Das Projekt "Steady-State Dilution and Mixing-Controlled Reactions in Three-Dimensional Heterogeneous Porous" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology durchgeführt. Understanding transport of contaminants is fundamental for the management of groundwater re-sources and the implementation of remedial strategies. In particular, mixing processes in saturated porous media play a pivotal role in determining the fate and transport of chemicals released in the subsurface. In fact, many abiotic and biological reactions in contaminated aquifers are limited by the availability of reaction partners. Under steady-state flow and transport conditions, dissolved reactants come into contact only through transverse mixing. In homogeneous porous media, transverse mixing is determined by diffusion and pore-scale dispersion, while in heterogeneous formations these local mixing processes are enhanced. Recent studies investigated the enhancement of transverse mixing due to the presence of heterogeneities in two-dimensional systems. Here, mixing enhancement can solely be attributed to flow focusing within high-permeability inclusions. In the proposed work, we will investigate mixing processes in three dimensions using high-resolution laboratory bench-scale experiments and advanced modeling techniques. The objective of the proposed research is to quantitatively assess how 3-D heterogeneity and anisotropy of hydraulic conductivity affect mixing processes via (i) flow focusing and de-focusing, (ii) increase of the plume surface, (iii) twisting and intertwining of streamlines and (iv) compound-specific diffusive/dispersive properties of the solute species undergoing transport. The results of the experimental and modeling investigation will allow us to identify effective large-scale parameters useful for a correct description of conservative and reactive mixing at field scales allowing to explain discrepancies between field observations, bench-scale experiments and current stochastic theory.
Das Projekt "Novel innovative competitive effective tilt rotor integrated project (NICE-TRIP)" wird vom Umweltbundesamt gefördert und von VERTAIR durchgeführt. Objective: This proposal has been prepared in the framework of a research and development roadmap defined by the European rotorcraft community that aims to develop a civil tilt-rotor aircraft. A key target of the road map is a flying demonstrator in the 2010 decade. NICETRIP specifically addresses the acquisition of new knowledge and technology validation concerning tilt-rotor. The main project objectives are: - To validate the European civil tilt-rotor concept based on the ERICA architecture; - To validate critical technologies and systems through the development, integration and testing of components of a tilt-rotor aircraft on full-scale dedicated rigs; - To acquire new knowledge on tilt-rotor through the development and testing of several wind tunnel models, including a large-scale full-span powered model; - To investigate and evaluate the introduction of tilt-rotors in the European Air Traffic Management System; - To assess the sustainability of the tilt-rotor product with respect to social and environmental issue s and to define the path towards a future tilt-rotor flying demonstrator. Project NICETRIP is fully relevant to the strategic objective 1.3.2.1: - Integration of technologies towards the future tilt-rotor aircraft, of the work programme of call 3 of the Thematic Priority Aeronautics and Space. The organisation and resources proposed to achieve the project objectives include a 54-month work plan made of 7 work packages and a consortium of 31 participants, fully representing the span of needed capabilities.
Das Projekt "Turn Down the Heat III: Regional Analysis - The Case for Climate Resilience" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. The objective of the Economic and Sector Work (ESW) is to get a science-based unde1rstanding of the nature and magnitude of development impacts, by examining physical and biophysical climate change impacts at the regional scale. The focus of this work is to provide for each region (MNA, ECA and LAC) an analysis of climate risks at present day (0.8°C), 2°C and 4°C scenarios through the examination of stressors that are widely held to represent critical vulnerabilities, at scale and with sufficient spatial resolution. A central part of the work will be to explore the application of a scientific and evidence-based approach in the development of case studies which reflect an emphasis on different climate vulnerabilities (or stressors) at scale and with sufficient spatial resolution to form the basis for convening a dialogue on transformational development pathways. For this, three region specific case-studies will be integrated into a global inter-sectoral assessment of climate change impacts at different levels of global warming. Building on the methodology used in the Phase II report Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience and through a series of questions related to timing, scale, social vulnerability and previously identified tipping point considerations, the consultant firm will undertake analysis that will seek to characterize the nature and magnitude of impacts. The consulting firm would be expected to explore the application of a scientific and evidence-based approach in the development of case studie:s that reflect an emphasis on different climate vulnerabilities at scale and with sufficient spatial resolution. The analysis should also include a consideration of uncettainties, and an indication of the significance and likelihood of their occurrence.
Das Projekt "Scenarios of the Global Water System" wird vom Umweltbundesamt gefördert und von Universität Kassel, Center for Environmental Systems Research durchgeführt. The global water system is undergoing significant changes in its physical, chemical and biological characteristics, as well as in its human dimensions. The transformations currently taking place in the system raise key scientific questions: Will these changes continue at their current pace and intensity over the coming decades? If so, what impact will they have on nature and society? Researchers have begun addressing these questions through a growing number of comprehensive scenario studies that examine future trends in water resources from the continental and global perspectives. The first objective of this one year project is to review and appraise the existing body of global water scenarios in order to extract out important scientific insights, identify gaps and shortcomings, and derive scientific procedures for developing a new generation of global water scenarios. The second objective is to carry-out model experiments with an existing model to produce new continental scale water scenarios for Africa that address some of the deficits of current global water scenarios. The new scenarios will advance previous continental/global scenarios by simultaneously taking into account the effect of changing land use, climate and socioeconomic factors on future water use and water availability. Africa is selected as a case study for these model experiments because of the particularly significant changes it is experiencing in its freshwater system. To ensure that the information and perspectives of developing countries are taken into account, the principal investigator proposes to spend 7 months out of the 12-month project at the University of Stellenbosch in South Africa (residing at this university will provide advantages such as access to a network of African water researchers). It is critical for the German research community, especially researchers working on international and global-scale scientific problems, to develop stronger ties with the scientific community in developing countries. This project will provide direct scientific input to the Global Water System Project of the Earth System Science Partnership, as well as the World Water Development Report being prepared by a consortium of UN water-related organizations. This is an eigenständiges Projekt within the framework of the Global Water System Project of which the Antragssteller is Co-Chairman. It is expected that the evaluation of scenarios will make a major contribution to anticipating future changes in the global water system.
Das Projekt "Standardization of Ice Forces on Offshore Structures Design (STANDICE)" wird vom Umweltbundesamt gefördert und von Dr. J. Schwarz durchgeführt. Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.
Das Projekt "Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Objective: The ECO2 project sets out to assess the risks associated with the storage of CO2 below the seabed. Carbon Capture and Storage (CCS) is regarded as a key technology for the reduction of CO2 emissions from power plants and other sources at the European and international level. The EU will hence support a selected portfolio of demonstration projects to promote, at industrial scale, the implementation of CCS in Europe. Several of these projects aim to store CO2 below the seabed. However, little is known about the short-term and long-term impacts of CO2 storage on marine ecosystems even though CO2 has been stored sub-seabed in the North Sea (Sleipner) for over 13 years and for one year in the Barents Sea (Snhvit). Against this background, the proposed ECO2 project will assess the likelihood of leakage and impact of leakage on marine ecosystems. In order to do so ECO2 will study a sub-seabed storage site in operation since 1996 (Sleipner, 90 m water depth), a recently opened site (Snhvit, 2008, 330 m water depth), and a potential storage site located in the Polish sector of the Baltic Sea (B3 field site, 80 m water depth) covering the major geological settings to be used for the storage of CO2. Novel monitoring techniques will be applied to detect and quantify the fluxes of formation fluids, natural gas, and CO2 from storage sites and to develop appropriate and effective monitoring strategies. Field work at storage sites will be supported by modelling and laboratory experiments and complemented by process and monitoring studies at natural CO2 seeps that serve as analogues for potential CO2 leaks at storage sites. ECO2 will also investigate the perception of marine CCS in the public and develop effective means to disseminate the project results to stakeholders and policymakers. Finally, a best practice guide for the management of sub-seabed CO2 storage sites will be developed applying the precautionary principle and valuing the costs for monitoring and remediation.
Das Projekt "Does energy, water and gas transport determine carbon sequestration and methane release in anoxic peatland soils? - Testing a novel hypothesis" wird vom Umweltbundesamt gefördert und von Westfälische Wilhelms-Universität Münster, Institut für Landschaftsökologie durchgeführt. Northern peatlands represent an important global carbon stock and source of methane to the atmosphere. The long-term fate of carbon in these environments under changed hydrologic conditions is thus of considerable scientific importance. Our knowledge of peatland carbon cycling is especially deficient with respect to the effects of energy-, water-, and gas transport that may ultimately control carbon sequestration and methane release. We will address this research gap using peat soil model systems in which geochemical conditions, water and gas transport can be controlled and the effects on key processes in anaerobic peat decomposition and methane release be quantified. Preliminary work documented that absence of water transport can result in an inactivation of peat decomposition and methane release. The quantitative effects of increased rates of water and gas transport on key processes in peat decomposition urgently need to be addressed and the effect of physical and chemical conditions to be identified. Specifically, the project will analyze:- how accumulation of carbon dioxide and methane in peats diminishes methane release and anaerobic respiration and whether such effects can be attributed to a lack of free energy,- how such product inhibition is controlled by geochemical and physical factors, such as temperature, soil acidity and chemical quality of the peat,- how enzymatic activity responds to accumulation of carbon dioxide and methane, and geochemical and physical factors,- how and to what extent rates of solute transport and ebullition control methanogenic decomposition in peats, - if residence time of water in peats can be used to predict rates of anaerobic peat decomposition in peatlands. Apart from closing an important knowledge gap, the project provides process-level data for the improvement of ecosystem models that aim at understanding and predicting the response of peatland carbon cycling to changing hydrologic conditions. Progress in this direction will allow for a more accurate analysis of climate change impacts on this important type of ecosystem in future studies.
Das Projekt "Impact of transgenic crops on fertility of soils with different management history" wird vom Umweltbundesamt gefördert und von Forschungsinstitut für biologischen Landbau Deutschland e.V. durchgeführt. What impact does transgenic maize have on soil fertility? Among the factors that determine soil fertility is the diversity of the bacteria living in it. This is in turn affected by the form of agriculture practiced on the land. What role do transgenic plants play in this interaction? Background Soil fertility is the product of the interactions between the parental geological material from which the soil originated, the climate and colonization by soil organisms. Soil organisms and their diversity play a major role in soil fertility, and these factors can be affected by the way the soil is managed. The type of farming, i.e. how fertilizers and pesticides are used, has a major impact on the fertility of the soil. It is known that the complex interaction of bacterial diversity and other soil properties regulates the efficacy of plant resistance. But little is known about how transgenic plants affect soil fertility. Objectives The project will investigate selected soil processes as indicators for how transgenic maize may possibly alter soil fertility. The intention is in particular to establish whether the soil is better able to cope with such effects if it contains a great diversity of soil bacteria. Methods Transgenic maize will be planted in climate chambers containing soils managed in different ways. The soil needed for these trials originates from open field trials that have been used for decades to compare various forms of organic and conventional farming. These soils differ, for example, in the way they have been treated with pesticides and fertilizers and thus also with respect to their diversity of bacteria. The trial with transgenic maize will measure various parameters: the number of soil bacteria and the diversity of their species, the quantity of a small number of selected nutrients and the decomposition of harvest residues. It will be possible to conclude from this work how transgenic plants affect soil fertility. Significance The project will create an important basis for developing risk assessments that incorporate the effects of transgenic plants on soil fertility.
Das Projekt "Forest management in the Earth system" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Das Projekt "Cycling resources embedded in systems containing Light Emitting Diodes (CYCLED)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung durchgeführt. Objective: The project cycLED aims at optimising the flows of resources over all life-cycle phases of Light Emitting Diodes (LED) products. The energy saving potential for LEDs is significant, and the strategic importance of the LED technology is reflected in the current and upcoming market development. However, LED-based product systems contain many resources like indium, gallium or rare earth metals. Some of these substances are classified as critical raw materials at EU level. Therefore, if the current expansion of LED technologies is most welcomed from an economic and energy point of view, it requires optimising resource flows and addressing key societal issues. To strengthen the emerging LED market in Europe, cycLED focuses on improvement of the material flows and policy measures to remove barriers for LED technology dissemination. Innovation is needed to achieve an efficient management of the different materials used in LED systems, so that the growth of the LED-related markets is decoupled from resource depletion. A material flow analysis will first be conducted to obtain an overview of the most relevant materials contained in LED products, their origin and the situation regarding recycling. Further research will focus on the different life-cycle phases (production and manufacturing, assembling, use and material recycling) to provide overall solutions to improve the resource flows. These results will be combined to develop and implement solutions regarding product design for eco-innovation, adaptation of business models and overcoming of barriers to diffusion. Work packages dedicated to the development of indicators measuring the eco-innovation and to the dissemination of the results will accompany the research. The impacts of cycLED relate to resource savings, reduction of production costs, increase of competitiveness, creation of jobs and capacity building.
Origin | Count |
---|---|
Bund | 261 |
Type | Count |
---|---|
Förderprogramm | 261 |
License | Count |
---|---|
offen | 261 |
Language | Count |
---|---|
Deutsch | 261 |
Englisch | 252 |
Resource type | Count |
---|---|
Keine | 188 |
Webseite | 73 |
Topic | Count |
---|---|
Boden | 226 |
Lebewesen & Lebensräume | 242 |
Luft | 191 |
Mensch & Umwelt | 261 |
Wasser | 189 |
Weitere | 261 |