<p>Pflanzenschutz im Obstgarten: Beeren</p><p>So gelingt die Ernte in Ihrem Obstgarten</p><p><ul><li>Wählen Sie widerstandsfähige Sorten und vielfältige Arten.</li><li>Sorgen Sie für optimale Standortbedingungen und einen gesunden, lebendigen Boden.</li><li>Kontrollieren Sie Ihre Pflanzen regelmäßig, um früh genug Gegenmaßnahmen zu ergreifen.</li><li>Schneiden Sie mit Schaderregern befallene Pflanzenteile ab.</li><li>Ein Verzicht auf <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a> schont die Umwelt und Ihre Gartenmitbewohner.</li></ul></p><p>Gewusst wie</p><p><strong>Krankheiten vorbeugen:</strong> Im Beeren-Anbau sind insbesondere Pilz-Erkrankungen relevant. Vorbeugende Maßnahmen sind hier der effektivste Weg, Ihre Pflanzen gesund zu halten.</p><p>Die wichtigsten Pilzkrankheiten im Überblick</p><p><strong>Grauschimmel:</strong> Vor allem Erdbeeren, aber auch Himbeeren und Brombeeren, werden vom Grauschimmel (<em>Botrytis cinerea</em>) befallen. An Knospen und unreifen Früchten zeigen sich braune Stellen, reife Früchte faulen. Etwas später überdeckt ein grauer Schimmelrasen die befallenen Stellen.</p><p><strong>Lederbeerenfäule:</strong> Die Lederbeerenfäule (<em>Phytophthora cactorum</em>) verleiht Erdbeeren eine bräunliche Farbe und eine lederartige Oberfläche. Die Konsistenz der Früchte ist gummiartig, der Geschmack bitter.</p><p><strong>Himbeerrutenkrankheit:</strong> Der Begriff Himbeerrutenkrankheit umfasst verschiedene Pilzkrankheiten mit ähnlichen Symptomen. Im Frühjahr treiben einzelne Ruten nicht richtig aus und zeigen rotbraune, blauviolette oder schwarze Flecken – oft vom Fuß der Pflanze beginnend oder im Bereich der Blätter. Rindenpartien können sich ablösen, die befallenen Ruten werden brüchig und sterben schließlich ab.</p><p><strong>Amerikanischer Stachelbeermehltau:</strong> Der Amerikanische Stachelbeermehltau (<em>Sphaerotheca mors uvae</em>) überzieht Stachelbeeren und Schwarze Johannisbeeren mit einem weißgrauen Belag. Der Pilzbefall schwächt die Pflanzen und sorgt dafür, dass die befallenen Früchte nicht ausreifen.</p><p>Grauschimmel tritt vor allem in warmen Sommern mit reichlich Niederschlägen auf.</p><p>Eine ledrige Oberfläche und eine gummiartige Konsistenz weisen auf die Lederbeerenfäule hin.</p><p>Blauviolette Rindenverfärbungen sind ein typisches Kennzeichnen der Himbeerrutenkrankheit.</p><p>Amerikanischer Stachelbeermehltau führt zu weißen, später filzig-braunen und unreifen Früchten.</p><p><strong>Schädlingen vorbeugen:</strong> Schädlinge können Pflanzen schwächen, indem sie zum Beispiel an den Blättern saugen oder das Fruchtwachstum verhindern. Im Hausgarten ist der Schaden meist tolerierbar. Eine Bekämpfung würde auch den Nützlingen schaden, denen sie als Nahrung dienen. Gestalten Sie Ihren Garten vielfältig und möglichst naturnah, so dass sich viele Nützlinge darin wohl fühlen. Konkrete Tipps dazu finden Sie <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/garten-freizeit/nuetzlinge-im-garten">HIER</a>.</p><p>Die wichtigsten Schädlinge im Überblick</p><p><strong>Blütenstecher:</strong> Blütenstecher (<em>Anthonomus rubi</em>) sind auf Erdbeeren, Himbeeren und Brombeeren zu finden. Die schwarzen Rüsselkäfer sind zwei bis vier Millimeter groß. Sie legen ihre Eier in die Blütenknospen der Beerenfrüchte. Die weiblichen Käfer beißen nach der Eiablage den Knospenstiel an, so dass die Knospe umknickt, verwelkt und abfällt.</p><p><strong>Himbeerkäfer:</strong> Die kleinen weißen Larven des Himbeerkäfers (<em>Byturus tomentosus</em>) fressen sich in das Fruchtinnere. Die Himbeeren werden braun und hart oder zeigen Missbildungen.</p><p><strong>Gallmilben:</strong> Ist ein Brombeerstrauch von Gallmilben (<em>Acalitus essigi</em>) befallen, reifen Früchte oder Teile davon nicht aus, sondern bleiben rot oder rotgrün. Reife, normal ausgefärbte Früchte sind hart und sauer.</p><p><strong>Johannisbeerglasflügler:</strong> Die Larven des Johannisbeerglasflüglers (<em>Synanthedon tipuliformis</em>) bohren sich in die Johannisbeertriebe und fressen das Mark. Befallene Triebe werden welk und sterben später ganz ab. Schwarze Johannisbeeren werden bevorzugt befallen.</p><p>Pflanzenschutzmittel sind zur Bekämpfung des Johannisbeerglasflüglers nicht gut geeignet. Mittel, die nur bei direktem Kontakt wirken, müssten exakt zum richtigen Zeitpunkt ausgebracht werden, um die Weibchen bei der Eiablage zu töten. Selbst dann würden sie wahrscheinlich nicht wie gewünscht wirken und vor allem anderen Insekten schaden. Die geschlüpften Larven fressen ohnehin im Inneren der Triebe und sind dadurch gut geschützt.</p><p><strong>Kirschessigfliegen:</strong> Die <a href="https://drosophila.julius-kuehn.de/">Kirschessigfliege</a> (<em>Drosophila suzukii</em>) ist nur drei Millimeter groß, kann aber große Ernteverluste verursachen. Sie befällt nicht nur Kirschen, sondern auch Erdbeeren, Brombeeren, Himbeeren, Blaubeeren, Stachelbeeren und Johannisbeeren. Markant sind die roten Augen und der sägeartige Ei-Legeapparat, mit dem die Weibchen in die Fruchthaut eindringen. Die invasive, aus Asien stammende Kirschessigfliege wurde 2011 erstmalig in Deutschland nachgewiesen und hat sich innerhalb von nur drei Jahren bundesweit ausgebreitet. Sie wird durch befallene Früchte verbreitet, kann aber auch selbst weite Strecken zurücklegen. Unter den klimatischen Bedingungen in Deutschland kann sie bis zu acht Generationen pro Jahr zeugen. Es gibt keine Insektizide, die für den Haus- und Kleingarten zugelassen sind. Aufgrund der hohen Vermehrungsrate und des kurzen Entwicklungszyklus würde die Kirschessigfliege wahrscheinlich schnell Resistenzen gegen Insektizide entwickeln. </p><p>Nach der Eiablage beißt der Blütenstecher die Blütenstiele an, so dass sie abknicken.</p><p>Die weißen Larven des Himbeerkäfers fressen von innen an den Beeren.</p><p>Schadbild der Brombeergallmilbe, die Beeren bleiben rot und hart.</p><p>Dass man die Larven des Johannisbeerglasflüglers zu Gesicht bekommt, ist selten. Meist sieht man nur die Folgen ihrer Fraßtätigkeit – das schwarz verfärbte Mark der Stängel.</p><p>Mit einer Lupe kann man die roten Augen der Kirschessigfliege erkennen. Die Männchen haben auf ihren Flügeln einen gut sichtbaren schwarzen Punkt.</p><p><strong><a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a> </strong><strong>nur im Notfall:</strong> Bevorzugen Sie grundsätzlich immer nicht-chemische Maßnahmen, bevor Sie <a href="https://www.umweltbundesamt.de/themen/chemikalien/pflanzenschutzmittel/wissenswertes-ueber-pflanzenschutzmittel">Pflanzenschutzmittel</a> einsetzen. Verwenden Sie Pflanzenschutzmittel nur, wenn alle anderen Maßnahmen keinen Erfolg gebracht haben und wenn mit großen Ernteverlusten zu rechnen ist. Prüfen Sie, ob Ihr Ziel auch mit <a href="https://www.bvl.bund.de/DE/Arbeitsbereiche/04_Pflanzenschutzmittel/01_Aufgaben/04_Pflanzenstaerkungsmittel/psm_Pflanzenstaerkungsmittel_node.html">Pflanzenstärkungsmitteln</a> oder mit dem Einsatz von <a href="https://www.bvl.bund.de/DE/Arbeitsbereiche/04_Pflanzenschutzmittel/04_Anwender/02_AnwendungGrundstoffe/psm_AnwendungGrundstoffe_node.html;jsessionid=FDBEE81656F55AB03C484996E1D3360E.internet942#doc11030656bodyText2">Grundstoffen</a> erreicht werden kann. Entscheiden Sie sich doch für ein Pflanzenschutzmittel, wählen Sie möglichst umweltverträgliche Wirkstoffe. Verwenden Sie nur zugelassene Pflanzenschutzmittel und halten Sie sich genau an die Packungsbeilage. Weitere Tipps zum richtigen Einsatz von Pflanzenschutzmitteln finden Sie <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/garten-freizeit/chemische-pflanzenschutzmittel-im-hobbygarten">HIER</a>.</p>
Der Apfelschorf (Venturia inaequalis) ist die bedeutendste Pilzkrankheit im Obstbau. Der Pilz ueberwintert mit seiner Hauptfruchtform im Fallaub. Die Bekaempfung wird wesentlich erleichtert, wenn es gelingt, die von dieser Infektionsquelle ausgehenden Primaerinfektionen zu verhindern. Dies ist umso leichter, je mehr Fallaub bis Vegetationsbeginn abgebaut ist. Hierfuer ist in erster Linie der Grosse Regenwurm (Lumbricus terrestris) verantwortlich. Es wird die Frage untersucht, in welchem Umfange L. terrestris in verschiedenen bewirtschafteten Obstanlagen zu einer Reduktion des Befallsdruckes durch V. inaequalis beitraegt, und durch welche Massnahmen diese nuetzliche Wirkung gesteigert werden kann.
Umstellung einer 1987/88 gepflanzten 0,7 ha Apfelanlage mit 'ldared', 'Jonagold-Mutanten', 'Golden Delicious', 'Glosten', 'Fiesta' auf M9 von integrierter Produktion auf biologische Wirtschaftsweise mit Untersuchung der Auswirkungen auf Schädlings- und Krankheitsbefall, Möglichkeiten der Bodenpflege. Da der Anbau schorfempfindlicher Apfelsorten nur durch einen unvertretbar hohen Einsatz von Schwefel zur Bekämpfung dieser Pilzkrankheit möglich ist, wurde ab Frühjahr 2001 begonnen die bisherigen Sorten durch schorfresistente Sorten zu ersetzen. Im April 2001 wurden ca. 0,7 ha mit der Sorte 'Topaz' bepflanzt. Die Anlage steht in 2004 für das Projekt Bodenpflege im ökologischen Anbau zur Verfügung. Im Frühjahr 2003 wurde eine Fläche von ca. 0,45 ha mit den Sorten 'Santana', 'Rubinola', 'Ariwa'und 'Topaz' auf der Unterlage M 9 bepflanzt. Für Exaktversuche zur Pilzregulierung im ökologischen Apfelanbau wurden zusätzlich 420 Bäume der Sorte 'Golden Delicious' Klon B gesetzt. Nach der Ernte 2003 wurden auch die letzten Altanlagen in der biologischen Produktion gerodet. Die Fläche von ca. 0,27 ha wird in 2004 brach liegen und in der Pflanzsaison 2004/2005 zur Hälfte mit neuen, schorfrobusten Apfelsorten bepflanzt werden. Da im Betrieb keine organischen Düngemittel anfallen, muss entsprechender Dünger zugekauft werden. Die Wirkung der zu testenden Blattdünger wird mit Hilfe von Blatt- und Fruchtanalysen kontrolliert. Die Proben müssen hierzu zur Untersuchung an ein Labor gesendet werden.
Der Resistenzzuechtung kommt im Rahmen des Umweltschutzes eine steigende Bedeutung zu. Deshalb wird seit langen Jahren bei den Arbeiten mit Futtergersten auch die Mehltau- und Rostresistenz beachtet. Wertvolle resistente Formen konnten selektiert werden. Der Maisanbau kann sich unter mitteleuropaeischen Klimabedingungen nur halten und eventuell ausdehnen, wenn es gelingt, gegen Stengel- und Wurzelfaeule resistente Linien und Hybriden zu zuechten. Bei der Sonnenblume ist eine der wichtigsten Voraussetzungen ihres Anbaus in Europa die Resistenz gegen Scherotinia und Bokritis. Auch hier gilt es resistente oder wenigstens tolerante Linien und Sorten zu zuechten. Durch den verstaerkten Rapsanbau in Europa ist eine starke Ausbreitung von Pilzerkrankungen insbesondere von Phomalingam und Scherotinia scherotiorum festzustellen. Hier ist ebenfalls eine Zuechtung auf resistente bzw. tolerante Formen unablaesslich.
Pilzparasiten auf Phytoplankton sind ubiquitär und stellen eine integrale Komponente aquatischer Ökosysteme dar. Trotz zunehmender Hinweise, dass diese parasitischen Pilze eine wichtige Rolle für verschiedenste Ökosystemfunktionen spielen - via top-down Kontrolle von Phytoplanktonblüten und alternativen Kohlenstoff- und Nährstoffflüssen - sind sie noch immer stark vernachlässigt und wenig erforscht. Insbesondere methodische Gründe sind dafür verantwortlich, so sind sie morphologisch schwierig zu identifizieren und werden daher häufig übersehen. Neuerdings zeigen Untersuchungen von Umwelt-DNA eine unerwartet hohe Diversität von meist noch nicht beschriebenen Pilzen in aquatischen Ökosystemen. Ein bedeutender Teil dieser noch unbekannten Sequenzen gehört zu den parasitischen Pilzen auf Phytoplankton. Bis heute bleiben diese jedoch noch weitgehend unsichtbar für mikrobielle Ökologen, da sie bisher nur einen kleinen Anteil der beschriebenen Arten von parasitischen Pilzen auf Phytoplankton in den Sequenzdatenbanken ausmachen. Daher, ist die Hauptaufgabe dieses Projektes, diese Lücke zwischen morphologischen und molekularen Studien mit klassischen Kultivierungsverfahren und kultivierungsunabhängigen modernen Ansätzen zu überbrücken. Dies erlaubt der Umweltgenomik, einen direkten Zugang zu taxonomischem Wissen, das während mehr als einem Jahrhundert generiert wurde. Ferner wird die Verbindung von Diversitäts- und Funktionsanalyse aquatischer Pilze ermöglicht. Die phylogenetische Integration dieser bisher stark vernachlässigten Gruppe parasitischer Pilze auf Phytoplankton wird einen wichtigen Beitrag darstellen, um die evolutionären Schlüsselereignisse der basalen Pilze an der Wurzel des Pilzstammbaumes zu verstehen. Die zweite Aufgabe soll sein, unser Wissen zu den ökophysiologischen Eigenschaften der Phytoplankton-Pilz-Interaktionen zu entschlüsseln. Zusätzlich erlaubt das einzigartige Set von Modellsystemen, physiologische Experimente durchzuführen, die die Bedeutung von Temperatur und Licht auf die Interaktion von wohl-definierten Phytoplankton-Pilzkulturen beleuchten und die taxonomische sowie ökologische Variabilität (Spezialist vs. Generalist) untersuchen. Diese Studien werden wichtige, bisher noch fehlende Grunddaten bzgl. Taxon-spezifischen und Trait-abhängigen physiologischen Antworten von Phytoplankton-Pilz Interaktionen liefern. Solche Daten sind sehr wichtig, um jetzige und zukünftige Vorhersagen von Pilzinfektionen und ihren Auswirkungen auf die Phytoplanktondynamik sowie auf die des gesamten Nahrungsnetzes im Zusammenhang mit den momentanen globalen Veränderungen zu verbessern.
Pilze sind eine der am diversesten, jedoch am wenigsten untersuchten mikrobiellen Gruppen in marinen Gewässern. Eine Untergruppe der Pilze, kurz als Chytridien bekannt, umfasst häufig auftretende Parasiten auf Phytoplankton, welche eine starke Belastung für das Phytoplanktonwachstum, die Entwicklung von Algenblüten und deren Populationsdynamiken darstellen. Parasitäre Chytridien befallen alle Hauptgruppen von Phytoplankton und treten bevorzugt in Küstenregionen mit hoher Phytoplanktonbiomasse und Produktivität auf. Die Auswirkungen von parasitären Pilzen auf Stoffkreisläufe und die Funktion von Ökosystemen sind jedoch kaum bekannt bzw. quantifiziert. Die Emmy Noether-Nachwuchsgruppe wird die funktionelle und quantitative Rolle parasitärer Pilze für die Phytoplanktonproduktivität und den Stoffkreislauf in Brack- und Meerwasser untersuchen. Unsere Ziele sind (1) Betrachtung der Wechselwirkungen zwischen Phytoplankton und Chytridien auf Einzelzell-Ebene, (2) Untersuchungen der integrativen Rolle von Chytridien in aquatischen Nahrungsnetzen und (3) Aufklärung der Auswirkungen von parasitären Pilzen auf Remineralisierungs- und Sedimentationsprozesse. Unser umfassender Ansatz beinhaltet experimentelle Studien mit Phytoplankton-Pilz Co-Kulturen sowie mit natürlichen Planktongemeinschaften, mittels Analysen auf Zell- und Mikoskalen-Ebene bis hin zu mesoskaligen Stoffflüssen entlang der Wassersäule. Im Wesentlichen werden wir den Transfer von Kohlenstoff und Stickstoff vom Phytoplankton durch das pelagische Nahrungsnetz innerhalb der photischen Zone bis hin zum Absinken als Detritus in die Tiefe verfolgen. Das Projektergebnis soll ein ganzheitliches Verständnis der Rolle von Chytridien an der Basis aquatischer Nahrungsnetze und Produktivität fördern, einschließlich der zugrunde liegenden Mechanismen und Größenordnungen. Angesichts der potenziellen Signifikanz parasitärer Pilze für die Abschwächung von Produktivität, Sinkstoffflüssen aber auch von toxischen Algenblüten in Küstengebieten, sollen die gewonnenen Daten mit lokalen und globalen Stoffkreisläufen verknüpft und in zukünftige Entscheidungen zum Küstenmanagement implementiert werden.
Die Sonnenblume steht weltweit an vierter Stelle der Ölpflanzen, ihre Produktion wird in einigen Regionen durch das wurzelparasitische Unkraut Orobanche cumana Wallr. gefährdet. Das Verbreitungsgebiet dieser Parasitenpflanze erstreckt sich vom Mittelmeerraum über Osteuropa bis nach Ostasien. Mehrere Ansätze zur chemischen und biologischen Kontrolle, sowie zur Resistenzzüchtung wurden verfolgt, aber keiner davon erwies sich als hinreichend wirksam. Zur Sicherung der Sonnenblumen-Produktion in den betroffenen Gebieten ist die Entwicklung neuer und/oder integrierter Ansätze nötig. Induzierte Resistenz (IR), die die induzierte systemische Resistenz (ISR), die erworbene systemische Resistenz (SAR) und die lokale erworbene Resistenz (LAR) umfasst, ist eine neue Technik zu Kontrolle von Viren, Bakterien und Pilzkrankheiten, sowie von parasitischen Unkräutern. Diese Kontrollmethode basiert auf dem Auslösen pflanzlicher Verteidigungsmechanismen gegen Pathogene und Freßfeinde. SAR der Sonnenblume, hervorgerufen durch den Pflanzenaktivator BTH (Benzothiadiazol) bewirkte im Gewächshausversuch eine signifikante Verringerung des Befalls durch O. cumana. Ziele dieser Arbeit sind (1) die Verbesserung der BTH-Anwendung in Sonnenblume, (2) die Evaluation der Wirksamkeit von das Pflanzenwachstum fördernden Rhizobakterien (PGPR) und arbuskulärer Mykorrhiza (AMF) gegen das parasitische Unkraut und (3) Kombination dieser resistenz-induzierenden Wirkstoffe mit biologischen und/oder chemischen Kontrollmethoden zu einem integrierten Kontrollansatz, um unerwünschte Nebenwirkungen aus die Sonnenblume auszuschließen, eine wirksamere Kontrolle von O. cumana zu ermöglichen und das Risiko der Resistenzentwicklung gegen einzelne Methoden in Orobanche-Populationen zu minimieren; (4) Erforschung der biochemischen Prinzipien der induzierten Resistenz der Sonnenblume gegen O. cumana.
| Origin | Count |
|---|---|
| Bund | 96 |
| Land | 17 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 86 |
| Text | 21 |
| unbekannt | 6 |
| License | Count |
|---|---|
| geschlossen | 26 |
| offen | 86 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 104 |
| Englisch | 22 |
| Resource type | Count |
|---|---|
| Bild | 3 |
| Dokument | 9 |
| Keine | 88 |
| Webseite | 22 |
| Topic | Count |
|---|---|
| Boden | 72 |
| Lebewesen und Lebensräume | 109 |
| Luft | 67 |
| Mensch und Umwelt | 113 |
| Wasser | 60 |
| Weitere | 113 |