API src

Found 4222 results.

Related terms

Aquaponics optimization in a local climatic, economic and cultural context: maximizing the benefits of a circular bioeconomy for food production

Sustainable food production depends on the recovery of water, energy, and nutrients from waste streams within existing supply chains. Greenhouse hydroponic systems (HYP) and recirculating aquaculture systems (RAS) are two intensive food production systems that in combined production as an aquaponics system (AP) can utilize fish wastes as fertilizers, while recycling water and energy to increase both systems' sustainability and efficiency. However, despite significant environmental benefits, such systems current infrastructure costs limit widespread application. Implementing relevant technology for such resource-efficient systems requires designs that can optimize performance. AquapnicsOpti contributes to innovative, decarbonized, and resource-efficient food production systems by improving nutrient reuse, increasing energy efficiency and reducing fossil fuel dependence, reducing freshwater needs, and developing scalable models for improving microbial relationships for fish and plant health. In direct collaboration with stakeholders, we will analyze design aspects, business models and consumer preferences, while also carefully examining barriers and economic challenges of AP facilities in different countries. The consortium will take a holistic approach in the context of agroecology to evaluate AP operations in diverse geo-climatic zones and document how adaptations of their technologies and practices can better support local and regional food production. Relevant technology for such resource-efficient systems requires designs that explore and quantify multifactor interactions of biological components to maintain or enhance productivity beyond the capabilities of current AP systems. Scientific testing of microbial digester designs aims to maximise decomposition of fish wastes and provide plant crops with essential nutrients in bioavailable forms. Development and integration of smart biosensors to automatically collect water quality data and automate systems will facilitate operational monitoring and controls that are currently labour-intensive and not always timely. Design innovations will consider existing fish-plant AP pairs but evaluate and test the potential of other culturally acceptable species that would have production and marketing appeal. Simulations of operational conditions will be used to compare and contrast situational variables for AP stakeholder operators to consider, and for design engineers to optimise before modifications are implemented. Integral to this research, we will analyze a broad range of quantitative and qualitative data about stakeholder attitudes, regulatory policies and socio-economic conditions within the diverse geo-climatic zones represented among our project partners. Six research work packages (WP) emphasise integration across disciplinary lines, and the seventh WP ensures that sustained communications among them results in interdisciplinary deliverables and dissemination.

Der Teufel steckt im Detail: Kontrolle phageninduzierter Stoffkreisläufe in Böden durch das Mikrohabitat

Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.

Verlängerte Wurzeln zur effizienten Erschließung von Stickstoffquellen durch Veränderung der Brassinosteroid- und Auxinbioynthese und Signaltransduktion

Pflanzen passen sich an räumliche und zeitliche Fluktuationen von Nährstoffen im Boden durch das "Sensing" von Nährstoffen und Veränderungen in der Wurzelarchitektur an. Solche morphologischen Anpassungen ermöglichen es, verfügbare Nährstoffe im Boden effizienter zu erschließen. Wenn Pflanzen unter leichtem bzw. mildem Mangel an Stickstoff (N) wachsen, erhöhen sie die Länge von Primär- und Seitenwurzeln. Diese Reaktion birgt Potential zur Verbesserung der N-Effizienz, weil sich das Bodenvolumen vergrößert, aus dem limitierende Nährstoffe aufgenommen werden. In unseren Vorarbeiten haben wir in natürlichen Akzessionen der Modellpflanze Arabidopsis allelische Variation in Genen der Brassinosteroid- und Auxinbiosynthese bzw.-Signaltransduktion (YUC8, BSK3) gefunden, die die Wurzelverlängerung unter mildem N-Mangel verändern. Das finale Ziel dieses 6-jährigen Projekts ist es, die hormonelle Regulation der Wurzelverlängerung unter N-Mangel aufzuklären und diese Kenntnis zu nutzen, um in Gerstenwurzeln die Wurzelentwicklung unter N-Mangel und damit die N-Aufnahmeeffizienz zu verbessern. Ziele der ersten 3 Jahre sind: i) in Arabidopsis die Rolle der YUC8-abhängigen Auxinbiosynthese und ihre Beziehung zu Brassinosteroiden in der Wurzelverlängerung unter leichtem N-Mangel aufzuklären und ii) in einem translationalen Ansatz in Gerste den Beitrag der allelischen Variation von Genen der Brassinosteroid- bzw. Auxinbiosynthese oder Signaltransduktion zur Wurzelstreckung zu untersuchen und zu modulieren. Zunächst werden in Arabidopsis die molekularen Mechanismen hinter den identifizierten allelischen Variationen im YUC8-Gen sowie seine Rolle in der Regulation der Wurzelverlängerung bestimmt. Dabei wird die Wurzelantwort auf milden N-Mangel in yuc-Mutanten und YUC8-komplementierten Linien charakterisiert. Diese und weitere Mutanten- und Reporterlinien werden auch eingesetzt, um die Beziehung zwischen Brassinosteroiden und Auxin in der transkriptionellen Regulation der Wurzelantwort auf milden N-Mangel aufzuklären. In einem translationalen Ansatz wird in Gerste das "schwache" BSK3-Allel durch das "starke" BSK3-Allel aus Arabidopsis ersetzt, da alle bisher untersuchen Gerstenakzessionen nur ein "schwaches" BSK3-Allel tragen. In einem Schritt wird die Cas Endonuklease-vermittelte Deletion des schwachen BSK3-Endogens mit der Komplementation durch das starke Transgen kombiniert. In einem RNA-Sequenzierungsansatz werden N-Mangel-regulierte Gene in Gerstenwurzeln identifiziert, um Kandidatengene auszuwählen, die zur CRISPR-Cas-vermittelten Gendeletion und zur Überexpression mithilfe eines wurzelspezifischen Promoters eingesetzt werden. Alle transgene Linien werden anschliessend hinsichtlich der Veränderung ihrer Wurzelarchitektur unter N-Mangel phänotypisiert.

Contribution of ectomycorrhizal fungi to the formation and mobilization of soil organic matter (SOM)

In forest ecosystems ectomycorrhizal fungi are responsible for the mobilization of mineral nutrients from soil organic matter (SOM) resulting in a marked increase in productivity of their symbiotic host plants. In return the fungi obtain a significant amount of photosynthetic products from these plants, allowing the formation of an extensive hyphal system. These hyphae constitute a major part of soil biomass and, ultimately, a major source for SOM formation. While plant-fungal nutrient exchange has been analyzed extensively, this proposal is focused on the fungal contribution to SOM formation and on the processes leading to the acquisition of nutrients by the fungi. These two processes will be studied separately and in a quantitative way using isotopic labeling in soil bioreactors. Analysis of the fate of 13C labeled fungal material (Laccaria bicolor) in soil bioreactors will tell how fast and to what extent the various fractions of hyphal biomass are transformed into non-living SOM. As potential molecular or structural markers for SOM formation from fungal hyphae we will analyze characteristic remnants of fungal hyphae in SOM using scanning electron microscopy, DNAfragments using a PCR approach for the fungal rRNA internal transcribed spacerregions and biochemical markers like fatty acids and ergosterol. The impact of ectomycorrhizal mycelia supported by Pinus sylvestris plantlets on 13C- and 15N-labeled SOM and on microbial biomass will be analyzed in separate soil bioreactor experiments.

Erschließung von Unterbodenressourcen durch Zwischenfruchtanbau und Lebendmulchsysteme, Teilprojekt B

Upcycling organomineralischer Substratreststoffe aus hydroponischen Systemen, Teilvorhaben 2: Implementierungsforschung am Standort Geisenheim

Es wird erforscht, ob das Einbringen von upgecycelten organomineralischen (OM) Substratreststoffen aus dem hydroponischen Tomatenanbau in den Boden des Freilandgemüsebaus ökonomische und ökologische Vorteile besitzt. Die organische Fraktion liefert mineralische Nährstoffe, die während der Kulturdauer freigesetzt werden. In einem dreijährigen Freilandexperiment wird auf zwei unterschiedlichen Standorten die Wirkung des aufgewerteten Oberbodens auf veränderte biologische, chemische und physikalische Eigenschaften des Boden-Pflanzengefüges untersucht. Als nährstoff- und carbonreiches Hächselgut soll es als alternativer Dünger und zur Bodenverbesserung dienen und entsprechend ertrags- und qualitätswirksam sein. Eine Verbesserung der physikalischen Bodeneigenschaften und Infiltrationsrate wird erwartet. Dies führt zu einem leichteren Eindringen von Niederschlag- und Beregnungswasser, wodurch die Wasser- und Nährstoffversorgung der Pflanzen gesteigert und gleichzeitig das Risiko einer Bodenerosion verringert wird. Ein höheres Angebot an pflanzenverfügbarem Wasser und substratgebundenen Nährstoffen offeriert das Potential einer gesteigerten Nährstoffnutzungseffizienz und eines reduzierten Düngebedarfs. Letzteres führt durch die Einsparung der Energie bei der Düngerherstellung zu einer besseren CO2-Bilanz. Die Wiederverwendung der OM-Substratreststoffe im Sinne der Kreislaufwirtschaft reduziert weiterhin die Menge entsorgungspflichtiger Kultursubstrate. So zielt UpgoeS darauf ab, die bisher ungenutzten biologischen Ressourcen des geschützten Anbaus durch ihren Einsatz als Bodenverbesser und Dünger im Freilandgemüsebau upzucyclen. Das agronomische und ökologische Potenzial der pflanzenbaulichen Wiederverwertung wird ermittelt, woraus ein Leitfaden zum sachgerechten Einsatz von OM-Substratreststoffen entsteht, der den Freilandbetrieben bereitgestellt werden soll. Dieser kann politischen Entscheidungsträger*innen als Grundlage für weitere Novellierungen der DüV dienen.

Entwicklung eines Bioraffineriekonzeptes zur Onshore Produktion proteinreicher Algenbiomasse unter Verwendung nitrathaltiger Oberflächengewässer, Teilprojekt A

Green ERA Hub Call 1: ProRMAS - Erzeugung wertvoller Proteine und organischer Düngemittel aus salzhaltigem Wasser mit Hilfe eines rezirkulierenden multitrophischen Aquaponiksystems

Eutrophierte Gebiete gemäß §13a Düngeverordnung (Download/WFS)

Änderungen der Düngeverordnung ermöglichen seit 2017 als Teil des Deutschen Aktionsprogramms zur Umsetzung der EU-Nitratrichtlinie eine Ausweisung von eutrophierten Gebieten. In diesen Gebieten gelten strengere Bewirtschaftungsauflagen für landwirtschaftlich genutzte Flächen. Die Ausweisung von eutrophierten Gebieten dient dem Schutz der Oberflächengewässer vor zu hohen Nährstoffeinträgen, insbesondere Phosphor, und erfolgt durch die Bundesländer.

(WMS) - MSRL: D5-Eutrophierung - Seegras, Grünalgen - max. Bedeckung pro Jahr (LKN.SH - NPV)

Der Darstellungs-Dienst beinhaltet folgende Eutrophierungsparameter: max. Bedeckungsgrad von Seegras bzw. Grünalgen und ist relevant für den MSRL-Deskriptor 5 im Nationalpark Schleswig-Holsteinisches Wattenmeer. Der Dienst wurde im Rahmen des Projektes MDI-DE (Marine Daten-Infrastruktur Deutschland) erstellt. Die Daten werden im Rahmen des trilateralen Makrophyten-Monitoring-Programmes (TMAP) mittels Flugzeugkartierungen erhoben. Dieser Dienst gibt von den drei Kartierungen nur die Daten eines Fluges pro Jahr aus, bei dem der Bedeckungsgrad am höchsten war. Der Bedeckungsgrad wird in 2 Dichteklassen der geschlossenen Bestände angegeben. Die Identifizierung der Flächen ist erst ab ca. 20% Deckung möglich. Die Daten wurden auf Basis einzelner Shapes in einer Datenbank zusammengeführt. Aus den Jahren 1989 und 1990 liegen ähnliche, aber in der Klassifikation abweichende, Kartierungen im Rahmen der Ökosystemforschung Schleswig-Holsteinsches Wattenmeer vor. Dieser Dienst stellt sowohl für Seegras als auch für Grünalgen eine Kartenansicht der max. Bedeckung ab dem Jahr 1994 mit einzelnen Jahres-Layern bereit.

1 2 3 4 5421 422 423