Pflanzenpathogene verursachen Krankheiten, die 20-30 % der weltweiten Ernteproduktivität zerstören können. Pilzpathogene verursachen einige der zerstörerischsten Pflanzenkrankheiten. Das Verständnis ihrer Infektionsmechanismen bietet vielversprechende Möglichkeiten, neuartige Methoden zu entwickeln um ihre Ausbreitung zu verhindern, den Einsatz giftiger Chemikalien zu reduzieren und dadurch die Ernteproduktivität zu steigern. Wir benötigen jedoch neuartige und innovative Ansätze, um die mechanistischen Details der Virulenz der Pathogene zu entschlüsseln. In diesem Antrag werden wir untersuchen, wie der Brandpilz Grundnahrungsmittel wie Reis, Gerste und Weizen infiziert und dabei eine verheerende Pandemie verursacht, die die globale Ernährungssicherheit bedroht. Zu diesem Zweck werden wir modernste Technologien in der Röntgenkristallographie und der kryogenen Elektronenmikroskopie einsetzen, um mit dem höchsten jemals aufgezeichneten Detailgrad zu verstehen, wie der Pilz in die Pflanzen eindringt. Indem wir verstehen, wie dieser Pilz Pflanzen infiziert, tragen wir zur Entwicklung neuartiger Strategien zur Krankheitsbekämpfung bei, bewältigen eine kritische wirtschaftliche Herausforderung in der globalen Landwirtschaft und gewährleisten die Ernährungssicherheit für künftige Generationen.
Getreide im Allgemeinen und Reis im Besonderen sind die Hauptnahrungsquelle einer stetig wachsende Weltbevölkerung. Viele dieser Kulturen werden auf intensiv genutzten Feldern angebaut, denen regelmäßig Bodennährstoffe durch Düngung zugefügt werden müssen. Aufgrund der hohen Kosten und des Energiebedarfs, ist es notwendig zukünftig den Einsatz von Düngemittel zu beschränken und eine nachhaltigere Form der Landwirtschaft zu etablieren. Kulturpflanzen, die Nährstoffe effizienter als die derzeit verfügbaren Linien nutzen, können dazu beitragen, diese Ziele zu erreichen. Kalium (K+) ist der wichtigste kationische Nährstoff und sein Transport wurde intensiv an der Modellpflanze Arabidopsis untersucht. Über die Transportproteine, welche die K+ -Flüsse in Getreide bewirken, ist jedoch wenig bekannt. Unsere vorherige Studie hat wichtige Unterschiede in der Gewebelokalisierung und den Aktivierungsmechanismen von K+ -Effluxkanälen zwischen Reispflanzen und Arabidopsis gezeigt. Im vorgeschlagenen Projekt konzentrieren wir uns auf K+ -Effluxkanäle des Shaker-Typs und der HAK/KUP K+-Transporterfamilie, die den Kaliumtransport in Reispflanzen von der Wurzel zum Spross und innerhalb der Stoma-Komplexe der Blätter ermöglichen. Wir werden die Zelltypen identifizieren, welche die ausgewählten K+-Transportproteine exprimieren und Reispflanzen erzeugen, denen funktionelle Versionen dieser Proteine fehlen. Diese transgenen Linien werden bezüglich des Wachstums, Wasserverbrauchs und der Ertragsausbeute mit Wildtyp-Reispflanzen unter Gewächshaus- und Freilandbedingungen verglichen. Darüber hinaus werden wir die K+ -Effluxkanäle und -Transporter von Reis in Arabidopsis-Schließzellen und Xenopus-Oozyten exprimieren, um ihre biophysikalischen Eigenschaften wie Ionenselektivität und spannungsabhängige Aktivierung zu charakterisieren. Im Zentrum unserer Aufmerksamkeit steht die Rolle der ausgewählten K+-Kanäle und -Transporter im Xylem und bei der Stoma-Bewegung. Wir werden fluoreszenzmarkierte K+-Kanäle und Transporter verwenden, um zu untersuchen, ob die Transportproteine eine polare subzelluläre Lokalisation aufweisen. Zudem wird die Funktion dieser Transporter mit Einzelzellentechniken untersucht, bei denen ionenselektive Elektroden zum Einsatz kommen. Unsere Studie soll Einblicke zur spezifischen Rolle der K+ -Effluxkanälen und -Transportern auf zellulärer Ebene gewinnen und deren Bedeutung für das Wachstums der Reispflanzen unter Freilandbedingungen aufklären. Dieses Wissen wird für die Züchtung von Reissorten, die mit einem geringeren Bedarf an K+ -Dünger, bei gleichzeitiger Aufrechterhaltung eines guten Nährstoffgehaltes, von großer Bedeutung sein. Nutzpflanzen mit solchen optimierten Eigenschaften werden wichtig sein, um eine nachhaltige Landwirtschaft und unseren zukünftigen Nahrungsmittelbedarf sicherzustellen.
Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.
Die antarktischen Ökosysteme sind von starken Veränderungen betroffen, insbesondere was die Eisbedeckung angeht. Wir wissen nicht wie dies die Prozesse am Meeresboden, die benthischen Funktionen, beeinflusst. Informationen zur Rolle verschiedener Tiergemeinschaften für benthische Funktionen unter variabler und stabiler Eisbedeckung sind für ein besseres Verständnis der Ökosystemprozesse dringend notwendig. Nur in wenigen Studien wurden unterschiedliche Größenklassen wie Meio- und Makrofauna gleichzeitig untersucht, und in keiner wurde ihre Bedeutung für benthische Funktionen untersucht. Daher ist der Einfluss von geringer werdender oder sich verändernder Meereisbedeckung auf die trophischen Interaktionen zwischen Meio- und Makrofauna sowie deren Bedeutung für die Prozesse am Meeresboden nicht geklärt. Dazu gehört auch ob und wie sich die benthische Remineralisation, bestimmt durch Stoffflussmessungen von Ammonium, Nitrat, Phosphat, Kieselsäure und Sauerstoff an der Sediment-Wasser-Grenzschicht, verändert. Für den Südozean ist über die jeweiligen Anteile der Meio- und Makrofaunagemeinschaften an dieser Remineralisation nichts bekannt.Mit unserem 3-Jahres Projekt werden wir gemeinsam die Reaktion benthischer Ökosystemfunktionen auf unterschiedliche Meereisbedeckungssituationen im Weddellmeer und entlang der Antarktischen Halbinsel einschätzen. Um die Rollen der verschiedenen Größenklassen und ihrer assoziierten Taxa im System Meeresboden besser zu verstehen, müssen wir (1) die Bedeutung der Strukturen der Meio- und Makrofaunagemeinschaften für die Ressourcenaufteilung und die Remineralisierung in Regionen mit unterschiedlicher Eisbedeckung und (2) den Effekt von erhöhtem Nahrungsaufkommen bei sich verändernder Eissituationen auf die Interaktionen von Ökosystemfunktion und Größenklassen bestimmen.Die beiden komplementären Aspekte werden mit einem/r gemeinsam betreuten Doktoranden/in durchgeführt. Proben wurden bereits auf den beiden Polarstern-Expeditionen PS 81 (22.01 bis 18.03.2013, nordwestliches Weddellmeer, Antarktische Halbinsel) und PS 96 (06.12.2015 bis 14.02.2016 südöstliches Weddellmeer) genommen. Die untersuchte Region umfasst Gebiete mit reduzierter, variabler und anhaltender Eisbedeckung. Mittels Inkubationen wird die räumliche Variabilität der Remineralisationsraten und die Rolle der Meio- und Makrofaunataxa bestimmt und mit deren Position im Nahrungsnetz zu verbunden. Um den Einfluss erhöhten Nahrungseintrags auf die Partitionierung der Nahrungsaufnahme und die Remineralisation durch die Tiergruppen zu testen, wurden Pulse-Chase Experimente durchgeführt.Die Ergebnisse bilden die Grundlage für das dritte Arbeitspaket: Die Entwicklung eines konzeptionellen Modells für die Evaluation benthischer Systemfunktionen im sich verändernden Südozean, welches die Mehrheit der Größenklassen und Prozesse betrachtet.
Dieser Fortsetzungsantrag eines bestehenden Forschungsprojekts innerhalb der Forschergruppe INUIT (Ice Nuclei Research UnIT) hat zum Ziel, die physikalischen und chemischen Eigenschaften von atmosphärischen Eiskeimen (ice nucleating particles, INP) und Eispartikelresiduen (ice particle residuals, IPR) zu untersuchen. Es werden hauptsächlich zwei Messtechniken eingesetzt: virtueller Gegenstromimpaktor und Laserablationsmassenspektrometrie. Eiskeime (INP) aus atmosphärischem Aerosol werden erst in einem Eiskeimzähler aktiviert, so dass sich Eiskristalle bilden, die dann mit einem bepumpten Gegenstromimpaktor aufgrund ihrer Größe extrahiert und verdunstet werden können. Die freigesetzten INP können wiederum mit dem Massenspektrometer oder anderen Messtechniken untersucht werden. Dieses Experiment wird während einer Feldmesskampagne in der Nähe der Quellen von potentiell guten Eiskeimen (Mineralstaub, Biopartikel, anthropogene Partikel) durchgeführt. Ein geeigneter Kampagnenort hierfür ist die Mittelmeerregion, z.B. Südspanien. Die Eispartikelresiduen werden direkt aus unterkühlten Mischphasenwolken gesammelt. Hierzu wird ein spezieller Eis-Gegenstromimpaktor eingesetzt, der nur Eiskristalle sammelt und von den unterkühlten Wolkentröpfchen trennt. Nach der Sammlung wird das Eis der Eiskristalle verdunstet, so dass die Eisresidualpartikel freigesetzt werden und mittels des Laser- Ablationsmassenspektrometers analysiert werden können. Dieses Experiment wird auf einer Bergstation (Jungfraujoch) durchgeführt. Die Kombination aus Eiskeimzähler, bepumptem Gegenstromimpaktor und Massenspektrometer wird auch unter Laborbedingen zur Bestimmung der Eiskeimfähigkeit von internen und externen Partikelmischungen (z.B. biologisch/mineralisch) betrieben. Das Laserablationsmassenspektrometer in seiner Eigenschaft als Einzelpartikel-Analysegerät wird ebenfalls dazu eingesetzt, um den Mischungszustand der erzeugten Mischpartikel zu charakterisieren.
Ziel der Arbeiten ist die Untersuchung der Drift kleinerer und mittlerer Eisberge im Weddellmeer und des damit verbundenen Süßwassereintrags mit Hilfe gemessener Driftbahnen und numerischer Modellrechnungen. Dabei soll die regionale Verteilung des Schmelzwassereintrags und dessen Bedeutung für die Stabilität der polaren Wassersäule untersucht werden. Ferner soll der Eintrag von Substanzen bestimmt werden, die das Algenwachstum beeinflussen können. Die Driftmessungen erfolgen durch eine tägliche Übertragung der Eisbergpositionen mittels ARGOS Sender. Das Driftmodell berücksichtigt neben der direkten Wirkung von Wind, Ozeanströmung, Meeresoberflächenneigung und Erdrotation auch die Kräfte, die bei einer geschlossenen Meereisbedeckung auftreten, und beinhaltet basales und laterales Schmelzen. Die Ergebnisse der Analyse der Driftbeobachtungen werden zur Validierung der Modellergebnisse und zur Optimierung der angewendeten Parametrisierungen herangezogen.
Many studies have been conducted with the aim to better understand biologic and hydrologic processes that control C and N fluxes in rice paddy systems. But rarely have studies attempted to explicitly link the hydrological and biogeochemical controls of nutrient transport on the field scale. In this research project we aim to improve our understanding of processes that are involved in storing and releasing water and nutrients of different rice-based cropping systems. The Catchment Modeling Framework (CMF) will be coupled to the biogeochemical MOBILE-DNDC model (SP6) in to simulate (1) vertical and lateral transport processes of water, C and N and (2) to predict the reaction of ecosystem services such as water storage and purification, gas regulation, nutrient cycling and food supply in dependence of cropping systems. SP7 follows a rejectionist framework where model complexity is adapted to available data and process understanding. State-of-the-art analytical instruments will be connected to a unique automatic sampling system to continuously measure water isotopic composition as well as dissolved carbon and nitrogen solutes in situ for the first time. Waters to be sampled include surface water, irrigation water, groundwater and water vapor. Cavity Ringdown Spectroscopy will be used to measure 2H/H and 18O/16O. Isotopic signatures will allow estimating water mean transit times, partitioning between evaporation and transpiration and separating flow paths. Hyperspectral UV photometers equipped with a flow-through cell will be installed for continuous measurements of nitrate and DOC.
Weite Teile der nördlichen Ostsee sind im Winter für mehrere Monate von Meereis bedeckt. Wie in Arktis und Antarktis stellt das solegefüllte Kanalsystem im Eis den Lebensraum für eine diverse Flora und Fauna dar. Bereits im Februar beginnen die Eisalgen zu wachsen und hohe Biomassen im Eis aufzubauen. In den Polargebieten wird diese saisonal früh vorhandene und lokal hoch konzentrierte Nahrungsquelle von herbivoren, pelagischen Zooplanktern genutzt, die somit eine trophische Verbindung zwischen den beiden Lebensräumen Meereis und Pelagial herstellen. Auch in der Ostsee kommen v.a. Copepoden unter dem Meereis vor. Die Art Acartia biflosa reproduziert sogar während der Wintermonate, obwohl Temperatur und Algenbiomasse während der eisbedeckten Zeit in der Wassersäule sehr niedrig sind. Hieraus ergeben sich folgende Fragestellungen: 1. Welche biotischen und abiotischen Wachstumsbedingungen charakterisieren das baltische Untereis-Habitat? 2. Was sind die Energiequellen für die Entwicklung im Winter dominanter Arten? 3. Gibt es in der eisbedeckten Ostsee vergleichbare Prozesse wie in Arktis und Antarktis? Das übergeordnete Ziel des Forschungsvorhabens ist die Erfassung der ökologischen Bedeutung des Meereises für die saisonalen Lebenszyklen und Überwinterungsstrategien des Zooplanktons der nördlichen Ostsee.
Steigende Temperaturen und Wassermangel verringern die Ernteerträge und die Qualität der Ernte in vielen landwirtschaftlichen Regionen. Dieses Problem wird sich durch den Klimawandel voraussichtlich noch verstärken. Wir werden uns in diesem Projekt auf Reis, eine er die wichtigste menschliche Nahrungspflanzen, konzentrieren. Der Anbau von Reis ist wasserintensiv, und vom Klimawandel besonders betroffen. Wir wollen mehrere natürliche genetische Variationen identifizieren und testen, die bereits einige Reis-Landrassen in die Lage versetzen, unter warmen und trockenen Klimabedingungen ausreichend Saatgut zu produzieren. Das Projekt hat die Verbesserung der Klimaresistenz von Nutzpflanzen zum Ziel. Ein Fokus liegt dabei auf der Rolle der Spaltöffnungen. Diese regulierbaren Poren steuern den Wasserverlust aus der Pflanze und sind daher entscheidend für die Verdunstungskälte und die Reaktion auf Trockenstress. Wir haben bereits die Genome von fast eintausend Reissorten untersucht, um eine Liste von 30 Genen mit natürlich vorkommenden Variationen zu identifizieren, die mit Wachstum in schwierigen Umgebungen verbunden sind. Sechs dieser Gene wurden priorisiert, und drei von ihnen sind direkt an der Regulierung der Spaltöffnungen beteiligt. Um herauszufinden, welche dieser Gene am ehesten in der Lage sind, Klimaresilienz zu verleihen, werden wir 200 traditionelle Reissorten, die entweder funktionale oder nicht-funktionale Kopien unserer Zielgene enthalten, untersuchen. Wir werden diese Reissorten sowohl in sorgfältig kontrollierten Umgebungen als auch in tropischen Feldversuchen anbauen und ihre Stressresistenz und ihren Nährstoffgehalt messen. Die Daten aus diesen Experimenten werden nicht nur die genetischen Sequenzen aufzeigen, die von Natur aus mit Hitze- und Dürretoleranz verbunden sind, sondern es auch ermöglichen, mit Hilfe von maschinelles Lernen die Eigenschaften, die die beste Vorhersagen für die Leistung der Pflanzen auf dem Feld erbringen, zu ermitteln. Wir werden die Funktion unserer Zielgene durch genetische Manipulation ihrer Expression verifizieren und durch in silico transkriptomische, physiologische und biochemische Analysen neue genomische Ressourcen für die Reisforschungsgemeinschaft bereitstellen. Schließlich werden wir mit Hilfe von Gene Editing versuchen die gefundene Stressresistenz in stressanfälligen modernen Elitereissorte wiederherzustellen. Um dies zu erreichen, brauchen wir die verschiedenen Fähigkeiten unseres multidisziplinären Teams. Darüber hinaus haben wir ein "Bürgerwissenschaftliches" Programm entwickelt, um die Rolle aller 30 klimaassoziierten Reisgenen neben den vorrangigen Zielgenen zu untersuchen. Zu diesem Zweck werden wir mit Schülern in lokalen Schulen in den USA und Großbritannien zusammenarbeiten. Hierbei werden wir zusätzliche Gene untersuchen und den Schülern und Lehrern die Möglichkeit geben, einen Beitrag zu den internationalen Forschungsbemühungen die den Klimawandel bekämpfen zu leisten.
QTL Q.Tgw.ipk-7D increases grain size in wheat and also has positive effects on total grain mass and harvest index. By genetic methods, it was shown that a Mendelian gene inherited in recessive fashion is causing these effects. Our aim is the molecular identification and functional verification of the wheat gene underlying the QTL Q.Tgw.ipk-7D affecting grain size. The QTL interval was genetically delimited by fine mapping and synteny studies with rice and Brachypodium distachyon revealed a good synteny for the investigated region. The area of interest harbours 36 and 42 genes in rice and Brachypodium, respectively. Among them is a possible candidate gene for QTL Q.Tgw.ipk-7D encoding an AP2 domain containing protein. Further fine mapping is expected to narrow down the list of possible candidate genes for QTL Q.Tgw.ipk-7D. Therefore, the ongoing map based cloning approach is to be continued and obtained candidates are to be tested for their functionality in stably transformed wheat lines. The molecular identification of QTL Q.Tgw.ipk-7D will provide novel insight in the heritable regulators of grain size in wheat and would constitute the first cloned QTL reported in wheat.
| Origin | Count |
|---|---|
| Bund | 974 |
| Europa | 36 |
| Kommune | 4 |
| Land | 126 |
| Wissenschaft | 23 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 3 |
| Daten und Messstellen | 1 |
| Ereignis | 6 |
| Förderprogramm | 839 |
| Gesetzestext | 1 |
| Lehrmaterial | 2 |
| Repositorium | 1 |
| Taxon | 1 |
| Text | 92 |
| Umweltprüfung | 1 |
| unbekannt | 112 |
| License | Count |
|---|---|
| geschlossen | 95 |
| offen | 875 |
| unbekannt | 86 |
| Language | Count |
|---|---|
| Deutsch | 804 |
| Englisch | 363 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 12 |
| Bild | 1 |
| Datei | 19 |
| Dokument | 71 |
| Keine | 661 |
| Multimedia | 1 |
| Unbekannt | 1 |
| Webseite | 328 |
| Topic | Count |
|---|---|
| Boden | 696 |
| Lebewesen und Lebensräume | 778 |
| Luft | 760 |
| Mensch und Umwelt | 1046 |
| Wasser | 905 |
| Weitere | 1056 |