A comprehensive global catalog of landslide-triggered tsunamis (LTT) was compiled by reviewing tsunami and earthquake databases, catalogs, and scientific literature. This dataset is designed to investigate the relationship between tsunami heights and the triggering landslides' characteristics, including 354 documented cases from 6200 BC to 2024. It provides detailed information on landslide characteristics, triggering and preparatory factors, type of waterbody, tsunami wave height, inundation distance, and associated effects.
Der Datensatz enthält die - Maximale Wasserstände der Jährlichkeit 100 in Herdern Nord, Herdern Glasbach, Hochdorf, Benzhausen - Maximale Fließgeschwindigkeiten der Jährlichkeit 100 in Herdern Nord, Herdern Glasbach, Hochdorf, Benzhausen Der Datensatz entstammt aus dem Projekt I4C, des Leistungszentrums Nachhaltigkeit, der Universität Freiburg und weiteren Projektpartnern und wird nicht regelmäßig aktualisiert. Es handelt sich um Ergebnisse eines Forschungsprojektes ohne rechtliche oder planerische Überprüfung. Die Berechnung der Daten erfolgte 2023 - eine Aktualisierung ist nicht geplant. Die Daten sind OpenData - Namensnennung: "Professur für Hydrologie, Universität Freiburg". Gebiets-Eingangsdaten (Rasterdaten in einer Auflösung von 2*2 m²): Digitales Geländemodell mit Gebäuden, Landnutzung, Versiegelungsgrad, Bodeneigenschaften (nFK, LK, PWP, ks), Leitfähigkeit Hydrogeologie, Mittlerer Grundwasserflurabstand, Gewässernetz. Ereignis-Gebiets-Eingangsdaten (Rasterdaten in einer Auflösung von 2*2 m²): Für die Szenarien: Bodenfeuchte für verschiedene Unterschreitungswahrscheinlichkeiten im Sommerhalbjahr, Anfangsbetonte Modell-Niederschlags-Summen verschiedener Jährlichkeiten und Dauerstufen. Für das Ereignis: Niederschlag vom 25.06.2016, Bodenfeuchte zu Beginn des Niederschlags vom 25.06.2016. Modellierung: Abflussbildung mit dem Modell RoGeR in 5-Minuten-Auflösung. Hydraulische Modellierung mit auf Basis der 5-Minuten-Oberfllächen-Abflüsse aus RoGeR mit den Modell Ro_Dyn. Ergebnisse (Rasterdaten in einer Auflösung von 2*2 m²): Für die Szenarien: Maximale zu erwartende Wasserstände und Fleißgeschwindigkeiten mit einem statistischen Wiederkehr-Intervall von 100 Jahren für jede2*2 m²-Rasterzelle. Für das Ereignis: Maximale für das Ereignis modellierten Wasserstände und Fleißgeschwindigkeiten für jede2*2 m²-Rasterzelle.
Umgrenzung der rechtsverbindlichen Überschwemmungsgebiete. Die damit verbundenen Einschränkungen in der Grundstücknutzung sind im Wasserhaushaltsgesetz geregelt (§ 78 WHG). Die Daten sind als Polygon erstellt.
Die Zukunft unserer Gesellschaft hängt von der Entwicklung der Weltmeere ab, da die Ozeane einen großen Einfluss auf das Klimageschehen haben, unverzichtbare Ressourcen, aber auch Gefahren bergen. Gleichzeitig werden die Ozeane durch die vom Menschen verursachte CO2-Freisetzung, die Fischerei und andere menschliche Aktivitäten zunehmend verändert. In dem Exzellenzcluster wird daher eine große Gruppe von Wissenschaftlern an der Christian-Albrechts-Universität zu Kiel (CAU) und den beteiligten Leibniz-Instituten miteinander vernetzt, um den vergangenen Ozeanwandel zu rekonstruieren, den heutigen Ozeanwandel zu untersuchen, die zukünftigen Veränderungen vorherzusagen, die maritimen Ressourcen zu erforschen und Konzepte zu ihrer nachhaltigen Nutzung zu entwickeln sowie die Naturgefahren, die vom Ozean ausgehen, besser einzuschätzen. Durch die Einbindung weiterer Disziplinen (Medizin, Soziologie, Ökonomie, Recht) werden die naturwissenschaftlichen, sozioökonomischen und rechtlichen Aspekte des Ozeans in einem multidisziplinären Ansatz umfassend erforscht. Die Zukunft der Ozeane wurde bisher in keinem vergleichbar breit angelegten Netzwerk exzellenter Forscher untersucht. Die Meeresforschung wird daher durch das Exzellenzcluster auf eine neue Ebene gehoben, auf deren Basis wissenschaftlich fundierte Leitlinien für Politik und Wirtschaft erarbeitet werden können. Die Cluster-Forschung wird unter zwei Themen organisiert: (1) Ozeane und Treibhauseffekt sowie (2) Maritime Ressourcen und Naturgefahren. Zu beiden Themen bestehen bereits profilierte Forschergruppen, die durch weitere Junior-Forschergruppen (JRG) ergänzt werden sollen. Die Forschungsinfrastrukturen werden in Plattformen gebündelt und weiterentwickelt, während Bildungsangebote für Doktoranden und Master-Studenten in einer neuen 'Integrated School of Ocean Sciences' zusammengeführt werden. Das im Cluster erarbeitete Grundlagenwissen wird durch entsprechende Strukturen der Öffentlichkeit, Politik und Wirtschaft zur Verfügung gestellt und zur Anwendung gebracht. Der überwiegende Teil der Cluster-Ressourcen wird jedoch eingesetzt, um JRGs in vielversprechenden neuen Forschungsfeldern zu gründen. Die Leitungspositionen dieser Gruppen werden international ausgeschrieben und den erfolgreichsten Kandidaten wird nach Ende der ersten Förderperiode eine permanente W2/W3-Professur angeboten. Dank der sehr guten Ausstattung der JRGs wird es gelingen, hoch qualifizierte Kandidatinnen und Kandidaten an das Cluster zu binden und die Position der Universität als führender europäischer Standort in der Meeresforschung weiter zu stärken.
Das Projekt "Quantifying the Influence of SnowmelT on RIVEr Hydrology in High Mountain Asia (STRIVE)" fokussiert sich auf alpine Flüsse und dem Zeitpunkt und Menge der Schneeschmelze im Himalaya . In vielen alpinen Einzugsgebieten stammt ein signifikanter Teil des jährlichen Wasserhaushalts aus der Schneeschmelze, insbesondere während der Monate vor dem Beginn des Monsuns. Da die Gletscher in vielen hochgelegenen Bergregionen weiter schmelzen werden, wird der saisonale Wasserpuffer durch die Schneeschmelze in Zukunft noch wichtiger werden. Auch die Gefahr von Überschwemmungen wird zunehmen, da die steigenden Temperaturen die Schneeschmelze im Frühjahr beschleunigen. Trotz der Bedeutung des Schneewasserhaushalts für viele besiedelte Gebiete sind Zeitpunkt und Volumen der Schneeschmelze nach wie vor nur unzureichend bekannt - insbesondere in Einzugsgebieten in großer Höhe. Um besser quantifizieren zu können, wann und wo das Wasser der Schneeschmelze die alpinen Flüsse erreicht, wird das STRIVE-Projekt einen kombinierten in-situ- und satellitenbasierten Ansatz verwenden, um (1) den Zeitpunkt und die räumliche Verteilung der Schneeschmelze zu überwachen, (2) den Einfluss der Schneeschmelze auf die Flusshöhen und (3) Flusstemperaturen zu bewerten. Die im Rahmen des STRIVE-Projekts gesammelten neuen Daten mit hoher zeitlicher Auflösung werden mit lokalen und regionalen hydrologischen Daten kombiniert, um (4) ein umfassenderes Verständnis der aktuellen Schneeschmelze und deren Wassermenge für alpine Flüsse zu entwickeln. Hier spielen insbesondere die sich verändernden Klimabedingungen eine große Rolle. Die Ergebnisse des STRIVE-Projekts werden für Forscher verschiedener Fachbereiche in der physischen Geographie, Hydrologie und Geomorphologie, zum Einschätzen von Naturgefahren und für Manager sowie Entwickler von Wasserkraftwerken im gesamten Himalaya und in ähnlichen, von der Schneeschmelze angetriebenen alpinen Ökosystemen, von großem Nutzen sein. Um die Forschungszusammenarbeit und den Austausch mit den nepalesischen Partnern zu erleichtern und nachhaltiger zu machen, wird das STRIVE-Projekt zwei Workshops für Nachwuchswissenschaftlerinnen durchführen, die sich mit der Sammlung und Verarbeitung von in-situ- und Fernerkundungsdaten beschäftigen. Diese Workshops werden dazu beitragen, die Ergebnisse und Erkenntnisse des STRIVE-Projekts zu verbreiten und sicherzustellen, dass die entwickelten Methoden und Daten auch nach dem Ende des Projekts in die Forschung und in wasserpolitische Entscheidungen im Himalaya einfließen.
Angesichts sich wandelnder Randbedingungen in Umwelt und Gesellschaft werden sich die Häufigkeiten, Intensitäten und Auswirkungen von Naturgefahren ebenfalls ändern. Dies ist von besonderer Bedeutung für Regionen, in denen Risiken durch Naturgefahren bewältigt, gesteuert und gemindert werden müssen. Dafür möchte das Graduiertenkolleg 'Naturgefahren und Risiken in einer Welt im Wandel' (NatRiskChange) die Wissensgrundlage verbessern: Hauptziel ist es, Methoden zu entwickeln, die die Analyse, Quantifizierung und Vorhersage von transienten Gefahren und Risiken verbessern, indem Wissen und Methoden zwischen Systemanalyse, Geo- und Umweltwissenschaften sowie Risikoforschung aktiv ausgetauscht werden. Die mathematisch orientierten Wissenschaftler bringen statistische Methoden, insbesondere Bayessche Statistik, die Theorie der dynamischen Systeme mit einem Schwerpunkt auf nicht-linearen Prozessen und Chaos sowie Rekurrenzplots und andere innovative Methoden zur Analyse geophysikalischer Zeitreihen ein. Die Geo- und Umweltwissenschaften steuern hingegen für verschiedene Naturgefahren Wissen über zugrundeliegende Mechanismen und Prozesse des Wandels bei, inklusive regionaler Besonderheiten, Interaktionen zwischen Gefahren und Vulnerabilitäten. Diese interdisziplinäre Forschung von NatRiskChange begann im Oktober 2015 und wird durch ein Qualifizierungsprogramm in den Bereichen der Statistik, Daten- und Risikoanalyse begleitet. Lehrkonzept und Forschungsprogramm ergänzen sich gegenseitig und sind tief in der Expertise der teilnehmenden Institutionen aus Potsdam und Berlin verankert, um den Weg für neue Forschungsstränge zur Quantifizierung von Veränderungen in Geo-, Hydro- und sozio-ökologischen Systemen zu ebnen.
Mehrere tausend Gletscherseen sind durch die beschleunigte Gletscherschmelze in den Hochgebirge der Erde entstanden, von denen einige rasch an Volumen zunehmen. Vereinzelt kommt es immer wieder zu unvorhergesehenen Dammbrüchen mit teils katastrophalen Folgen für die talabwärts siedelnde Bevölkerung. Die Abflussspitzen solcher Gletscherseeausbrüche oder GLOFs (glacier lake outburst floods) können meteorologische Fluten lokal um ein Vielfaches übersteigen, und eventuell durch anhaltendes Wachstum von Gletscherseen in Zukunft noch höher werden. Die Gefährdung, oder Eintretenswahrscheinlichkeit, eines GLOFs ist jedoch weitestgehend unbekannt, weil bisher möglicherweise nur die größeren, schadensreichen Fluten dokumentiert wurden. Dieser Forschungslücke wollen wir begegnen, indem wir die räumliche und zeitliche Verteilung von Gletscherseen und deren Ausbrüche systematisch untersuchen. Unser Ziel ist es, durch die Erstellung von Inventaren von Gletscherseen und GLOFs zu quantifizieren, wie sich die GLOF-Gefahr zwischen 1985 und 2020 verändert hat. Unsere Untersuchungsregion sind die Gebirge des Pacific Northwest (NW-Amerika). Die dortigen Gletscher hatten in den vergangenen beiden Jahrzehnten eine der höchsten Schmelzraten weltweit. Jedoch blieb das Wachstum und Ausbrüche der zumeist eis- und moränen-gedämmten Seen regional nahezu unerforscht. Wir werden automatisch Gletscherseen aus Landsat-Satellitenbildern in mehreren Zeitschritten ab Mitte der 1980er Jahre kartieren. Aus diesen Seeninventaren und klimatischen, glaziologischen und morphologischen Variablen werden wir Bayes‘sche Modelle lernen, um die Entstehung von Gletscherseen vorhersagen zu können. Plötzlich auftretende Sedimentverfrachtungen unterhalb von Seen können auf bisher unerkannte GLOFs hinweisen, welche wir aus Landsat-Bildern automatisch detektieren werden. Diese Ereignisse werden wir mit verfügbaren Abflusszeitreihen und Feldarbeit an zwei ausgewählten Gletscherseen validieren werden. Somit erhalten wir ein regional konsistentes Inventar von GLOFs, aus dem wir ableiten können, wie stark sich deren Raten und Magnituden in den letzten 35 Jahren verändert haben. Schließlich werden wir Zeitreihen aus gemessenen und simulierten GLOF-Abflüssen zusammenführen, sodass wir die Jährlichkeit eines GLOFs abschätzen können. Mit Hilfe eines nicht-stationären Extremwertmodells werden wir zeigen, wie sich die Gefährdung durch GLOFs in den letzten Jahrzehnten verändert hat und wie sie sich bei anhaltender Gletscherschmelze verändern könnte. Wir sind zuversichtlich, dass unsere computer-gestützte Arbeit die Veränderungen der GLOF-Gefährdung vom Einzugsgebiet bis zur lokalen Ebene zuverlässig aufzeigen wird. Wir werden unsere Modelle frei zugänglich machen, was für Entscheidungsträger und Regionalplaner angesichts einer wachsenden Bevölkerung und Ressourcengewinnung im Pacific Northwest von Bedeutung sein wird.
Origin | Count |
---|---|
Bund | 293 |
Europa | 5 |
Kommune | 6 |
Land | 34 |
Wissenschaft | 29 |
Type | Count |
---|---|
Daten und Messstellen | 5 |
Ereignis | 1 |
Förderprogramm | 243 |
Text | 28 |
unbekannt | 52 |
License | Count |
---|---|
geschlossen | 40 |
offen | 279 |
unbekannt | 10 |
Language | Count |
---|---|
Deutsch | 247 |
Englisch | 146 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 7 |
Datei | 12 |
Dokument | 16 |
Keine | 184 |
Unbekannt | 1 |
Webdienst | 20 |
Webseite | 127 |
Topic | Count |
---|---|
Boden | 310 |
Lebewesen und Lebensräume | 306 |
Luft | 276 |
Mensch und Umwelt | 329 |
Wasser | 279 |
Weitere | 311 |