Das Projekt "Modeling of Nanofibers and Submicron Filtration Phenomena" wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Mechanische Verfahrenstechnik.Air filters in stationary building ventilation systems guarantee the protection of people as well as sensitive technical components from harmful contaminants, from ultra-fine particles to viruses and germs. At the heart of such filter systems are highly efficient filter media with corresponding particle separation performance, which can be achieved in particular by using ultra-fine synthetic, glass or nanofibers. Against the background of rising energy costs and the need for global CO2 reduction, the energy consumption of air filters is increasingly coming into focus. In order to reduce this, modern air filter media are required to have high separation efficiency and the lowest possible pressure drop. Simulation is a valuable tool in the development of filter media for specific applications. By predicting the performance of a filter medium, its microstructure can be optimized to meet specific requirements. However, this requires a correct representation of the effects occurring in this process in order to guarantee the validity of the predicted material properties. In particular, no application-oriented model approaches currently exist for the processes involved in the deposition of ultra-fine particles on ultra-fine fibers. The aim of this project is to improve the simulation models established in virtual filter media development and to extend them with regard to the consideration of submicron fibers (nanofibers). For this purpose, suitable submodels will be developed and integrated into an overall simulation model in order to take into account, in particular, the effects that have been neglected so far. The improved model will first be extensively validated. Finally, its applicability will be demonstrated by the first simulation-driven prediction of an optimized nanofiber-coated air filter medium, which will then be manufactured and tested for its performance.
Das Projekt "Modeling of Nanofibers and Submicron Filtration Phenomena, Optimierung der Abscheide- und Energieeffizienz innovativer Luftfiltermedien im Mikron- und Submikron-Bereich durch verbesserte Modellansätze" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Mann + Hummel GmbH.Luftfilter in stationären Gebäudebelüftungsanlagen dienen dem Schutz von Personen sowie sensibler technischer Komponenten vor schädlichen Verunreinigungen, von Feinstpartikeln bis hin zu Viren und Keimen. Herzstück solcher Filtersysteme sind hocheffiziente Filtermedien mit entsprechender Partikelabscheideleistung, die insbesondere durch den Einsatz feinster Synthetik-, Glas- oder Nanofasern realisiert werden können. Vor dem Hintergrund steigender Energiekosten und der Notwendigkeit der weltweiten CO2-Reduktion rückt der Energieverbrauch von Luftfiltern zunehmend in den Fokus. Um diesen zu senken, wird für moderne Luftfiltermedien neben hoher Abscheideleistung ein möglichst geringer Druckverlust gefordert. In der Entwicklung von Filtermedien für spezifische Anwendungen stellt die Simulation ein wertvolles Werkzeug dar. Durch Vorhersage der Leistung eines Filtermediums kann dessen Mikrostruktur zielgerichtet zur Erfüllung bestimmter Anforderungen optimiert werden. Dies setzt jedoch eine korrekte Abbildung der hierbei auftretenden Effekte voraus, um die Validität der vorhergesagten Materialeigenschaften zu garantieren. Insbesondere für die Vorgänge bei der Abscheidung von Feinstpartikeln an feinsten Fasern existieren derzeit noch keine anwendungsgerechten Modellansätze. Ziel dieses Projektes ist es, die in der virtuellen Filtermedienentwicklung etablierten Simulationsmodelle zu verbessern und im Hinblick auf die Berücksichtigung submikroner Fasern (Nanofasern) zu erweitern. Hierzu werden geeignete Submodelle entwickelt und in ein Gesamtsimulationsmodell integriert, um insbesondere die bisher vernachlässigten Effekte zu berücksichtigen. Das verbesserte Modell wird zunächst umfangreich validiert werden. Abschließend wird seine Anwendungstauglichkeit durch die erstmalige simulationsgetriebene Vorhersage eines optimierten, mit Nanofaserbeschichtung versehenen Luftfiltermediums demonstriert, welches dann hergestellt und auf seine Leistungsfähigkeit überprüft wird.
Das Projekt "Modeling of Nanofibers and Submicron Filtration Phenomena, Optimierung der Abscheide- und Energieeffizienz innovativer Luftfiltermedien im Mikron- und Submikron-Bereich durch verbesserte Modellansätze" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Mechanische Verfahrenstechnik.Luftfilter in stationären Gebäudebelüftungsanlagen garantieren den Schutz von Personen sowie sensibler technischer Komponenten vor schädlichen Verunreinigungen, von Feinstpartikeln bis hin zu Viren und Keimen. Herzstück solcher Filtersysteme sind hocheffiziente Filtermedien mit entsprechender Partikelabscheideleistung, die insbesondere durch den Einsatz feinster Synthetik-, Glas- oder Nanofasern realisiert werden können. Vor dem Hintergrund steigender Energiekosten und der Notwendigkeit der weltweiten CO2-Reduktion rückt der Energieverbrauch von Luftfiltern zunehmend in den Fokus. Um diesen zu senken wird für moderne Luftfiltermedien neben hoher Abscheideleistung ein möglichst geringer Druckverlust gefordert. In der Entwicklung von Filtermedien für spezifische Anwendungen stellt die Simulation ein wertvolles Werkzeug dar. Durch Vorhersage der Leistung eines Filtermediums kann dessen Mikrostruktur zielgerichtet zur Erfüllung bestimmter Anforderungen optimiert werden. Dies setzt jedoch eine korrekte Abbildung der hierbei auftretenden Effekte voraus, um die Validität der vorhergesagten Materialeigenschaften zu garantieren. Insbesondere für die Vorgänge bei der Abscheidung von Feinstpartikeln an feinsten Fasern existieren derzeit noch keine anwendungsgerechten Modellansätze. Ziel dieses Projektes ist es, die in der virtuellen Filtermedienentwicklung etablierten Simulationsmodelle zu verbessern und im Hinblick auf die Berücksichtigung submikroner Fasern (Nanofasern) zu erweitern. Hierzu werden geeignete Submodelle entwickelt und in ein Gesamtsimulationsmodell integriert, um insbesondere die bisher vernachlässigten Effekte zu berücksichtigen. Das verbesserte Modell wird zunächst umfangreich validiert werden. Abschließend wird seine Anwendungstauglichkeit durch die erstmalige simulationsgetriebene Vorhersage eines optimierten, mit Nanofaserbeschichtung versehenen Luftfiltermediums demonstriert, welches dann hergestellt und auf seine Leistungsfähigkeit überprüft wird.
Das Projekt "Fluorfreie Membran-Elektroden-Einheiten mit hoher Effizienz, geringerem Gasübertritt und langer Lebensdauer zur nachhaltigen Erzeugung von Wasserstoff, Teilvorhaben: Entwicklung einer Nanofaserverstärkung und elektrochemische Charakterisierung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Professur für Anwendungsentwicklung.
Das Projekt "Aero: Entwicklung von kleinskaligen, geräuschoptimierten Seitenkanalgebläsen/-verdichtern und hybriden Abscheidesystemen zur Reduktion von Ölaerosolen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Mechanische Verfahrenstechnik.
Das Projekt "Aero: Entwicklung von kleinskaligen, geräuschoptimierten Seitenkanalgebläsen/-verdichtern und hybriden Abscheidesystemen zur Reduktion von Ölaerosolen, TV: Modellentwicklung und experimentelle Untersuchungen zur Leistungsvorhersage von kleinskaligen Seitenkanalmaschinen und Abscheideelemente" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Mechanische Verfahrenstechnik.
Das Projekt "Aero: Entwicklung von kleinskaligen, geräuschoptimierten Seitenkanalgebläsen/-verdichtern und hybriden Abscheidesystemen zur Reduktion von Ölaerosolen, TV: Herstellung und Optimierung kleinskaliger Abscheideelemente und systematische Untersuchungen zur Leistung und Optimierung aktiver Abscheidesyste" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Elsässer Filtertechnik GmbH.
Und die Nominierten sind… Bei diesem Satzanfang denken viele Menschen vermutlich zunächst an die jährliche „Oscar“-Verleihung in Los Angeles. Doch auch in Sachsen-Anhalt kommt die legendäre Einleitung regelmäßig zum Einsatz: Dann geht es zwar nicht um den wichtigsten Filmpreis der Welt, aber immerhin um den höchstdotierten Innovationspreis des Landes – den „HUGO-JUNKERS-PREIS für Forschung und Innovation aus Sachsen-Anhalt“. Er wird seit 1998 vom Land ausgelobt, aktuell alle zwei Jahre vergeben und ist mit 80.000 Euro dotiert. 19 Nominierte in vier Kategorien hat die hochkarätige Jury um die Vorsitzende Prof. Dr. Julia Arlinghaus, Leiterin des Fraunhofer-Instituts für Fabrikbetrieb und -automatisierung IFF Magdeburg, in dieser Woche aus insgesamt 60 Bewerbungen ausgewählt. Entscheidend dafür war neben dem hohen Innovationsgrad auch der gesellschaftliche Nutzen. Arlinghaus: „Wir haben in diesem Jahr ganz intensiv darüber diskutiert, dass wir Innovationen auszeichnen wollen, die auch eine ökologische und soziale Relevanz haben.“ Die 19 Nominierten können ihre Ideen Ende April in der Leopoldina in Halle (Saale) persönlich der Jury präsentieren. Im Anschluss werden die Finalisten ausgewählt; die Siegerinnen und Sieger des HUGO-JUNKERS-PREISES erhalten ihre Auszeichnung am 7. Juni 2023 durch Wissenschaftsminister Prof. Dr. Armin Willingmann im Schloss Köthen. Er sagt: „Ich freue mich schon sehr darauf, die Möglichmacher und Visionäre kennenzulernen, die in die Fußstapfen des Dessauer Flugzeugpioniers Hugo Junkers treten wollen.“ Und die Nominierten sind: Kategorie „Innovativste Vorhaben der Grundlagenforschung“ • „Hydrogelformende Nanofasern – eine neue Option für die Arzneimitteltherapie am Auge“; Martin-Luther-Universität Halle-Wittenberg • „Tragbarer Insektenschutz: 3D-gedruckt und umweltfreundlich“; Martin-Luther-Universität Halle-Wittenberg • „Neuartige biokompatible Ta-Nb-Ti Multikomponentenlegierung mit antibakteriellen Eigenschaften für den Einsatz in biomedizinischen Anwendungen“; Otto-von-Guericke-Universität Magdeburg • „Endogene Retroviren als Zielstrukturen für neue Therapien gegen neurologische Erkrankungen“; Universitätsklinik und Poliklinik für Neurologie der Martin-Luther-Universität Halle-Wittenberg / Fraunhofer Institut für Zelltherapie und Immunologie • „Einfache und skalierbare Synthese von pflanzenbasiertem Cholesterol in GMP-Qualität“; Otto-von-Guericke-Universität Magdeburg Kategorie „Innovativste Projekte der angewandten Forschung“ • „Inline-Detektion des Abbaus von Polyesterimiden in Elektromotoren“; Martin-Luther-Universität Halle-Wittenberg • “µRIGS – Micropositioning Robotics for Image-Guided Surgery”; Otto-von-Guericke-Universität Magdeburg, Forschungscampus STIMULATE • „Pro-Kran-Assist: Intelligenter Prozessbeobachter für die Kranautomatisierung“; Kranbau Köthen GmbH / Fraunhofer IFF Magdeburg • „In-Situ Electrical Analyser – Hochauflösendes Analysetool für Halbleitertechnologien“; point electronic GmbH • „Entwicklung einer schnellen Mikroprüfmethode für Elektronikbaugruppen – MINITEL“; ECH Elektrochemie Halle GmbH / Fraunhofer IMWS Halle (Saale) Kategorie „Innovativste Produkte, Dienstleistungen und Geschäftsmodelle“ • „Maximale Haltbarkeit und Natürlichkeit für aromatisiertes Wasser“; DIE FRISCHEMANUFAKTUR GmbH • „Neuartige Säureträger in der Futtermittelindustrie“; SAMPOCHEM GmbH • „Der digitale Studierendenausweis“; UniNow GmbH • „Raydio – Barrieren mittels Audio verringern“; mycrocast GmbH Sonderpreis „Innovativste Projekte aus dem Bereich Energie- und Umweltforschung“ • „Recyclingverfahren für kristalline Solarmodule“; SOLAR MATERIALS GmbH • „Recycling von Windradflügeln / glasfaserverstärktem Kunststoff“; Deutsche Vacuumtrockner GmbH • „LECO – hochdurchsatzfähiges Equipment zur Effizienzsteigerung von Solarzellen“; CE Cell Engineering GmbH • „Nanolope Pufferspeicher zur Speicherung von überschüssiger Wärme“; Martin-Luther-Universität Halle-Wittenberg / Institut für Chemie • „Zweiseitiges Fassadenelement zur Filterung verschmutzter Luft“; Moosaik UG Für Updates und Blicke hinter die Kulissen des Wettbewerbs folgen Sie einfach der neuen Fokusseite auf LinkedIn: https://www.linkedin.com/showcase/hugo-junkers-preis-für-forschung-und-innovation. Redaktioneller Hinweis: Wenn Sie anlässlich des Wettbewerbs über die bemerkenswerten Ideen aus der Region berichten möchten, stellen wir gern Kontakt zu den Nominierten her. Pressekontakt: Investitions- und Marketinggesellschaft Sachsen-Anhalt mbH, Nicole Krüger, Projektmanagerin Marketing, Kultur/Kreativwirtschaft Tel.: +49 391 568 9914 Mail: nicole.krueger@img-sachsen-anhalt.de Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook, Instagram, LinkedIn, Mastodon und Twitter.
Das Projekt "Innovatives Super-Batterie System auf Basis von Li-MOFs Nanohybride Elektroden, Teilvorhaben: Energiespeichermechanismus" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Angewandte Materialien (IAM) - Energiespeichersysteme.
Das Projekt "Pinguinfasern als Vorbild für neuartige Filtermedien zur Filterung von Aerosolen und Mikroplastik, Teilvorhaben: Herstellung und Prüfung von Filtermaterialien nach dem Pinguin-Prinzip" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: BinNova Microfiltration GmbH.
Origin | Count |
---|---|
Bund | 58 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 57 |
Text | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 57 |
Language | Count |
---|---|
Deutsch | 54 |
Englisch | 12 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 35 |
Webseite | 23 |
Topic | Count |
---|---|
Boden | 45 |
Lebewesen & Lebensräume | 48 |
Luft | 35 |
Mensch & Umwelt | 59 |
Wasser | 34 |
Weitere | 59 |