Die rasante Urbanisierung und Industrialisierung in den vergangenen Jahrzehnten hat zu einer Vielzahl von Umweltkontaminationen mit halogenierten organischen Verbindungen (HOCs) sowohl in China als auch Europa geführt. Ziel des vorgeschlagenen Projektes ist es, neue Erkenntnisse und ein vertieftes Prozessverständnis für die Synthese von biobasierten nFe(0)/Pd/C-Kompositen und deren Reaktionen mit HOCs in der Grundwasserreinigung zu gewinnen. Dies beinhaltet die Identifizierung von Synthese-optionen für Partikel mit maßgeschneiderten und verbesserten Eigenschaften mithilfe der Hydrothermalen Karbonisierung (HTC). Ein tiefgreifendes mechanistisches Verständnis der beteiligten Prozesse, d.h. Sorption, Reaktion und Transport reaktiver Spezies so-wie Katalyse sowie deren Synergien dient einer zielgerichteten Optimierung der Partikel und der Erkundung ihrer Anwendungsgebiete. Die nFe(0)/Pd/C-Komposite sollen speziell für die in-situ Grundwasserreinigung geeignet sein und verbesserte Eigenschaften insbesondere für solche Anwendungsfälle besitzen, bei denen bekannte Konzepte der in-situ-Sanierung mit Nanopartikeln (Nanoremediation) nicht greifen. Die synergistische Kombination verschiedener Wirkprinzipien erlaubt Multikatalyse-Prozesse sowie die sequentielle Behandlung von verschiedenen Kontaminanten. Zunächst werden verschiedene Optionen für die Einbettung von Metallen in oder auf die Kohlepartikel untersucht, die erhaltenen Produkte detailliert durch physikalisch-chemische Methoden charakterisiert und auf ihre Reaktivität getestet. Danach werden Reaktionen in Batch-Ansätzen für die Aufklärung der zugrundeliegenden Mechanismen, wie das Zusammenspiel von Pd, Kohleoberfläche und Fe-Spezies, der beteiligten Reaktionswege und reaktiven Spezies, durchgeführt. Weiterhin werden Optionen für Multikatalyse und sequentielle Reduktions-/Oxidationsprozesse untersucht. Abschließend werden die entwickelten Materialien und Prozesse im Labor für die Behandlung von Wasser von kontaminierten Standorten in Deutschland und China erprobt. Dieses kooperative Forschungsvorhaben von chinesischen und deutschen Partnern wird zu einem signifikanten Fortschritt in der Sanierungsforschung für industriell kontaminierte Standorte, insbesondere auch in China, führen.
Bakterielle Sensoren mit genetisch programmierten Schaltkreisen erkennen Umweltschadstoffe wie Antibiotika mit hoher Selektivität und Sensitivität. Sie eignen sich für die effiziente Überwachung großer Flächen oder abgeschiedener Gebiete, weil die Bakterien keine elektrischen Energiequellen oder Wartung benötigen und ein einfacher Biofilm alle Elemente zur Detektion enthält. Diese hochattraktiven, nachwachsenden Sensoren werden heute oft deshalb nicht genutzt, weil die Auswertung bakterieller Sensor-Antworten aufwändige Infrastruktur erfordert, die im Feld nicht verfügbar ist. Andererseits wurden in den letzten Jahren hybride Sensor-Materialien für die Umweltanalytik auf Basis von Nanoplasmonik und Photolumineszenz (PL) entwickelt. Ihre optischen Eigenschaften hängen von der Konzentration bestimmter Analyten ab. Sie lassen sich effizient mit Laserdioden anregen und mit einfachen CCD-Kameras auswerten. Sensor-Materialien auf Basis anorganischer Materialien und Polymere sind robust und können z.B. von Drohnen ausgelesen werden. Sie reagieren aber weniger spezifisch und empfindlich als etablierte elektrochemische oder chromatographische Verfahren, was ihre Einsatzbereiche beschränkt. In diesem Projekt verbinden wir bakterielle Sensorik mit Plasmonenresonanz und Photonen-Hochkonversion in lebendigen Sensor-Materialien (ELM). Wir koppeln die Empfindlichkeit und Spezifizität der Bakterien mit der Robustheit und Intensität optisch aktiver Partikel. Zentrales Bindeglied ist das Enzym Goldreduktase GoIR, das vor kurzen erstmals in Bakterien beschrieben wurde. In dem Projekt stellen wir E. coli-Zellen her, die nur dann GoIR bilden, wenn die Bakterien Schadstoffe wie Tetrazykline oder Arsen detektieren. Ein Biofilm dieser Bakterien wird dann in einem Mehrschicht-ELM integriert. Wenn der Analyt den Biofilm erreicht, reduziert GoIR einen Gold-Komplex und bildet Nanopartikel mit starker Oberflächenplasmonenresonanz im Bakterium. Durch gezielt eingestellte Entmischung und Agglomeration der Partikel erreichen wir die Bildung resonanter plasmonischer Überstrukturen, welche die optische Dichte des bakteriellen Mikrofilms drastisch erhöhen. Damit wird die Emission eines photolumineszenten Films beim Auslesen moduliert und ein starkes PL-Signal erzeugt, das von der Konzentration des detektierten Analyten abhängt. Durch ratiometrische Auswertung der Emission bei zwei Wellenlängen können wir so die Gegenwart des Analyten schnell und aus Entfernung ermitteln. Der im Projekt verfolgte Ansatz ist modular, weil die für die Detektion verantwortlichen genetischen Schaltkreise unabhängig vom optischen System ausgetauscht werden können. Die Ergebnisse schaffen nicht nur einen Hybrid aus Bio- und plasmonischem Sensor. Sie lassen sich in anderen Projekten des SPP einsetzen, um den Zustand anderer ELM anzuzeigen.
Die Abwasserreinigung steht mit der Entfernung von organischen Spurenschadstoffen und kleinsten Partikeln (Mikroplastik, Nanopartikel) sowie dem Paradigmenwechsel von der Abwasserentsorgung zur Ressourceneffizienz (Minimierung des Chemikalien- und Energieeinsatzes) und Ressourcenrückgewinnung (z.B. von Wasser, Kohlenstoff und Nährstoffen) vor enormen Herausforderungen. Dies bedarf der Erforschung des Stoffverhaltens und der Prozesse im Abwassersystem, der Entwicklung von Verfahrenstechniken und der Abstimmung der vielfältigen Verfahren (mit teilweise sehr unterschiedlichen Anforderungen an die Prozessbedingungen) aufeinander. Dies ist weder nur im Labor, wo die Randbedingungen weit von der Realität entfernt sind, noch in der Großtechnik leistbar, da bei Versuchen im laufenden Betrieb die Gefahr unvorhergesehener Gewässerverschmutzungen besteht und die Versuchsbedingungen nicht definiert werden können. Zur Lösung der angesprochenen Probleme bedarf es eines Zwischenschrittes: durch den Einsatz einer mobilen Versuchskläranlage können Prozessbedingungen im realitätsnahen System auf verschiedenen Kläranlagen gezielt gewählt, Verfahrensschritte entwickelt und bei gleichen Randbedingungen miteinander verglichen und optimiert werden. Weiterhin können Prozessketten aufeinander abgestimmt und Wechselwirkungen untersucht werden. Daraus können Kennwerte abgeleitet, Steuerungs- und Regelungsstrategien entwickelt und erprobt werden, um so Grundlagen für die Umsetzung im großtechnischen Betrieb zu schaffen.
When released into surface waters, engineered inorganic nanoparticles (EINP) can be subject to multiple transformations. The objectives of MASK are to understand under which conditions EINP in aquatic systems will attach to suspended matter, under which conditions and in which time scale EINP are coated by NOM present in freshwater systems, how these coated colloidal particles are stabilized in the aquatic system and to which extent the aquatic aging processes are reversible. Homo-aggregation, coating changes, biological interactions and hetero-aggregation are hypothesized as key processes governing EINP aging in water bodies. In process orientated laboratory incubation experiments (50 ml to 6 l) with increasing complexity, MASK unravels the relevance and the interplay of inorganic colloids, aquagenic and pedogenic organic matter and solution physicochemistry for stability of EINP. These systems will successively approach situations in real waters. MASK thus provides information on EINP fluxes in the aquatic compartment, their time scales, reversibility and relative relevance. EINP will be analysed by standard light scattering techniques, ICP-MS, ESEM/EDX, WetSTEM and AFM. A method coupling hydrodynamic radius chromatography (HDC) with ICPMS recently developed by K. Tiede for nAg0 will be optimized and developed for further EINP analysis, MASK is further responsible for the virtual subproject ANALYSIS, the development and optimization of joint research unit methods of EINP analysis, sample preparation and sample storage, the exchange of methods and coordinates the joint analyses and the central EINP database.
Unter Verwendung von ionischen Flüssigkeiten wurde in den vergangenen Jahren eine Vielfalt an neuartigen Synthesen von kristallinen und anorganischen Materialen entwickelt. Trotz vorteilhafter Eigenschaften und Synthese-Bedingungen gegenüber konventionellen Methoden mangelt es stark am mechanistischen Verständnis, besonders was die dirigierende Rolle der ionischen Flüssigkeiten angeht. Wir setzen uns hier zum Ziel, die Synthese von mehreren ungewöhnlichen Modifikationen des TiO2, nämlich der Bronze-Phase TiO2(B) und einem jüngst synthetisierten Titanoxyhydroxy-Fluorid, aufzuklären. Beide werden unter erstaunlich milden Bedingungen aus einer Mischung von einfachen ionischen Flüssigkeiten mit Wasser und TiCl4 erhalten. Unsere bisherigen Experimente zeigten bereits den prägenden Einfluss von ionischen Flüssigkeiten, welche Fluor-Atome im Anion enthalten, und von Mischungen zweier Kationen mit jeweils Seitenketten von unterschiedlicher Länge. Die wesentliche Aufgabenstellung unseres Projektes besteht nun darin, mechanistische Zusammenhänge zu klären, und zwar sowohl zwischen der molekularen Struktur der Reaktionslösung und der Bildung von Fluorohydroxotitan-Komplexen als auch der Bildung von Clustern. Darüber hinaus möchten wir die Entstehung von Primär- und Nanopartikeln verstehen. Unser Ansatz liegt in der Variation von ionischen Flüssigkeiten (z. B. Ersatz von (BF4)- durch (F)-) und in der Verwendung alternativer Ti-Verbindungen wie (NH4)(TiF6). Einerseits sollen in-situ-Methoden (Raman-Spektroskopie, Röntgenweit- und Kleinwinkelstreuung) dabei helfen, die relevanten Zwischenstufen auf molekularer Ebene und Nanometer-Skala zu identifizieren, andererseits stärkt die Berechnung der molekularen Bildungsmechanismen und des Wachstums von Clustern aus Komplexen das mechanistische Verständnis. Zu diesem Zweck werden neue Wechselwirkungspotentiale parametrisiert, aber auch solche Simulationen durchgeführt, die mit expliziter elektronischer Struktur-Berechnung arbeiten. Es werden dabei Computer-Experimente aufgesetzt, die dem Experiment nicht zugängliche Einsichten erlauben, zum Beispiel zum Einfluss von lokaler Polarität, spezifischen Wechselwirkungen oder gewissen Zwischenstufen.
So far, there is little knowledge on the fate of nanoparticles and nanoparticle-associated pollutants in soils. From the state of the art we presume nanoparticle aging in soils to change their surface characteristics, their sorption capacity and mobility. However, the processes controlling nanoparticles aging in soils are hardly investigated. We hypothesize that engineered inorganic nanoparticles (EINP) in soil undergo pedogenic processes such as chemical weathering, accumulation of organic matter and aggregation and that these processes govern both, the mobility of EINP and their sorption capacity for contaminants. Thereby we will mainly address the two key hypothesis of INTERNANO that (i) nanoparticle aging involves reversible and irreversible changes and (ii) that nanoparticle mobility and their interactions with pollutants are determined by environmental conditions rather than by original surface characteristics. We will expose nanoparticle to soils and soil suspensions under various, defined conditions. At the end of the respective incubation time we will study the change in surface properties, aggregation state and contaminant sorption onto nanoparticles, using methods, which are suitable for nano-scale analyses (light scattering, HR TEM, XANES). Size effects on aging will be analysed exemplarily for TiO2 EINPs. The derived process knowledge will help to evaluate the environmental significance of nanoparticles in soils and serve as a basis to predict risks associated with nanoparticle leaching from soils.
Ultrafeine Partikel haben in den letzten Jahren zunehmend an Bedeutung gewonnen. Diese sogenannten Nanopartikel sind vielfaeltig anwendbar, wie z.B. als Ausgangsmaterialien fuer hochfeste Werkstoffe, in Gassensoren, als Katalysatoren, in Arzneimitteln und in Testaerosolen fuer die Heissgasentstaubung. Es wurde eine Anlage zur Nanopartikelerzeugung durch Laserverdampfung entwickelt. Zur Herstellung wird Aluminiumoxidkeramik, Graphit, Kupfer oder Aluminium mit einem C02-Laser verdampft. Aus der Kondensation entstehen kugelfoermige Primaerpartikel in einem Groessenbereich zwischen 10 und 500 Nanometern. Nach der Erstarrung koennen die Partikel durch Agglomeration unregelmassig geformte Ketten oder Flocken bilden. Deshalb wird das Aerosol so weit verduennt, dass Kollisionen der Partikel unwahrscheinlich werden und damit die Agglomerationswahrscheinlichkeit stark reduziert wird. Das zu verdampfende Material, in Form eines runden Targets, ist unter einen Drehteller montiert, der in Rotation versetzt und gleichzeitig horizontal verschoben wird. Der Laserstrahl wird von unten auf das Target fokussiert und hinterlasst durch die Targetbewegung eine spiralfoermige Bahn auf der Materialoberflaeche. Das Material verdampft lokal im Laserfokus. Der Dampf wird durch radial zustroemendes Argon in einen Sinterkegel unterhalb des Targets transportiert, wo in der heissen Zone die Kondensation und Koagulation stattfindet. In diesem Bereich bleiben die Partikel durch Absorption der Laserstrahlung fluessig, unterhalb der heissen Zone erstarren sie. Durch die Volumenaufweitung des Kegels nach unten und das seitliche Zustroemen von Argon nimmt die Partikelkonzentration von oben nach unten stark ab. Die Partikel werden auf einer Filtermembran abgeschieden und mit einem Rasterelektronenmikroskop auf Groesse, Form und Agglomerationsgrad untersucht. Neben dem Ziel der Nanopartikelerzeugung werden die zugrundeliegenden Prozesse Verdampfung, Kondensation und Koagulation sowohl experimentell als auch theoretisch detailliert untersucht.
| Origin | Count |
|---|---|
| Bund | 850 |
| Land | 10 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Chemische Verbindung | 3 |
| Förderprogramm | 809 |
| Gesetzestext | 3 |
| Text | 26 |
| unbekannt | 25 |
| License | Count |
|---|---|
| geschlossen | 52 |
| offen | 811 |
| Language | Count |
|---|---|
| Deutsch | 717 |
| Englisch | 256 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Dokument | 18 |
| Keine | 326 |
| Webseite | 525 |
| Topic | Count |
|---|---|
| Boden | 514 |
| Lebewesen und Lebensräume | 592 |
| Luft | 863 |
| Mensch und Umwelt | 860 |
| Wasser | 469 |
| Weitere | 863 |