollen die mögliche Bildung vor allem von kleinen Kunststoffpartikeln innerhalb der Prozesskette der biologischen Abfallbehandlung untersucht und die Möglichkeiten zur Bestimmung des Gehalts an Kunststoffpartikeln über die etablierten Methoden hinaus betrachtet werden. Ziele dieses Forschungsprojekts sind die Bereitstellung von fachlichen Grundlagen und Erkenntnissen zur Weiterentwicklung der Bioabfallverordnung sowie die Informationsaufbereitung für die Praxis.
Synthetische Polymere als Umweltkontaminanten in der Hydrosphäre haben in den letzten Jahren eine sehr starke wissenschaftliche Aufmerksamkeit erfahren. Hierbei wurde aber nahezu ausschließlich die Kontamination durch Plastikpartikel im Makro- bis Mikro-Maßstab berücksichtigt. Ebenfalls in großem Maßstab produzierte und in vielfältigen Produkten eingesetzte gelöste Polymere sind bislang aber völlig unbeachtet geblieben. Ein direkter Transfer bislang erarbeiteter analytischer Verfahren zur Umwelterfassung von Plastikpartikel auf die wassergelösten Polymere ist nicht möglich. Daher soll dieses Projektvorhaben in einem ersten Schritt ein geeignetes analytisches Verfahren basierend auf Pyrolyse-Methoden erarbeiten, das die quantitative Bestimmung von gelösten Polymeren in Abwasser- und Flusswasserproben ermöglicht. Hierbei sind sowohl die chemischen Eigenschaften der Polymere als auch die niedrigen Konzentrationsniveau in Umweltproben eine Herausforderung. Das entwickelte Analyseverfahren soll dann in einem zweiten Projektabschnitt auf Proben aus Kläranlagenzu- und -abläufen sowie aus zugehörigen Vorflutern angewendet werden, um so erste quantitative Daten zum Umweltvorkommen und somit zur Umweltrelevanz dieser Substanzklasse zu erhalten.
In einem ersten Schritt des Vorhabens sollen die in III26 entwickelten Untersuchungsverfahren zur Bestimmung von Kunststoffgehalten in Bioabfällen zu Routineverfahren weiter entwickelt werden. Zum Einsatz kommen neue innovative thermoanalytische, chromatografische und spektroskopische Verfahren, die eine eindeutige Zuordnung des Kunststoffes und seines Degradationszustandes ermöglichen. Mit Hilfe dieser Untersuchungsverfahren sollen Quellen und Senken für Mikroplastik in den Endprodukten der Bioabfallbehandlung ermittelt und deren Wirkung auf verschiedene Umweltmatrizes eingeordnet werden.
| Origin | Count |
|---|---|
| Bund | 1278 |
| Kommune | 1 |
| Land | 190 |
| Wissenschaft | 80 |
| Zivilgesellschaft | 25 |
| Type | Count |
|---|---|
| Daten und Messstellen | 78 |
| Ereignis | 48 |
| Förderprogramm | 976 |
| Gesetzestext | 1 |
| Text | 247 |
| Umweltprüfung | 12 |
| unbekannt | 120 |
| License | Count |
|---|---|
| geschlossen | 380 |
| offen | 1091 |
| unbekannt | 11 |
| Language | Count |
|---|---|
| Deutsch | 1319 |
| Englisch | 248 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 1 |
| Datei | 57 |
| Dokument | 205 |
| Keine | 849 |
| Unbekannt | 5 |
| Webdienst | 1 |
| Webseite | 451 |
| Topic | Count |
|---|---|
| Boden | 904 |
| Lebewesen und Lebensräume | 918 |
| Luft | 989 |
| Mensch und Umwelt | 1482 |
| Wasser | 809 |
| Weitere | 1374 |