API src

Found 1087 results.

Related terms

Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen

<p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a> eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2 aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>⁠) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8&nbsp;% der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5&nbsp;% zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOx und Stickstoff, N2). Dieser Bereich trägt zu 16,2&nbsp;% an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ unberücksichtigt.</p><p>&nbsp;</p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von <a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a> (Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirt­schaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die <strong>direkten Emissionen</strong> stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für <strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠ im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a> legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62&nbsp;Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen finden Sie auf den Themenseiten <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>, <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a> und <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>

17. BImSchV – Luftemissionen der berichtspflichtigen Abfallverbrennungs- und Abfallmitverbrennungsanlagen in NRW

Gemäß § 22 der Verordnung über die Verbrennung und die Mitverbrennung von Abfällen (17. BImSchV) sind Anlagenbetreiber verpflichtet jährlich einen Emissionsbericht gegenüber der zuständigen Umweltschutzbehörde abzugeben. Der Emissionsbericht beinhaltet die Emissionen an Schwefeloxiden (SOx), Stickstoffoxiden (NOx) und Gesamtstaub jeder einzelnen Anlage, die eine Feuerungswärmeleistung von mind. 50 Megawatt aufweist. Die Erfassung und Abgabe der Emissionsberichte erfolgt in elektronischer Form über die Webanwendung „BUBE-Online“ (Betriebliche Umweltdaten Bericht Erstattung). Das LANUK erhält den Gesamtdatensatz der Berichte für NRW und übermittelt diesen an das Umweltbundesamt (UBA). Die Berichtsdaten der Großfeuerungsanlagen (GFA) gemäß der 13. BImSchV veröffentlicht das UBA auf der Webseite https://thru.de. Dieser Datensatz umfasst folgende Angaben der Emissionsberichte nach §22 der 17. BImSchV, beginnend mit dem Berichtsjahr 2016: zuständige Umweltschutzbehörde; Name, Adresse und Koordinaten der Betriebsstätte; Bezeichnung der Anlage bzw. des Anlagenteils, sowie die Feuerungsanlagenart; Jahresgesamtemissionen und Ermittlungsart von Schwefeloxiden, Stickstoffoxiden und Gesamtstaub, berichtete Fehlanzeige (eine Fehlanzeige wird angegeben, wenn kein Betrieb der Anlage bzw. des Anlagenteils im Berichtsjahr vorlag).

NOx-Verminderung im Abgas von Dieselmotoren durch selektive katalytische Reduktion (SCR) mit Harnstoff

Untersuchung einer selektiven, katalytischen Abgasnachbehandlung bezueglich der Stickoxidemissionen; Einsatz der Harnstoff-SCR im mobilen Dieselmotorenbereich. Konzeption und Untersuchung eines weiteren SCR-Sytems fuer den dynamischen Motorbetrieb.

Vergleich des Betriebes eines Einzylinder-Viertaktmotors als hochverdichtender Otto-Benzin- und Otto-Gasmotor sowie als direkteinspritzender Dieselmotor

Im Rahmen eines Forschungsvorhabens zur rationellen Verringerung der Schadstoffemission wurde ein das 'Magerkonzept' realisierender Einzylinder-Ottomotor (Epsilon=13) mit Benzin bzw. Erdgas als Kraftstoff untersucht. Die Ergebnisse wurden mit dem auf Dieselbetrieb (Epsilon=20) mit direkter Einspritzung rueckgeruesteten Motor verglichen. Ein Vergleich der Betriebsarten zeigt die Ueberlegenheit des Gasmotors gegenueber dem Benzin- und Dieselmotor im Hinblick auf die NO2- und CO-Emission. Die erhoehte CH-Emission im Abgas des Erdgasmotors ist in Anbetracht der niedrigen Toxizitaet der Kohlenwasserstoffe von untergeordneter Bedeutung. Ein Vergleich der effektiven Wirkungsgrade ergibt fuer den Dieselmotor den hoechsten Wert. Abgasverbessernde Massnahmen, wie spaetere Zuendung im Ottobetrieb bzw. spaeterer Foerderbeginn im Dieselbetrieb einerseits sowie gesteuerte Abgasrueckfuehrung andererseits, ergeben bezueglich der problematischen Stickoxidemission gravierende Verminderungen. Auch hinsichtlich der CH-Emission sind die Verbesserungen bedeutsam. Diese Verbesserung der Schadstoffemission wird durch einen geringfuegigen Anstieg des spezifischen Brennstoffwaermeverbrauchs (maximal 2 v.H.) erkauft. Die Vermutung, dass die Toxizitaet der emittierten Kohlenwasserstoffe im Gasbetrieb erheblich geringer ist als bei Benzin- oder Dieselbetrieb, konnte durch Bestimmung der Menge an benzolloeslichen Produkten im Abgas bestaetigt werden. Das Hauptproblem des Dieselbetriebs ist die vergleichsweise sehr hohe Particulare-Matter-Emission.

Synthetisches Methanol als maritimer Kraftstoff für die Schifffahrt aus Bremerhaven, Synthetisches Methanol als maritimer Kraftstoff für die Schifffahrt aus Bremerhaven (MariSynFuel)

Untersuchung des Diesel/Gas-Verfahrens bezueglich seiner Eignung zur Verbesserung der Abgasqualitaet

Der Wirkungsgrad von Dieselmotoren ist wegen des thermodynamisch guenstigeren Arbeitsprozesses besser als jener von Ottomotoren. Darueberhinaus erfolgt die Verbrennung des Kraftstoffes wesentlich schadstoffaermer, abgesehen vom nachstoechiometrischen Bereich, in dem das Dieselverfahren zur Russbildung neigt. Ersetzt man die eingespritzte Dieselkraftstoffmenge weitgehend durch der Ansaugluft beigemischtes Brenngas - der Dieselkraftstoff dient dann nur noch zur Zuendung des Gemischs -, so kann die Feststoffemission und damit auch die Emission biologisch aktiver bzw. krebserregender benzolloeslicher Substanzen stark vermindert werden. Einer verfahrensbedingt hoeheren Emission unverbrannter Abgaskomponenten kann durch verschiedene motorische Massnahmen, wie Drosselung der Ansaugluft, Gemischvorwaermung, partielle Rueckfuehrung gekuehlter bzw. besser ungekuehlter Abgase begegnet werden. Die Gaszugabe ermoeglicht eine verstaerkte Abgasrueckfuehrung und so eine weitergehende Verminderung der Stickoxidemission. Im obersten Lastbereich kann die Verschiebung der Russgrenze zur Leistungs- und Wirkungsgradsteigerung genutzt werden. Das Gesamtkonzept dieses Verfahrens bezieht in seiner letzten Phase die Installation eines Vergasungsreaktors direkt am Motor ein mit dem Ziel, fuer mobile Zwecke aus fluessigen Kraftstoffen direkt das notwendige Brenngas herzustellen.

Langjährige Entwicklung der Luftqualität 2022

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Die Emissionen wurden für die lufthygienisch relevanten Schadstoffe NOx, PM10 und PM2,5 neu berechnet und den vorrangigen Verursachern ‚Hausbrand‘, ‚Industrie‘ und ‚Kfz-Verkehr‘ zugeordnet. Es lassen sich somit Verursacheranteile pro dargestelltem Raster von 1 x 1 km² ablesen. 03.12.2 Emissionen 2015 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.1 NOx-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.2 NOx-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.3 NOx-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.4 NOx-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.5 NOx-Gesamtemissionen 2008/2009 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.1 NOx-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.2 NOx-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.3 NOx-Emissionen Hausbrand 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.4 NOx-Emissionen Hausbrand 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.5 NOx-Emissionen Hausbrand 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.1 NOx-Emissionen Industrie 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.2 NOx-Emissionen Industrie 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.3 NOx-Emissionen Industrie 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.4 NOx-Emissionen Industrie 2004 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.5 NOx-Emissionen Industrie 2008 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.1 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.2 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.3 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.4 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.1 NOx-Emissionen Kfz-Verkehr Hauptnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.2 NOx-Emissionen Kfz-Verkehr Nebennetz 2009 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.1 SO2-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.2 SO2-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.3 SO2-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.4 SO2-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.1 SO2-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.2 SO2-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.3 SO2-Emissionen Hausbrand 2002 Weitere Informationen

Luftschadstoff-Emissionen in Deutschland

<p>Luftschadstoff-Emissionen aus unterschiedlichsten Quellen beeinträchtigen die Luftqualität, können in der Umwelt Säuren bilden oder die übermäßige Anreicherung von Nährstoffen (Eutrophierung) in Ökosysteme vorantreiben. Auch die menschliche Gesundheit kann belastet werden.</p><p>Entwicklung der Luftschadstoffbelastung </p><p>Emissionen werden durch den Verkehr, die Energieerzeugung, Industrieprozesse, die Landwirtschaft und viele andere Aktivitäten verursacht. Die seit 1990 erzielten deutlichen Erfolge bei der Emissionsminderung einzelner Luftschadstoffe zeigt die Abbildung „Emissionen ausgewählter Luftschadstoffe“. Daraus geht hervor, dass bei vielen Luftschadstoffen die stärksten Minderungen in der ersten Hälfte der 1990er Jahre erzielt werden konnten.</p><p>Ermittlung der Emissionsmengen</p><p>Die jährlichen Emissionen werden im Umweltbundesamt aus den verfügbaren Daten (Statistiken der Länder und des Bundes, Informationen von Verbänden und Betrieben, Modelle) für alle Quellen berechnet. Die Schadstoffemissionen werden dann Verursachergruppen, so genannten Quellkategorien, zugeordnet.</p><p>Diese Aufteilung ist in der Tabelle „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“ zu sehen, unerheblich ist dabei der Ort des Verbrauchs. Beispielsweise werden die Emissionen aus der Stromproduktion bei dieser Systematik den Produzenten (hier: Kraftwerke) und nicht den Verbrauchern zugerechnet. Die Tabelle stellt Angaben zu Stickstoffoxiden (NOx), Ammoniak (NH3), leichtflüchtigen organischen Verbindungen ohne Methan (⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>⁠), Schwefeldioxid (SO2) und Staub – einschließlich der Feinstaubanteile PM10 und PM2,5 – sowie Kohlenmonoxid (CO) zusammen. Außerdem werden die Säurebildner SO2, NH3 und NOx unter Berücksichtigung ihres Säureäquivalents erfasst.</p><p>Die Berechnungen erfolgen nach den internationalen Berichtsvorschriften unter der <a href="http://www.unece.org/env/lrtap/welcome.html">UNECE Luftreinhaltekonvention</a>. Zum Zweck der Harmonisierung der Berichterstattung haben sich diese an den Vorgaben des Intergovernmental Panel on Climate Change der Vereinten Nationen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>⁠) für die Treibhausgase orientiert.</p><p>Minderung von Emissionen durch die europäische National Emission Ceilings (NEC)-Richtlinie und das Göteborg-Protokoll</p><p>In der europäischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) sind für die EU-Mitgliedstaaten Emissionsminderungsverpflichtungen für die wichtigsten Luftschadstoffe (SO2, NOx, NH3, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>⁠ und PM2,5) festgelegt, die ab dem Jahr 2020 relativ zu 2005 einzuhalten sind. Auch das von den Parteien der Genfer Luftreinhaltekonvention beschlossene <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> enthält analoge Minderungsziele für diese Schadstoffe. Dabei sind die Reduktionsverpflichtungen für den Zeitraum 2020 bis 2029 in beiden Regelungen identisch. Unter der NEC-Richtlinie sind ab dem Jahr 2030 dann deutlich höhere Reduktionen vorgesehen.</p><p>Die Tabelle „Reduktionsverpflichtungen der NEC-Richtlinie; Emissionen im Jahr 2023“ zeigt die beschlossenen Emissionshöchstmengen und stellt sie den Emissionsdaten für das Jahr 2023 gegenüber. Bei der Überprüfung der Zielerreichung werden nach der NEC Richtlinie die Emissionen aus der Düngewirtschaft und landwirtschaftlichen Böden nicht berücksichtigt.</p><p>Die sog. Trendtabellen für Luftschadstoffe, Schwermetalle und persistente organische Verbindungen (POP) zeigen die Emissionsentwicklung im gesamten berichteten Zeitraum.</p><p> <a href="https://datacube.uba.de/vis?fs%5B0%5D=Themen%2C0%7CLuft%23AIR%23&amp;pg=0&amp;fc=Themen&amp;bp=true&amp;snb=5&amp;df%5Bds%5D=ds-dc-release&amp;df%5Bid%5D=DF_AIR_EMISSIONS_TRENDS&amp;df%5Bag%5D=UBA&amp;df%5Bvs%5D=1.2&amp;dq=.A.1_ENERGY%2B1A%2B1A1%2B1A2%2B1A3%2B1A3b%2B1A4%2B1A4a%2B1A4b%2B1A5%2B1B%2B1B1%2B1B2%2B2_INDUSTRY%2B2A%2B2B%2B2C%2B2D%2B2G%2B2H%2B2I%2B3_AGRICULTURE%2B3B%2B3D%2B3J%2B5_WASTE%2B5A%2B5B%2B5C%2B5D%2B5E%2B6_OTHER%2BTOTAL%2BMEMO%2B1A3ai%2B1A3aii%2B1A3di%2B11_NATURAL.NOx_NO2.KT&amp;pd=1990%2C2023&amp;to%5BTIME_PERIOD%5D=false&amp;vw=ov"><i></i> Emission von Luftschadstoffen (UBA DataCube)</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2025_01_29_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsübersichten 1990-2023 für Luftschadstoffe (Exceltabelle)</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2025_01_29_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990-2023 für Schwermetalle (Exceltabelle)</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2025_01_29_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsübersichten 1990-2023 für persistente organische Schadstoffe (Exceltabelle)</a> </p><p>Die Inventartabellen im New Format for Reporting (NFR) beinhalten die detaillierten Emissionsdaten wie sie jährlich an die EU berichtet werden.</p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envz68jiq/"><i></i> Detaillierte NFR-Inventartabellen 1990-2023 (externer Link auf den EEA-Server)</a> </p><p>Die sog. Trendtabellen für Luftschadstoffe, Schwermetalle und persistente organische Verbindungen (POP) zeigen die Emissionsentwicklung im gesamten berichteten Zeitraum.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2024_01_22_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsübersichten 1990-2022 für Luftschadstoffe</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2024_01_22_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990-2022 für Schwermetalle</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2024_03_15_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsübersichten 1990-2022 für persistente organische Schadstoffe</a> </p><p>Die Inventartabellen im New Format for Reporting (NFR) beinhalten die detaillierten Emissionsdaten wie sie jährlich an die EU berichtet werden.</p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envzcypa/"><i></i> Detaillierte NFR-Inventartabellen 1990-2022 (externer Link auf den EEA-Server)</a> </p><p>Der Informative Inventory Report ist der Begleitbericht zu den Luftschadstoffinventaren.</p><p> <a href="https://iir.umweltbundesamt.de/2024/"><i></i> IIR 2024 (WIKI)</a> <a href="https://iir.umweltbundesamt.de/2024/_media/wiki/germanys_informative_inventory_report_2024.pdf"><i></i> IIR 2024 (PDF-Abzug des WIKIs)</a> </p><p>Die sog. Trendtabellen für Luftschadstoffe, Schwermetalle und persistente organische Verbindungen (POP) zeigen die Emissionsentwicklung im gesamten berichteten Zeitraum.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2022_04_04_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsübersichten 1990-2021 für Luftschadstoffe</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2023_01_26_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990-2021 für Schwermetalle</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2024_07_03_em_entwicklung_in_d_trendtabelle_pop_v1.1.xlsx">Emissionsübersichten 1990-2021 für persistente organische Schadstoffe</a> </p><p>Die Inventartabellen im New Format for Reporting (NFR) beinhalten die detaillierten Emissionsdaten wie sie jährlich an die EU berichtet werden.</p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envy_yl5a/"><i></i> Detaillierte NFR-Inventartabellen 1990-2021 (externer Link auf den EEA-Server)</a> </p><p>Der Informative Inventory Report ist der Begleitbericht zu den Luftschadstoffinventaren.</p><p> <a href="https://iir.umweltbundesamt.de/2023/"><i></i> IIR 2023</a> </p><p>Die sog. Trendtabellen für Luftschadstoffe, Schwermetalle und persistente organische Verbindungen (POP) zeigen die Emissionsentwicklung im gesamten berichteten Zeitraum.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2022_01_31_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsübersichten 1990-2020 für Luftschadstoffe</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2022_01_31_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990-2020 für Schwermetalle</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2022_01_31_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsübersichten 1990-2020 für persistente organische Schadstoffe</a> </p><p>Die Inventartabellen im New Format for Reporting (NFR) beinhalten die detaillierten Emissionsdaten wie sie jährlich an die EU berichtet werden.</p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envygjjnq"><i></i> Detaillierte NFR-Inventartabellen 1990-2020 (externer Link auf den EEA-Server)</a> </p><p> <a href="https://iir.umweltbundesamt.de/2022/"><i></i> IIR 2022</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2021_01_08_em_entwicklung_in_d_trendtabelle_luft_v0.10.xlsx">Emissionsentwicklung 1990 - 2019 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2021_01_08_em_entwicklung_in_d_trendtabelle_hm_v0.10.xlsx">Emissionsentwicklung 1990 - 2019 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2021_01_27_em_entwicklung_in_d_trendtabelle_pop_v0.11.xlsx">Emissionsentwicklung 1990 - 2019 für Persistente organische Schadstoffe</a> </p><p> <a href="https://iir.umweltbundesamt.de/2021/"><i></i> IIR 2021</a> </p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envyb590q/"><i></i> Detaillierte NFR-Inventartabellen (externer Link auf den EEA-Server)</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019_12_19_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsentwicklung 1990 - 2018 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2020_03_09_em_entwicklung_in_d_trendtabelle_hm_v1.1.xlsx">Emissionsentwicklung 1990 - 2018 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2020_03_09_em_entwicklung_in_d_trendtabelle_pop_v1.1.xlsx">Emissionsentwicklung 1990 - 2018 für Persistente organische Schadstoffe</a> </p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envxjlbkg/overview"><i></i> Detaillierte NFR-Inventartabellen (externer Link auf den EEA-Server)</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019-02-15_em_entwicklung_in_d_trendtabelle_luft_v1.3_final.xlsx">Emissionsentwicklung 1990 - 2017 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019-02-15_em_entwicklung_in_d_trendtabelle_hm_v1.2_final.xlsx">Emissionsentwicklung 1990 - 2017 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019-02-15_em_entwicklung_in_d_trendtabelle_pop_v1.3_final.xlsx">Emissionsentwicklung 1990 - 2017 für Persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019-03-15_nfr-tabellen_0.zip">Detaillierte Inventartabellen im New Format for Reporting (NFR)</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2018_02_14_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsentwicklung 1990 - 2016 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2018_02_14_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990 - 2016 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2018_02_14_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsentwicklung 1990 - 2016 für Persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/de_2018_nfr-tables.zip">NFR-Tabellen 2018</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2017_02_15_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsentwicklung 1990 - 2015 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2017_02_15_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990 - 2015 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2017_02_15_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsentwicklung 1990 - 2015 für Persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/de_2017_nfr-tables.zip">NFR-Tabellen 2017</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2014_fuer_klassische_luftschadstoffe.xlsx">Emissionsentwicklung 1990 - 2014 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2014_fuer_schwermetalle.xlsx">Emissionsentwicklung 1990 - 2014 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/emissionsentwicklung_1990_-_2014_fuer_persistente_organische_schadstoffe.xlsx">Emissionsentwicklung 1990 - 2014 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/nfr-tabellen_2016.zip">NFR-Tabellen 2016</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2013_fuer_klassische_luftschadstoffe.xlsx">Emissionsentwicklung 1990 - 2013 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2013_fuer_schwermetalle.xlsx">Emissionsentwicklung 1990 - 2013 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2013_fuer_persistente_organische_schadstoffe.xlsx">Emissionsentwicklung 1990 - 2013 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/nfr-tabellen_2015.zip">NFR-Tabellen 2015</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/2013_11_25_em_entwicklung_in_d_trendtabelle_luft_v1.2.xlsx">Emissionsentwicklung 1990 - 2012 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/2014_01_07_em_entwicklung_in_d_trendtabelle_hm_v1.1_0.xlsx">Emissionsentwicklung 1990 - 2012 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/2014_01_09_em_entwicklung_in_d_trendtabelle_pop_v1.1.xlsx">Emissionsentwicklung 1990 - 2012 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/de_2014_nfr-tabellen.zip">NFR-Tabellen 2014</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2012_12_12_em_entwicklung_in_d_trendtabelle_luft_v1.2.0_sauber.xlsx">Emissionsentwicklung 1990 - 2011 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2013_01_28_em_entwicklung_in_d_trendtabelle_hm_v1.1.0_sauber.xlsx">Emissionsentwicklung 1990 - 2011 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2013_01_28_em_entwicklung_in_d_trendtabelle_pop_v1.1.0_sauber.xlsx">Emissionsentwicklung 1990 - 2011 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="http://cdr.eionet.europa.eu/de/un/UNECE_CLRTAP_DE/envurjtqw"><i></i> Inventartabellen 2013</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2012_02_09_em_entwicklung_in_d_trendtabelle_luft_v1.1.0.xls">Emissionsentwicklung 1990 - 2010 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2012_02_06_em_entwicklung_in_d_trendtabelle_hm_v2.0.2.xls">Emissionsentwicklung 1990 - 2010 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2012_02_06_em_entwicklung_in_d_trendtabelle_pop_v1.1.1.xls">Emissionsentwicklung 1990 - 2010 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="http://cdr.eionet.europa.eu/de/un/UNECE_CLRTAP_DE/envtzjuzg"><i></i> Inventartabellen 2012 </a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/em_entwicklung_in_d_trendtabelle_luft_v1.3.0_out.xls">Emissionsentwicklung 1990 - 2009 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/em_entwicklung_in_d_trendtabelle_hm_v1.2.0_out.xls">Emissionsentwicklung 1990 - 2009 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/em_entwicklung_in_d_trendtabelle_pop_v1.3.0_out.xls">Emissionsentwicklung 1990 - 2009 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="http://cdr.eionet.europa.eu/de/un/UNECE_CLRTAP_DE/envtvosia"><i></i> Inventartabellen 2011</a> </p>

Mobilität privater Haushalte

<p>Mobilität und Verkehr gehören zu einer modernen Gesellschaft. Die Kehrseiten der Mobilität sind ein hoher Energieverbrauch und damit hohe Emissionen von Kohlendioxid und Stickoxiden, die den Klimawandel antreiben und die Gesundheit schädigen. Das betrifft besonders den Verkehr mit Auto oder Flugzeug. Alternativen gibt es: Bus und Bahn, Carsharing, das (Elektro-)Fahrrad und die eigenen Füße.</p><p> Hoher Motorisierungsgrad</p><p>Der Motorisierungsgrad in Deutschland hat in den letzten Jahren stetig zugenommen. Waren es im Jahr 2010 noch 511 Pkw pro 1.000 Einwohner*innen, ist diese Zahl mittlerweile auf 590 im Jahr 2025 angestiegen (siehe Tab. „Entwicklung des Motorisierungsgrades“). Ein hoher Motorisierungsgrad bedeutet aber nicht zwangsläufig, dass alle Menschen sehr mobil sind und ihre Ziele gut erreichen. Umgekehrt erfordert Mobilität und Erreichbarkeit oftmals keinen hohen Motorisierungsgrad. So ist der Motorisierungsgrad in Städten allgemein niedriger, da dort Ziele auch gut zu Fuß, per Rad und mit öffentlichen Verkehrsmitteln erreichbar sind. Die Förderung dieser umweltfreundlichen Fortbewegungsarten kann den weiteren Anstieg der Motorisierung bremsen oder sogar den Motorisierungsgrad wieder senken. Auch das Carsharing – und damit der Wandel vom „Autobesitz“ zur „Autonutzung“ – kann einen Beitrag dazu leisten.</p><p>Mehr Haushalte mit Krafträdern und E-Bikes</p><p>Anfang 2023 verfügten in Deutschland 77,3 % der privaten Haushalte über mindestens einen Pkw (siehe Tab. „Ausstattung privater Haushalte mit Fahrzeugen“). In jedem vierten Haushalt sind zwei oder mehr Autos vorhanden. Fahrräder gibt es in 78,9 % der Haushalte. Eine deutliche Zunahme konnte in den letzten zwei Jahren bei den Krafträdern und E-Bikes verzeichnet werden. So verfügten im Jahr 2019 10,6 % der Haushalte über ein Kraftrad und 9 % über ein E-Bike. Im Jahr 2022 lag der Anteil bei Krafträdern bei 11,4 % und bei E-Bikes sogar bei 15,5 %.</p><p>E-Bikes – eine Alternative zum Auto?</p><p>2024 wurden 3,85 Millionen (Mio.) Fahrräder und Elektro-Fahrräder in Deutschland verkauft. Wie schon in den vorherigen Jahren hatten die Fahrräder mit einem Elektro-Motor den größeren Anteil (siehe Abb. „Anzahl jährlich verkaufter Elektro-Fahrräder“). Die Gründe für die Zunahme der E-Bikes sind vielfältig: zum einen gibt es eine breite Palette an Designmodellen, zum anderen verbesserte sich durch Weiterentwicklung die Antriebs- und Batterietechnik. Nach <a href="https://www.ziv-zweirad.de/ziv-marktdaten-fahrraeder-und-e-bikes-2023-die-zahlen-im-detail/">Schätzungen</a> des Zweirad-Industrie-Verbandes umfasst der Fahrradbestand in Deutschland zum Ende des Jahres 2024 insgesamt ca. 89 Mio. Fahrräder und E-Bikes. Letztere hatten daran einen Anteil von geschätzt 15,7 Mio. Einheiten.</p><p>Der Wegevergleich zeigt, dass E-Bikes im Stadtverkehr bis zu einer Entfernung von etwa 7,5 Kilometern das schnellste Verkehrsmittel sind. Die Hälfte aller Autofahrten ist jedoch sogar kürzer als fünf Kilometer. Hieraus ergibt sich ein enormes Verlagerungspotenzial von Pkw-Fahrten auf das Fahrrad oder das E-Bike (siehe Abb. „Wegevergleich: von Tür zu Tür im Stadtverkehr“).</p><p>Weitere Informationen in der Broschüre&nbsp;„<a href="https://www.umweltbundesamt.de/publikationen/e-rad-macht-mobil">E-Rad macht mobil"</a>.</p><p>Mobilität – Carsharing</p><p>Die Attraktivität umweltfreundlicherer Mobilität lässt sich noch steigern. Dazu gehört neben dem öffentlichen Nahverkehr, dem klassischen Fahrrad, dem E-Bike und dem Fußverkehr auch das Carsharing. Zum Jahresbeginn 2025 zählte der Bundesverband Carsharing e.V. (bcs) in Deutschland insgesamt 875.000 Fahrberechtigte der stationsbasierten Angebote (siehe Abb. „Carsharing – Entwicklung bis 2025“). Die Anzahl der Städte und Gemeinden mit einem stationsbasierten Carsharing-Angebot erhöhte sich zwischen 2019 und Anfang 2025 von 740 auf 1.385. Stationsunabhängige Angebote sind in 44 Städten verfügbar. Mittlerweile gibt es in 27 Städten auch kombinierte Carsharing-Systeme, die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=stationsbasiertes_Carsharing#alphabar">stationsbasiertes Carsharing</a>⁠ und free-floating Carsharing aus einer Hand anbieten.</p><p>Jedes Carsharing-Fahrzeug ersetzt je nach örtlichen Verhältnissen zwischen vier und zehn (private) Fahrzeuge. In dichtbesiedelten Innenstadtgebieten von Großstädten, kann bei stationsbasierten Angeboten die Ersatzquote auch bei deutlich über zehn Fahrzeugen liegen.</p><p>Weitere Infos zu diesem Thema finden Sie bei unserer Themenseite "<a href="https://www.umweltbundesamt.de/themen/verkehr/nachhaltige-mobilitaet/car-sharing">Car-Sharing</a>" und bei den <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/mobilitaet/carsharing">Umwelt-Tipps</a>.</p><p>Pandemiebedingt weniger Fahrgäste bei den „Öffentlichen“</p><p>Die Anzahl der Fahrgäste im öffentlichen Personenverkehr hat bis 2019 jedes Jahr leicht zugenommen. Der Rückgang der Fahrgastzahlen infolge der Corona-Pandemie im Jahr 2020 hat sich 2021 fortgesetzt. Im Jahr 2022 und 2024 ist bei den Fahrgastzahlen insgesamt ein Anstieg gegenüber den jeweiligen Vorjahren zu verzeichnen. Das Vor-Corona-Niveau wurde inzwischen fast wieder erreicht (siehe Tab. „Zahl der Fahrgäste im öffentlichen Personenverkehr 2024“).</p><p>Hoher Anteil von Urlaubs- und Freizeitverkehr</p><p>Der arbeitsbezogene Verkehr, das heißt der Berufs- und Ausbildungs- sowie der Geschäftsverkehr hatte 2022 mit 38,6 % den größten Anteil an der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsleistung#alphabar">Verkehrsleistung</a>⁠ im motorisierten Individualverkehr (MIV). Etwa 48 % der arbeitsbezogenen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Personenkilometer#alphabar">Personenkilometer</a>⁠ sind geschäftlich veranlasste Fahrten, die daher nicht den privaten Haushalten zuzurechnen sind (siehe Abb. „Motorisierter Individualverkehr 2022 – Anteile nach Fahrtzweck“). Der Urlaubs- und Freizeitverkehr hat mit 38,1 % ebenfalls einen großen Anteil an der Verkehrsleistung im MIV.</p><p>Pkw und Motorrad waren im Jahr 2023 die beliebtesten Fortbewegungsmittel für Urlaub und Freizeit. Dann folgen das Flugzeug und die Bahn. Pkw und Flugzeug sind im Fernverkehr jedoch die Verkehrsmittel mit den höchsten Treibhausgasemissionen pro Personenkilometer (siehe Abb. „Durchschnittliche Treibhausgasemissionen im Personenfernverkehr, Bezugsjahr 2023“).</p><p>Bei Reisen hat neben dem Verkehrsmittel auch die gewählte Distanz zum Reiseziel einen Einfluss auf die entstehenden Emissionen. Die Abbildung „Mobilitätsbedingte Treibhausgasemissionen für Badereisen“ zeigt einen Vergleich mobilitätsbedingter Treibhausgasemissionen pro Person für verschiedene Reiseziele.</p><p>Tipps für einen nachhaltigen Tourismus finden Sie unter&nbsp;„<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/garten-freizeit/urlaubsreisen#textpart-2">Urlaubsreisen</a>“ und „<a href="https://www.umweltbundesamt.de/themen/wirtschaft-konsum/nachhaltiger-tourismus#textpart-1">Nachhaltiger Tourismus</a>“.</p>

Flugreisen

<p>Flugreisen möglichst vermeiden und Alternativen nutzen</p><p>Wie Sie Flugreisen vermeiden können</p><p><ul><li>Nutzen Sie Alternativen zu Flugreisen: Andere Verkehrsmittel, nähere Urlaubsziele oder Videokonferenzen an Stelle von Dienstreisen.</li><li>Kompensieren Sie Ihre Flugreisen mittels Spenden an hochwertige Klimaschutzprojekte freiwillig, um die hohen Klimabelastungen durch Flugreisen auszugleichen.</li></ul></p><p>Gewusst wie</p><p>Fliegen ist die klimaschädlichste Art sich fortzubewegen. Ein Flug von Deutschland auf die Malediven und zurück verursacht zum Beispiel pro Person eine ⁠Klimawirkung⁠ von rund 2,8 Tonnen CO2-Äquivalenten. Mit einem Pkw können Sie mehr als 13.000 km und damit mehr als die durchschnittliche Jahresleistung eines Pkw in Deutschland fahren, bis Sie die Treibhausgaswirkung einer solchen Flugreise erreichen (bei einem Verbrauch von 7 l/100 km, siehe <a href="http://www.uba.co2-rechner.de/de_DE/">UBA-CO2-Rechner</a>).</p><p><strong>Alternativen nutzen: </strong>Weit entfernte Reiseziele lassen sich nur in Ausnahmefällen ohne Flugzeug erreichen. Innerhalb Deutschlands oder auch Europas gibt es aber häufig umweltfreundlichere Alternativen mit Bahn oder Bus (z.B. Schnellverbindungen oder Nachtzüge). Im Beruf können Sie mit Videokonferenzen in der Regel mehr Flugreisen überflüssig machen, als gemeinhin vermutet wird. Häufig sind bisherige Routinen oder fehlende technische Vertrautheit die Ursachen dafür, dass weiterhin das Flugzeug benutzt wird. Nicht zuletzt können auch die Reisewünsche selbst hinterfragt werden. Auch in Europa gibt es mehr spannende Sehenswürdigkeiten und Reiseziele, als wir in unserem Leben jemals entdecken können.</p><p><strong>Freiwillige </strong><strong>Kompensation:</strong>&nbsp;Es gibt verschiedene Anbieter für sogenannte CO2-Kompensationsdienstleistungen. Dabei zahlt der Reisende einen zusätzlichen Betrag zum Flugticket und unterstützt damit konkrete Klimaschutzprojekte in Form eines Klimabeitrags. Achten Sie bei Ihrer Wahl darauf, dass die ⁠Klimawirkung⁠ realistisch berechnet und die Klimaschutzprojekte von hoher Qualität sind. Orientierung bietet der "Gold Standard" (siehe Abbildung). Es spricht natürlich nichts dagegen, Klimaschutzprojekte auch ohne Flugreisen finanziell zu unterstützen. Weitere Informationen erhalten Sie im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Umwelttipp <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/uebergreifende-tipps/kompensation-von-treibhausgasemissionen">Kompensation von Treibhausgasemissionen</a>.</p><p><strong>Was Sie noch tun können:</strong></p><p>Wie wirken sich Flugreisen auf das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ aus und welche Alternativen gibt es? Hier finden Sie ein <a href="https://www.umweltbundesamt.de/transkription-erklaerfilm-flugreisen-klimawirkung">Text-Transkript</a> des Videos im Sinne der Barrierefreiheit.</p><p>Hintergrund</p><p>Die Klimawirksamkeit von Flugreisen beruht nicht nur auf dem Ausstoß von CO2. Auch andere bei der Verbrennung von Kerosin entstehenden Substanzen wie Stickoxide, ⁠Aerosole⁠ und Wasserdampf tragen zur Erwärmung der Erdatmosphäre bei. Diese Stoffe wirken sich in typischen Reiseflughöhen von etwa 10 Kilometern stärker aus als am Boden und vergrößern den ⁠Treibhauseffekt⁠ entsprechend:</p><p>Der Luftverkehr belastet jedoch nicht nur das globale ⁠Klima⁠, er hat auch lokale Auswirkungen. So leiden fast 40 Prozent der deutschen Bevölkerung unter Fluglärm. Dauernder Fluglärm erhöht das Risiko für Herz-Kreislauf-Erkrankungen und Herzinfarkt. Bei Kindern im Umkreis von Flughäfen wurden Konzentrations- und Lernschwierigkeiten festgestellt. Auch verschlechtert sich die lokale Luftqualität durch den Ausstoß von z.B. Stickoxiden. Weitere Umweltbelastungen ergeben sich durch den Flächenverbrauch beim Bau und Betrieb von Flughäfen.</p><p>Weitere Informationen finden Sie unter folgenden Links:</p><p>Bezugsjahr 2023</p><p>Bezugsjahr 2023</p>

1 2 3 4 5107 108 109