API src

Found 1246 results.

Analyse und Nowcasting von konvektiven Systemen mit VERA

Die genaue Vorhersage von Gewittern ist sowohl für die Wissenschaft als auch für die Öffentlichkeit ein wichtiges Anliegen, da konvektive Ereignisse im Sommer zu den größten Naturgefahren in unseren Breiten gehören. Um die Entstehungsprozesse von Gewittern genauer zu verstehen, ist eine Untersuchung von Konvektion auf einer hoch auflösenden Skala nötig. Nur damit kann man den heutigen Anforderungen an die Vorhersage (in Bezug auf Zeit, Raum und Intensität) gerecht werden. Zu diesem Zweck wird im nächsten Jahr im Rahmen von zwei internationalen Projekten (COPS und MAP D-PHASE) im Süden von Deutschland eine groß angelegte Messkampagne durchgeführt. Das Hauptziel dieser Kampagne ist die Erstellung eines hochwertigen Datensatzes für die Untersuchung konvektiver Prozesse, von der Auslösung von Konvektion über die Wolken- und Niederschlagsbildung bis hin zur Untersuchung von Wolkenchemie und Hydrometeoren. Damit sollen meteorologische (und hydrologische) Vorhersagen für konvektive Ereignisse verbessert werden. Sowohl bei COPS (Convective and Orographically-induced Precipitation Study; Teil des Priority Program SSP 1167 der Deutschen Forschungsgemeinschaft) als auch bei MAP D-PHASE (Mesoscale Alpine Program Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region, ein von der Welt-Meteorologischen Organisation gefördertes Projekt) ist das Institut für Meteorologie und Geophysik in der Planungsphase vertreten. Im Rahmen des vorgeschlagenen Projektes soll die Messkampagne durch den Einsatz eines eigenen Meso-Messnetzes und Personal unterstützt werden, womit ein wichtiger Beitrag zu dem einmaligen Datensatz, der durch den Einsatz verschiedenster Messsysteme (Bodenstationen, Dopplerradar, Lidar, Satelliten, Flugzeuge, Radiosonden, ...) zu Stande kommt, geleistet wird. Mit Hilfe der Daten aus der Feldkampagne soll im Zuge des Projektes das Analyseverfahren VERA, das im Rahmen von FWF-Projekten am Institut entwickelt worden ist, einerseits für das Nowcasting von Gewittern, andererseits zur genaueren Niederschlagsanalyse, weiterentwickelt werden. Für beide Entwicklungsschritte wird dem Fingerprint-Ansatz, mit dem Zusatzinformation für das Downscaling meteorologischer Felder in die VERA-Analyse implementiert werden kann, eine wichtige Rolle zukommen. Dieser Ansatz wird für 3 Dimensionen, mehrere Fingerprints und höhere Auflösungen (bis 1km Gitterdistanz) erweitert. Mittels des Datensatzes werden neue Fingerprints entwickelt, die dazu beitragen werden, die Analysegenauigkeit für den Niederschlag und die Vorhersagbarkeit von Gewittern in Echtzeit mit Routinedaten zu verbessern. Das fertig entwickelte Analyseverfahren soll dann in einem weiteren Schritt zur Echtzeit-Validierung von hoch auflösenden Wettermodellen verwendet werden, wobei ein neuer Ansatz des Vergleiches zum Tragen kommt. Auch dadurch wird ein Beitrag zur besseren Vorhersagbarkeit von Gewittern geleistet.

Untersuchungen zu Kennwerten von Ultrafiltrationsanlagen

a) Erarbeitung von Beurteilungsgrundsaetzen fuer eine neutrale Begutachtung von Anlagen und die Optimierung der Prozessbedingungen zur Erstellung von Entscheidungshilfen und zur Abwasserentlastung. b) Untersuchungen an verschiedenen Pilot-Plant-Anlagen zur Feststellung des Einflusses von Parametern auf die Filtriergeschwindigkeit und den Trenneffekt mit den Medien Wasser, Magermilch und Molke. Physikalische Messung der mechanischen Groessen und chemisch-analytische Bestimmung der Inhaltsstoffe der ultrafiltrierten Medien sowie die Erfassung ihrer Aenderungen waehrend des Prozesses. c) Aufbau unterschiedlicher Ultrafiltrationssysteme und Messung der Kenngroessen unter variierten Prozessbedingungen. 1976-1979.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Winkelabhängige Lichtstreuung atmosphärischer Eispartikel - Von Einzelpartikelmessungen zu einer globalen Beobachtung der Mikrophysik und Strahlungseigenschaften von Zirren

Im Rahmen dieses Projekts soll das Wolkenpartikelinstrument PHIPS-HALO des KIT um die Messung der winkelabhängigen Polarisation von einzelnen Eispartikeln im rückwärtigen Streuwinkelbereich erweitert werden. Diese Messung ergänzt die bestehenden PHIPS-HALO-Messmethoden zur Erfassung der Partikelform sowie der winkelabhängigen Streufunktion. Die neuen Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets des KIT werden in der Wolkensimulationskammer AIDA umfangreich getestet und charakterisiert, um diese am Ende der ersten Förderperiode für Messungen auf HALO zur Verfügung zu haben. Dadurch werden schon im Vorfeld der nächsten, für den Winter 2018/2019 geplanten Zirrusmission neuartige relevante Datensätze gewonnen, die von großem Nutzen für die Atmosphärenwissenschaft sein werden. Zusätzlich zu den Labormessungen, soll das verbesserte PHIPS-HALO Instrument sowie das PHIPS-HALO/SID-3 Instrumentpaket im Rahmen des Projekts auch auf anderen Messflugzeugen betrieben und getestet werden. Mit den erweiterten Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets können in zukünftigen HALO-Missionen Validierungen von Satellitenbeobachtungen durchgeführt werden, die sich auf Polarisationsmessmethoden stützen. Da diese Messmethoden sehr empfindlich auf die Komplexität der Form sowie der Oberflächenrauheit der Eispartikel sind, könnte auf Basis solcher Validierungsmissionen die Frage geklärt werden, ob die Eispartikelkomplexität eine dominante mikrophysikalische Eigenschaft von Zirren ist. Sollte dies der Fall sein, würden Wolkeneispartikel einen deutlich anderen Strahlungseinfluss auf den Wärmehaushalt der Erde haben als bisher angenommen.

Master tracks in different resolutions from POLAR 5 flight P5-256_COMPEX-EC_2025_2503260101 (test flight)

Master track from POLAR 5 flight P5-256_COMPEX-EC_2025_2503260101 (test flight) in 1 sec resolution (zipped, 296 KB)

Hochaufgelöste numerische Untersuchungen des Turbulenzeffektes auf die Struktur von nächtlichen Strahlungsnebeln

Nebel als meteorologisches Phänomen kann große Auswirkungen für die Wirtschaft, aber auch auf die persönliche Sicherheit haben, indem er die Sichtweite in der atmosphärischen Grenzschicht reduziert. Wirtschaftliche Verluste für den Luft-, See-, und Landvekehr als Folge von Nebel sind dabei vergleichbar zu Verlusten durch Winterstürme. Trotz der Fülle an Literatur über Nebel bleibt unser Verständnis der physikalischen Prozesse die zu Nebelbildung und seiner Mikrophysik beitragen unvollständig. Dies ist dadurch begründet, dass mehrere komplexe Prozesse, wie z.B. Strahlungsabkühlung, turbulentes Durchmischen und die mikrophysikalischen Prozesse nichtlinear miteinander interagieren. Zusätzlich verkomplizieren Bodenheterogenitäten bezüglich Vegetation und Bodeneigenschaften die Vorhersagbarkeit von Nebel. Die Fähigkeit von numerischen Wettervorhersagemodellen Nebel vorherzusagen ist in Folge dessen noch dürftig. In diesem Projekt werden hochaufgelöste Grobstruktursimulationen (Large-Eddy Simulationen, LES) verwendet um den Effekt von Turbulenz auf nächtliche Strahlungsnebel zu untersuchen. Das LES Modell PALM wird dazu mit einer sehr hohen Auflösung von etwa 1 m verwendet. Dabei werden in den LES sowohl ein Euler'sches Bulk Wolkenphysikschema, als auch ein Lagrange'sches Partikelmodell, welches die explizite Behandlung von Aerosolen und Nebeltropfen erlaubt, verwendet. Dieser innovative Ansatz erlaubt die Nebeltropfen-Turbulenz-Interaktion zum ersten Mal mit LES zu untersuchen. Das Ziel dieser Studie ist es, einen umfassenden Überblick über die Schlüsselparameter zu erhalten, welche den Lebenszyklus sowie die dreidimensionale Makro- und Mikrostruktur von Strahlungsnebel bestimmen. Weiterhin wird der Effekt von nächtlichem Strahlungsnebel auf die morgendliche Übergangszeit und die Grenzschicht am Tag untersucht. Der Effekt von Bodenheterogenitäten auf nächtlichen Strahlungsnebel wird mit Hilfe von aufgeprägten regelmäßigen idealisierten und unregelmäßigen beobachteten Bodenheterogenitäten in den LES untersucht. Die LES Daten werden anhand von Messdaten der meteorologischen Messstandorte in Cabauw (Niederlande) und Lindenberg (Deutschland) validiert und mit Simulationsdaten des eindimensionalen Grenzschicht- und Nebelvorhersagemodells PAFOG (Universität Bonn) verglichen.

Neue Sichtweisen auf die Aerosol-Wolken-Strahlungs-Wechselwirkung mittels polarimetrischer und hyper-spektraler Messungen

Die Wechselwirkung von Wolken und Aerosol und ihre Rolle im Strahlungshaushalt der Erde ist ein Feld offener Fragen. Der IPCC (2014) nennt große Unsicherheiten und den Bedarf an zusätzlichen wissenschaftlichen Bemühungen, um die Vielzahl der Prozesse und deren Rolle für ein sich wandelndes Klima besser zu verstehen. Dieser Antrag hat die Entwicklung neuartiger Fernerkundungskonzepte zur Beobachtung einiger dieser Prozesse zum Ziel. Aerosol hat direkten Einfluss auf den Strahlungshaushalt und löst eine Serie von indirekten Effekten aus, indem es die Wolken-Mikrophysik, die Wolken-Dynamik, -Lebensdauer, den Wasserkreislauf und sogar die großskalige Zirkulation beeinflusst. Eigenschaften und räumliche Verteilung des Aerosols selbst ändern sich durch die Prozesse während der Wolkenpartikelbildung und ihrer Auflösung. Die Konzentration aktivierter Wolkenkondensationskeime (CCNC) spielt dabei eine entscheidende Rolle. CCNC kann in-situ nur mit sehr begrenzter räumlicher Abdeckung vermessen werden. Gleichzeitig kann sie nicht quantitativ mit herkömmlichen Fernerkundungsmethoden bestimmt werden, da die typische CCN Größe mehr als eine Größenordnung unterhalb der Wellenlänge sichtbarer Strahlung liegt. Daher wurde ein alternativer Ansatz vorgeschlagen: Messungen der von Wolkenseiten reflektierten Solarstrahlung ermöglichen die Ableitung von Vertikalprofilen der Partikelphase sowie ihrer Größe. Es wurde hypothetisiert, dass der Einfluss des Aerosols auf die Entwicklung der Mikrophysik so beobachtbar wird ebenso wie die Ableitung der CCNC. Alternativ kann CCNC auch aus Messungen optischer Eigenschaften der Aerosole abgeleitet werden. Der Zusammenhang zwischen optischer Dicke des Aerosols und CCNC wurde identifiziert, allerdings verbunden mit Unsicherheiten. Der Vorschlag, diese beiden Ansätze zu verbinden und die damit verbundenen Hypothesen zu testen, ist Kern dieses Antrags. Hyper-spektrale Beobachtungen mittels eines schnellen Scanners sind entscheidend, da Wolken sich sehr schnell verändern. Dazu soll ein abbildendes Spektrometer mit Polarisationsfiltern erweitert werden. Mit demselben Messgerät können dann die Mikrophysik der Wolken und die Eigenschaften des Aerosols im umgebenden wolkenlosen Bereich abgeleitet werden. Das Projekt ist im Wesentlichen in zwei Doktorarbeiten aufgeteilt. Highlights: 1) Test zweier Hypothesen, die Kern kommender Flugzeug-Kampagnen und geplanter Satellitenmissionen sind: CCNC kann aus Fernerkundung der Aerosoleigenschaften und aus Profilen der Wolkenmikrophysik abgeleitet werden. 2) Schnelle hyper-spektrale Scanner-Messungen ermöglichen Mikrophysik-Messungen veränderlicher Wolken. Erlauben diese Daten Ableitungen der Veränderung der Mikrophysik abhängig von der Entfernung zur Wolkenseite? 3) Ableitung von Aerosol-Eigenschaften aus polarisierten spektralen Messungen auch in bewölkten Situationen.

Dynamik, Variabilität und bioklimatische Effekte von niedrigen Wolken im westlichen Zentralafrika

Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.

Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften

Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.

Direkte Beobachtung von Elementarprozessen bei der heterogenen Eis- Nukleation durch nichtlineare optische Spektroskopie: Die Rolle von Hydroxyl-Gruppen an den Oberflächen von mineralischen Aerosolpartikeln

Wolken beeinflussen den Energiehaushalt durch Streuung des Sonnenlichts und Absorption der Wärmestrahlung der Erde und gelten daher als wichtiger Faktor im Klimasystem. Die Untersuchung von atmosphärischen Prozessen im Allgemeinen und der Eisnukleation im Besonderen ist von grundlegender Bedeutung für unser Verständnis der mit Wolkenbildung, Niederschlagsentwicklung und Wechselwirkung mit der Strahlung zusammenhängenden Mechanismen. Mineralstaub, der den größten Teil der atmosphärischen Aerosole ausmacht, kann bei geringen Sättigungen und Temperaturen, die über dem homogenen Gefrierpunkt liegen, Eisbildung initiieren und auf diese Weise die Wolkendynamik und auch die Mikrophysik sowie die Eigenschaften der Wolken beeinflussen. Trotz zahlreicher Untersuchungen zum Einfluss von Partikelgröße und Oberflächeneigenschaften von Eiskeimen wissen wir über die heterogene Eisnukleation auf molekularer Ebene immer noch sehr wenig. Übergeordnetes Ziel des vorliegenden Projektverlängerungsantrags ist die Untersuchung der Bedeutung von OH-Gruppen an den Oberflächen mineralischer Aerosolpartikel in heterogenen Eisnukleationsprozessen mit Hilfe der nichtlinearen optischen (NLO-)Spektroskopie und insbesondere der Summenfrequenzspektroskopie bei tiefen Temperaturen. Im DFG-Projekt AB 604/1-1 wurde bereits der Grundstein für das neue Forschungsfeld (Atmosphärische Oberflächenwissenschaft) am IMK-AAF des Karlsruher Instituts für Technologie (KIT) gelegt. Das Projekt hat deutlich gezeigt, dass sich die NLO-Spektroskopie für die Untersuchung von heterogenen Eisnukleationsprozessen auf molekularer Ebene eignet. Im Rahmen des hier vorgeschlagenen Projekts sollen daher im Wesentlichen Wasser und Hydroxylgruppen an den Oberflächen zweier atmosphärisch relevanter Mineraloxide mit unterschiedlichem Eisnukleationsvermögen (Feldspat und Quarz) während des heterogenen Gefrierens untersucht werden. Mit Hilfe der Summenfrequenzspektroskopie bei tiefen Temperaturen sollen die Grenzflächenwasser (flüssig und Eis) auf mineralischen Oberflächen analysiert sowie der Einfluss der OH-Gruppen an der Oberfläche auf den heterogenen Gefrierprozess bestimmt werden. Die hier geplanten Untersuchungen werden als Grundlage für eine deterministische Beschreibung des Prozesses des heterogenen Gefrierens an atmosphärischen Aerosolpartikeln mineralischen Ursprungs dienen. Solche Studien sind für unser Verständnis der atmosphärischen Prozesse und somit auch des Klimasystems von großer Bedeutung und darüber hinaus auch im Hinblick auf die lokale Wettermodifikation (z.B. Wolkenimpfung, Hagelabwehr) und die Klimaschutzpolitik von besonderem Interesse.

1 2 3 4 5123 124 125