Besonders adaptierte arbuskuläre Mykorrhiza-Pilze können Schwermetallresistenzen auf Kulturpflanzen übertragen. Die molekularen Mechanismen der Schwermetallresistenz sind bislang noch nicht untersucht worden. Für Pflanzen wie Medicago truncatula u. a. sowie möglichst auch für Pilze der Gattung Glomus (Isolat vom Schwermetallveilchen, Glomus mosseae BEG12) sollen über PCR Gensonden für Schwermetall-Carrier wie Ni,- Fe-, Mn-, Zn- und Cu-Transporter entwickelt werden. Mit diesen sollen dann durch Northern Analysen, in situ Hybridisierungen sowie durch quantitative RT-PCR Transkriptanalysen durchgeführt werden. Dazu werden die Pflanzen in Schwermetall- und in Normalböden + Mykorrhiza Pilze im Kompartimentierungssystem zur Trennung von Pilzhyphen und Pflanzenwurzeln kultiviert. Die Bildung von Siderophoren und Metallothioneinen soll in Abhängigkeit von der Mykorrhizierung und nach Wachstum im Schwermetall- und Normalboden durch klassische Enzym- bzw. Farbtests und danach mit molekularen Methoden (Northern Analysen, in situ Hybridisierungen, quantitative RT-PCR) untersucht werden. Außerdem soll versucht werden, arbuskuläre Mykorrhiza-Pilze unabhängig vom Wirt auf Platten zum Keimen, Wachsen und zur Sporenbildung zu bringen, wobei erste Versuche dazu erfolgsversprechend sind.
Im Projekt ECTOMYC werden Ökosystemfunktionen und Artenreichtum von Ektomykorrhizapilzen an den Wurzeln ihrer Wirtsbäume untersucht und die Reaktion dieser Pilzgesellschaften auf Waldbewirtschaftungsmaßnahmen charakterisiert. Unsere Ergebnisse zeigten, dass Boden pH, Bewirtschaftungsintensität, Baumart und Wurzelnährelementgehalt Triebkräfte für die taxonomische Zusammensetzung von Pilzgesellschaften sind. Mit Hilfe stabiler Isotope (15NO3-, 15NH4+) zeigten wir, dass verschiedene Ektomykorrhiza-Arten große Unterschiede im Hinblick auf ihre N-Anreicherung aufwiesen. Dies zeigt, dass erhebliche Art-spezifische Unterschiede in der Pilzgemeinschaft für die N-Akquise bestehen. Über den gesamten Gradienten der Waldplots in den Exploratorien wurde ein signifikanter Zusammenhang zwischen N und der Zusammensetzung der Pilzgesellschaften nachgewiesen. Obgleich 'traits' von Pilzen wichtig für Dynamik von Nährstoffkreisläufen in Ökosystemen sind, gibt es nur wenige Untersuchungen über die Substratpräferenzen von Pilzen in ihrer natürlichen Umgebung. Um diese Wissenslücken zu schließen, planen wir in der neuen Phase folgende Untersuchungen: i) Analyse der zeitlichen und räumlichen Variation der Zusammensetzung der Pilzgesellschaften an Wurzeln (Mkcorrhiza, Saprophyten, Pathogene) und ihrer potentiellen Triebkräfte (Landnutzung, Klima, Boden, Wurzelnährelemente) ii) Analyse von Substratpräferenzen von Pilzgesellschaften in Köderexperimenten iii) Etablierung kausaler Zusammenhänge zwischen forstlichen Eingriffen (Lückenhieb), Veränderungen der Wurzelphysiologie und der Funktion und Diversität von unterschiedlichen ökologischen Gruppen in Pilzgesellschaften Um diese Ziele zu erreichen, soll die Diversität der Pilzgesellschaften auf den 150 experimentellen Waldplots untersucht und die Ergebnisse genutzt werden, um die Zeit-räumliche Variation der Pilzgesellschaften von 2014-2020 zu erforschen. Des Weiteren werden wir Substratköder auslegen und die besiedelnden Pilzgemeinschaften untersuchen. Durch das neue Waldexperiment (Auflichtung) wird der Kohlenstofffluss in den Boden stark verändert. Wir wollen diese Situation nutzen, um den Einfluss auf die Wurzelphysiologie, die Wurzel-assoziierten Pilzgesellschaften und mögliche feedback Reaktionen auf die Baumernährung zu analysieren. Insgesamt werden die Ergebnisse zu einem besseren Verständnis von funktionalen Zusammenhängen von Artengemeinschaften in Ökosystemen beitragen.
Arbuskuläre Mykorrhizen erhöhen zwar die Resistenz von Pflanzen gegenüber pilzlichen Wurzelpathogenen und Bodennematoden, in oberirdischen Pflanzenteilen scheinen aber die Verteidigungsmechanismen unterdrückt zu werden. Auf der anderen Seite gibt es Hinweise, dass Blätter von Pflanzen, die mit dem Wurzelendophyt Piriformospora indica besiedelt sind, weniger stark von Blattpathogenen befallen werden. Diese Phänomene sollen auf cytologischer und molekulargenetischer Ebene untersucht werden. Der Einfluss des Mykorrhizapilzes Glomus spec. und des Wurzelendophyten Piriformospora indica auf die Infektion von Blättern und Wurzeln der Gerste mit nekrotrophen und biotrophen pilzlichen Pathogenen wird einmal makro- und mikroskopisch untersucht. Außerdem sollen Gene isoliert und charakterisiert werden, deren Expression (1) in den Blättern durch die Besiedelung der Wurzel mit Glomus spec. und P. indica oder (2) in den Wurzeln durch gleichzeitige Besiedelung mit Glomus spec. oder P. indica und mit einem Pathogen induziert ist. Als dritten gilt es, Gene zu identifizieren, bei denen durch die Anwesenheit eines Mykorrhizapilzes in der Wurzel die chemische Induktion ihrer Expression in den Blättern inhibiert ist.
In naturnahen sibirischen Pinus-sylvestris-Wäldern ca. 40 km südwestlich des Dorfes Zotino am Jenissei werden seit mehreren Jahren auf Dauerflächen umfassende ökologische Untersuchungen im Rahmen des IGBP-Programmes 'Global Change' vorgenommen, u.a. zur Altersstruktur, zur Biomasseentwicklung, zur Bestandesdynamik, zur Rolle der Brände, zur Vegetationsentwicklung, zum Konkurrenzverhalten, zum Nährstoff- und Wasserhaushalt der Bestände und zu verschiedenen physiologischen Leistungen der Kiefern. Während des geplanten Aufenthaltes sollen in Abstimmung mit dem Direktor des Max-Planck-Institutes für Biogeochemie, E.-D. Schulze in bereits gut untersuchten Beständen verschiedenen Alters ergänzende mykologische und lichenologische Daten zur Klärung der Rolle pilzlicher Organismen im brandgeregelten Zyklus der Bestände erhoben werden.
Das trade balance model (Leistungsbilanzmodell) postuliert, dass Pflanzen, die eine Symbiose mit Arbuskulären Mykorrhizapilzen (AM-Pilze) eingehen, desto mehr abhängiger von ihren Pilzpartner werden, je mehr die Phosphorverfügbarkeit sinkt. Daraus folgt, dass die Bedeutung der AM-Symbiose vermutlich in Ökosystemen mit einer geringen Phosphorverfügbarkeit steigt. Durch die Kombination, die AM-Gemeinschaft zu messen und die Phosphorpools im Boden genau zu berechnen, erwarten wir, einen komplett neuen Einblick darauf zu bekommen, zu welchen P-Pools Schlüsselarten wie AM-Pilze Zugang haben. Darüber hinaus erwarten wir neue Ergebnisse über die Diversität und Abundanz der AM-Pilze in diesem für diese Organismusgruppe 'nicht-klassischen' Ökosystem Buchenwald. Wir stellen die Hypothese auf, dass AM-Pilze, als Hauptvertreter der Phosphoraufnahme bei vielen Pflanzen in Abundanz und Diversität im Unterwuchs (sowohl im Boden als auch in den Wurzeln) entlang einer graduellen Phosphorabnahme zunehmen, und dass sie daher zunehmend zu einem Phosphorrecycling beitragen. Für dieses Ziel beabsichtigen wir die AM-Pilz Abundanz (Hyphenlänge und Wurzelkolonisierung) zu messen und zusätzlich dazu die AM-Pilz-Diversität mittels Pyrosequenzierung. Dies kann möglicherweise dazu animieren, andere 'nicht-klassische' Ökosysteme zu untersuchen, in denen sich eventuell auch eine unbekannte hohe AM-Pilz-Diversität verbirgt. Ein zusätzliches Gewächshausexperiment wird es uns ermöglichen, die Höhe der Phosphoraufnahme der Pflanze über die AM-Hyphen zu quantifizieren, was nach unserer Kenntnis noch nie in diesen Ökosystemen gemacht wurde.
Im Rahmen des hier beantragten 12-monatigen Aufenthalt bei Prof. Dr. T. Dawson werde ich verschiedene Einsatzmöglichkeiten von stabilen Isotopen zum mechanistischen Verständnis von Prozessen in der Ökophysiologie/Baumphysiologie erlernen. Besonderer Schwerpunkt wird hierbei auf dem Studium biotischer Interaktionen und Stoffumsätze im Boden liegen. Anhand von eigenem Probenmaterial aus bereits abgeschlossenen Experimenten werde ich mir zunächst die Probenaufarbeitung, Verwendung der Massenspektrometer und Dateninterpretation von Grund auf aneignen. Während eines etwa vierwöchigen Aufenthalts bei Dr. C. Andersen werde ich in die Handhabung einer Messvorrichtung für unterirdische Untersuchungen an jungen Bäumen eingeführt. Diese 'mycocosms' werden anschließend für die in Berkeley geplanten Versuche eingesetzt. Mit Hilfe der stabilen Isotope 13C und 15N und Messungen der Bodenatmungsraten werden der Fluss an neu fixiertem C von den Blättern in den Boden, der C-Umsatz dort quantifiziert sowie die N- und C-Allokation erfaßt. Die Experimente dienen dem mechanistischem Verständnis qualitativer und quantitativer Änderungen dieser Allokations- und Umsatzprozesse durch Mykorrhizapilze und Konkurrenzinteraktionen. Die erlernten Methoden werden nach Beendigung des Auslandsstipendiums in Deutschland im Rahmen von Projekten eingesetzt, die sich mit der Konkurrenz zwischen Buche und Fichte beschäftigen.
Im Projekt soll der Einfluß oxydativer Exoenzyme von Pilzen und Mykorrhizen auf den Auf- und Abbau der organischen Bodensubstanz charakterisiert werden. Über die gesamte Dauer des SPP sind zwei Arbeitsetappen geplant. Zuerst werden Primer zum molekularbiologischen Nachweis von Boden- und Mykorrhizapilzen mit Laccase-Genen und zur Analyse der Expression dieser Gene in Böden entwickelt. Um die bodenökologische Aussagekraft der Methode zu gewährleisten, werden Protokolle zur Extraktion von DNA und mRNA aus Böden mit Proben von den SPP-Standorten optimiert und geeicht. In einem zweiten Arbeitsschritt werden die Methoden an den landwirtschaftlichen und forstwirtschaftlichen Böden der SPP-Standorte eingesetzt. Die Ergebnisse von Untersuchungen der Struktur und Funktionen der Pilzpopulationen werden im Zusammenhang mit Analysen anderer SPP-Teilnehmer interpretiert. Dabei sollen insbesondere Daten über Gehalt und Kreislauf der festen und gelösten organischen Bodensubstanz, über Fraktionierung natürlicher Isotope in den Phasen des Kreislaufs sowie über Aufbau- und Abbauvorgänge durch nicht pilzliche Bodenmikroorganismen und durch Bodentiere berücksichtigt werden. Die Beteiligung an Experimenten zum Abbau radioaktiv markierter Streu ist ebenfalls vorgesehen.
Soil organic matter is considered to become an increasingly important source of bioavailable phosphorus (P) with depletion of inorganic P within primary minerals. Current concepts on P cycling and mobilization of organic P largely ignore the formation of mineral-organic associations. This project aims to link processes occurring at the nanoscale on mineral surfaces with the bioavailability of organic P, with particular focus on the influence of biodiversity and establishment of functional niches by microbial communities on P recycling in soils. Along a soil P availability gradient the proportion of mineral-associated P as well as its composition (31P NMR and X-ray absorption near edge structure spectroscopy) will be determined and related to mineralogical soil properties. Based on adsorption and desorption experiments using both, monomeric and polymeric P sources, the recycling potential of mineral-bound organic P by various biotic communities (plants, mycorrhiza, bacteria) will be determined in mesocosm and field experiments. We expect to assess the relevance of mineral-associated organic P for the P recycling of forest ecosystems and to identify the major controlling abiotic and biotic variables.
Es werden Interaktionen zwischen AMP (arbuskulären Mykorrhizapilzen) und Mikroben an Tomate in Hinblick auf die biologische Bekämpfung des Gallennematoden Meloidogyne incognita untersucht. Angestrebt ist (erste Phase), 1-3 Jahr): 1. Isolation und Identifikation von AMP, PHPR (plant health promoting rhizobacteria) und MHB (mycorrhiza helper bacteria) mit biocontrolFähigkeiten. 2. Unterscheidung von Interaktionen in und außerhalb der Wurzel. 3. Auffindung von Synergismen zwischen AMP und anderen Mikroben. 4. Prüfung möglicher Antagonismen. 5.Aufklärung von Wirkungsmechanismen der biologischen Bekämpfung bei Einzel- oder Koinokulation. 6. Erster Nachweis der Effizienz der kombinierten Inokula unter Feldbedingungen in Thailand. In der zweiten Phase (Jahr 4-6) wollen wir formulierte Inokula für Feldversuche in Thailand entwickeln. Ziele werden sein: 1. Adaptation der biocontrol-Organismen in lokale Systeme. 2. Untersuchung von Interaktionen mit anderen Krankheiten z.B. der bakteriellen Welke. 3. Integration der biologischen Bekämpfung in Produktionssystemen in Thailand. 4. Prüfung verschiedener Applikationstechniken. Diese Aspekte werden in Zusammenarbeit mit thailändischen Partnern bearbeitet.
Aufbauend auf Untersuchungen der molekularen Mechanismen kalium-abhängiger Prozesse bei der Mykorrhizainfektion der Wurzeln von Populus und Medicago sollen wirtsspezifische Veränderungen der K+-Flüsse aufgeklärt werden. Ausgehend von den entsprechenden ESTs haben wir im Vorfeld Auxin-, ABA- und Zucker regulierte Kaliumkanäle und -Transporter kloniert und charakterisiert. Im Mittelpunkt unseres geplanten Forschungsvorhabens steht nun der Zusammenhang zwischen den durch die verschiedenen Transporter gesteuerten Flüssen und der Ausbildung der Pflanze-Pilz-Symbiose. Dabei sollen insbesondere der Ernährungsstatus und die hormonelle Regulation Berücksichtigung finden. Beim Übergang in den symbiotischen Zustand sollen deshalb die Pilz-induzierten Änderungen der Kaliumkonzentration und -flüsse in der Wurzel und die Expressions- und Aktivitätsmuster der hierfür verantwortlichen Kanäle und Carrier gezielt untersucht werden. Um dem interdisziplinären Charakter dieses Projektes gerecht zu werden und die noch offenen Fragen zur Ernährungsphysiologie, Molekularbiologie und Biophysik der Symbiose zu beantworten, finden sich im Arbeitsprogramm neben Untersuchungen zur Stoffanalytik und -dynamik verstärkt molekulare und biophysikalische Analysen.
| Origin | Count |
|---|---|
| Federal | 425 |
| Science | 5 |
| State | 7 |
| Type | Count |
|---|---|
| Data and measurements | 4 |
| Support program | 422 |
| Text | 6 |
| Unknown | 4 |
| License | Count |
|---|---|
| Closed | 10 |
| Open | 426 |
| Language | Count |
|---|---|
| English | 120 |
| German | 389 |
| Resource type | Count |
|---|---|
| Archive | 4 |
| Document | 5 |
| Image | 1 |
| None | 339 |
| Website | 89 |
| Topic | Count |
|---|---|
| Air | 94 |
| Creatures and habitats | 436 |
| Other | 436 |
| People and the environment | 436 |
| Soil | 436 |
| Water | 74 |