Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Aufnahme, Translokation, und Schicksal von NM'n in biologischer Umgebung sollen auf der Ebene von Zellen, Geweben und Organen in Abhängigkeit von den physikochemischen Eigenschaften ihrer Oberfläche untersucht und mit der NM-induzierten physiologischen Antwort korreliert werden. Der Weg der NM'n deren Aggregation, Abbau, die Wechselwirkung mit Biomolekülen, die Ausbildung einer Korona aus Biomolekülen und deren Dynamik sollen sowohl extrazellulär als auch innerhalb der Zelle in vivo und ex vivo untersucht werden. Im Rahmen des Vorhabens werden NM'n verschiedener Natur hergestellt. Ihre Oberfläche wird vielfältig modifiziert und methodenangepasst markiert, um Mechanismen der Nanotoxizität auf Basis der Eigenschaften der Nanomaterialien aufzuklären. Translokation und Schicksal der NM'n in vitro und in vivo werden ihren Eigenschaften und ihrer Wechselwirkung mit Biomolekülen in extra- und intrazellulärer Umgebung zugeordnet. Diese Korrelation wird in Bezug auf die biologische Wirkung interpretiert und mittels in silico Methoden modelliert. Die einzigartige Kombination moderner raum- und zeitaufgelöster bildgebender und dosimetrischer Verfahren eröffnet neue Möglichkeiten, die Translokation und das Schicksal von chemisch unterschiedlichen NM'n, wie Metallen, Metalloxiden, polymeren Partikeln, Graphene und Hybrid NM'n mit gezielt veränderten Oberflächeneigenschaften auf Organismus-, Gewebe- und Zellebene nachzuverfolgen sowie auch die Organbeladung und intrazelluläre Konzentration der Nanopartikeln in vitro und in vivo zu quantifizieren. Zu den Verfahren, die im Rahmen des Vorhabens angewendet werden, gehören: Mikro RBS, Mikro PIXE, Mikro STIM und CRM/Mikro SERS in Deutschland sowie PET, SPET, CT und MRI in Spanien. Die gewonnenen Ergebnisse aus den in in silico, in vitro und in vivo Untersuchungen werden genutzt, um aus den Eigenschaften der Partikel prädiktiv deren toxisches Potential ableiten zu können und Strategien für ein sicheres Design von NM'n zu entwickeln.
Durch die steigende Nachfrage nach modernen Kunststoffwerkstoffen mit besonderen Eigenschaften werden heute immer häufiger Nanopartikel eingearbeitet. So können diese als Nanocomposite bezeichneten Materialien mit Eigenschaften wie beispielsweise einer speziellen Farbe, einer hohen Festigkeit oder einer antibakteriellen Wirkung ausgestattet werden. Beim Recycling dieser Kunststoffe werden diese in einem ersten Schritt zerkleinert, wobei häufig sehr feine Kunststoff-Stäube entstehen. Diese Stäube bestehen aus kleinen Kunststoffteilchen von wenigen Mikrometern, deren Größe vergleichbar mit menschlichen Zellen ist. Die kleinen Kunststoff-Teilchen können an den Bruchstellen die eingearbeiteten Nanopartikel zeigen. Daher stellt sich die Frage, welche Auswirkungen die exponierten Nanopartikel auf Mensch und Umwelt haben. Das Projekt ProCycle untersucht eine mögliche Schadwirkung von frei zugänglichen Nanopartikeln an den erzeugten Bruchstellen des Kunststoffes auf menschliche und tierische Zellen und stellt sich demnach die Frage, ob von diesen Stäuben besondere Gefahren beispielsweise beim Einatmen ausgehen. Dazu wird der Zerkleinerungsschritt, der vor jedem Recycling von derartigen Kunststoffen steht, nachgebildet und die entstehenden feinen Stäube charakterisiert. Für die Bewertung der Auswirkungen solcher Stäube auf menschliche Zellen wird in dem Projekt ein besonderes Verfahren entwickelt, um Effekte auf die menschliche Lungengewebe zu simulieren. Dazu wird eine Technik eingesetzt, mit der menschliche Zellen und Gewebe wie in der Lunge mit staubbelasteter Luft angeströmt werden können. Danach werden mögliche toxische und entzündliche Reaktionen auf den menschlichen Körper durch Experimente und Messverfahren erforscht. Ferner werden Auswirkungen auf die Genomstabilität untersucht; Veränderungen gelten als ein Indiz für die mögliche Entstehung von Krebs. Um die Auswirkung dieser Staubteilchen auf die Umwelt beurteilen zu können, werden diese mit im Wasser lebenden Mikroorganismen, die am Anfang der Nahrungskette der im Wasser lebenden Tiere stehen, untersucht. Auch hierfür werden spezielle Verfahren entwickelt, um die Aufnahme und Auswirkung dieser Staubteilchen auf wässrige Ökosysteme beurteilen zu können. Im Anschluss an die Untersuchungen werden Empfehlungen und Messmethoden stehen, die eine Einordnung von Nanocompositen bezüglich ihrer Wirkung auf Mensch und Umwelt ermöglichen und bei zukünftig nötigen Zulassungsverfahren solcher Werkstoffe eine zuverlässige Einstufung hinsichtlich ihres Gefahrenpotenzials auf Mensch und Umwelt speziell beim Recycling treffen zu können. Dies kann bereits bei der Entwicklung und Herstellung dieser Werkstoffe einen wichtigen Beitrag zur Gefährdungsminimierung leisten.
Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Nanomaterialien haben im Vergleich zu denselben Materialien ohne Eigenschaften im Nanobereich einzigartige Eigenschaften. Daher können sich die physikalisch-chemischen, toxikologischen und ökotoxikologischen Eigenschaften von Nanomaterialien von den Eigenschaften derselben Stoffe in Bulkform oder von grösseren Partikeln wesentlich unterscheiden. Als Folge der unterschiedlichen intrinsischen Eigenschaften können sich Nanomaterialien auch in der Umwelt anders verhalten als Stoffe in Bulkform oder grössere Partikel. Mit den Forschungsarbeiten in diesem Projekt sollen Kenntnislücken über spezifische Eigenschaften von synthetischen Nanomaterialien sowie des Umweltverhaltens geschlossen werden. Projektziele: Kenntnislücken über physikalisch-chemische und ökotoxikologische Eigenschaften von synthetischen Nanomaterialien schliessen. Kenntnislücken über das Umweltverhalten von synthetischen Nanomaterialien schliessen.
Für eine angestrebte klinische Anwendung müssen Gefährdungspotentiale für die verwendeten Partikelsysteme evaluiert werden. Zunächst sollen Basisparameter der Partikel charakterisiert werden. Daran anschließend sollen zuerst Untersuchungen in-vitro und dann im Tiermodell durchgeführt werden, um Bioverteilung und Toxikologie der Partikel zu bestimmen.
Obwohl die Anwendungen und Produktionsmengen von Nanopartikeln stetig zunehmen, fehlen umfassende Grundlagen für die Abschätzung von Umweltrisiken. Im Rahmen des Projektes Nano-DESTINARA soll untersucht werden, inwiefern Kläranlagen als Eintragspfade von Nanopartikeln in Gewässer fungieren. Kenntnisse über die relevanten Stoffströme von Nanomaterialien in der kommunalen Abwasserreinigung sind als Basis für die Berechnung von PEC-Werten (predicted environmental concentration) im Rahmen eines Risk-Assessments für die aquatische Umwelt von zentraler Bedeutung. Um die Wissenslücke zum Verhalten von Nanopartikeln in der kommunalen Abwasserreinigung zu verringern, liegt das Ziel des vorliegenden Projektes in der Ermittlung der Auswirkungen ausgewählter Nanopartikel (Titandioxid, Silber, Cerdioxid und Fullerene) auf die Reinigungsleistung von kommunalen Kläranlagen. Dies umfasst sowohl die Bestimmung der akuten und chronischen Hemmwirkung auf die unterschiedlichen Bakterienbiozönosen von Kläranlagen als auch die Identifizierung relevanter Stoffströme. Ein weiteres Ziel liegt in der Grundlagenerarbeitung für Messkonzepte, sowohl für die Kläranlagen selbst als auch für den Austrag in unterschiedliche Umweltkompartimente (Wasser, Boden) und einer Expositionsabschätzung für die ausgewählten Nanopartikel in Österreich. Hinsichtlich der chemischen Analytik wird die Entwicklung einer Analysenmethode für Fullerene angestrebt. Zur Zielerreichung werden am Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft der Technischen Universität Wien, welches auf langjährige Erfahrungen auf dem Gebiet der biologischen Abwasserreinigung und Untersuchungen zum Verhalten von Spurenstoffen auf Kläranlagen verweisen kann, Versuche im Labormaßstab durchgeführt und zusätzlich repräsentative kommunale Kläranlagen beprobt. Die Analyse der eingesetzten Substanzen erfolgt durch die Umweltbundesamt GmbH, deren Kompetenz auf der Umwelt- und Spurenanalytik liegt. Um Aussagen über akute Hemmwirkungen von Nanopartikeln auf die Kläranlagenbiozönosen treffen zu können, werden Respirationsmessungen mit unterschiedlichen Testkonzentrationen und Belebtschlämmen kommunaler Kläranlagen durchgeführt. Für die Langzeitauswirkungen und das Verhalten in der Abwasserreinigung werden über mehrere Monate Modellkläranlagen mit und ohne Zudosierung der ausgewählten Nanopartikel betrieben, während die Adsorptionseigenschaften der untersuchten Belebtschlämme zusätzlich in Batchtests ermittelt wird. Die Bilanzierung der eingesetzten Nanopartikel erfolgt über die chemische Analytik in den einzelnen Matrizes der Laboranlagen, mit Hilfe von für CSB, Stickstoff und Phosphor evaluierten Massenbilanzen. Die so berechneten relevanten Stoffströme und -senken gehen in eine Expositionsabschätzung für Österreich ein und bilden die Grundlage für die Entwicklung von Messkonzepten für Kläranlagen selbst und für den Eintrag der untersuchten Nanopartikel in die unterschiedlichen Umweltkompartimente (Wa
Im Folgevorhaben soll der Einfluss von bei der Verbrennung von nachwachsenden Rohstoffen in Kleinfeuerungsanlagen entstehenden Feinstaubs bei dessen Inhalation untersucht werden. Der Hauptaspekt liegt auf dem Zusammenhang zwischen Brenngut (Stückholz/Holzpellets), chemischer Zusammensetzung des Staubs und dessen Toxizität unter Berücksichtigung des Betriebszustands. der Atemwege zurückgehalten zu werden, soll deren Wirkung auf humane Lungenepithelzellen untersucht werden. Hierzu wird ein Expositionssystem verwendet, welches als in-vitro-Modellsystem die Situation in den Alveolen nachbildet, indem es Zellkultursysteme an der Gas-Flüssigkeits-Grenze dem Abgas aussetzt. Das erste Projekt ergab die Notwendigkeit einer erhöhten Abscheiderate, um die Wirkung auf die biochemischen Reaktionen der Zellen im Vergleich zu unbegasten Zellen und Positivkontrollen (submers mit amorphem Kohlenstoff belastete Zellen) eindeutiger identifizieren zu können. Zur besseren Übertragbarkeit ins in-vivo-Modell soll in Erweiterung zum ersten Projekt zusätzlich zur A549 Zelllinie eine Zweite (z.B. NCI-H226, NCI-H460) zum Einsatz kommen. Für eine realitätsnahe Abbildung ist eine Ko-Kultur mit humanen Makrophagen eingeplant. Weiterhin soll untersucht werden, wo sich der Feinstaub nach der Exposition aus der Gasphase auf den Zellen anlagert und ob ein Durchdringen der Zellmembran möglich ist.
| Origin | Count |
|---|---|
| Bund | 38 |
| Type | Count |
|---|---|
| Förderprogramm | 38 |
| License | Count |
|---|---|
| offen | 38 |
| Language | Count |
|---|---|
| Deutsch | 20 |
| Englisch | 22 |
| Resource type | Count |
|---|---|
| Keine | 17 |
| Webseite | 21 |
| Topic | Count |
|---|---|
| Boden | 20 |
| Lebewesen und Lebensräume | 37 |
| Luft | 33 |
| Mensch und Umwelt | 38 |
| Wasser | 21 |
| Weitere | 38 |