Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleinere Erzeugungsanlagen möglich und beschrieben. Für Großerzeugungsanlagen wird dazu im Projekt MeGA ein Konzept entwickelt und bis zum Feldtest gebracht. Der Schwerpunkt der THU liegt in der Konzeption und der Durchführung von Tests der im Projekt entwickelten Anwendungen im Smart-Grid-Labor und der Simulationsumgebung der THU auf der Informations-, Kommunikations- und Funktionsebene. Im Smart-Grid-Labor der THU wird dazu eine virtualisierte Simulationsumgebung eingerichtet, die die Implementierung und das Testen von Anwendungen und Komponenten der Smart-Meter-Infrastruktur ermöglicht. Die THU wird auch aus akademischer Sicht Unterstützung bei der Klärung von Anforderungen und der Spezifikation der Systemimplementierung leisten. Darüber hinaus können die im MeGA-Projekt geplanten Neuentwicklungen mit der aufgebauten Simulationsumgebung getestet und validiert werden. Insbesondere für die CLS-Steuerung in Kombination mit dem SMGW wird ein Virtualisierungskonzept entwickelt und erprobt, welches die Skalierbarkeit der Erzeugungseinheiten auf der Basis der Nutzung internationaler Normen und Standards (z.B. IEC 61850 und SunSpec-Modbus) berücksichtigt. Die THU kann auf bestehende Lösungen und breite Erfahrungen im Bereich der Integration von Smart-Meter-Infrastruktur, SMGW, CLS-Steuerbox, CLS-Backend und die Einbindung in Verteilnetzleittechnik zurückgreifen.
Aufgrund der geografischen Begebenheiten ist die Energiegewinnung aus Meereswellen in Deutschland unter ökonomischen Maßstäben kaum abbildbar. Da dieser Bereich der Energiegewinnung aber wirtschaftlich kaum erschlossen ist, bietet dies auch das Potential für ein großes Wachstum. Somit ist gerade die Energieerzeugung auf schwimmenden Plattformen wie der Ocean Hybrid Plattform (OHP) für Länder wie Deutschland besonders interessant. Aufgrund der großen Übertragungswege sowie den rauen Umgebungsbedingungen stellt aber gerade diese Energieübertragung eines der Kernelemente für die dezentrale Energieerzeugung dar und ist somit ein wichtiger Bestandteil der Energiepolitik der Zukunft. Im geplanten Teilvorhaben sollen daher zunächst verschiedene Möglichkeiten zum Energietransport sowie zur Netzanbindung dieser Energiequellen untersucht und einander gegenübergestellt werden. Hierzu werden verschiedene Gleichspannungswandler, Wechselrichtertopologien und Regelungsansätze detailliert untersucht und hinsichtlich ihrer Eignung bewertet. Nach der Auswahl einer geeigneten Anbindung soll im Anschluss eine innovative, kompakte, zuverlässige, effiziente und für den Einsatz im maritimen Umfeld optimierte Leistungselektronik entwickelt und im Laborumfeld validiert werden. Um die Praxistauglichkeit dieses Systems auch unter den rauen Bedingungen auf See zu testen, soll die entwickelte Anlage im Anschluss auf einer schwimmenden Testplattform aufgebaut und für mehrere Wochen betrieben werden. Dieser Test dient der Untersuchung der Netzanbindung unter realen Umgebungsbedingungen und soll Erkenntnisse im Bezug auf Konzepte zur Seewasserbeständigkeit, dem Betrieb unter ständigen Temperaturschwankungen und mechanischer Bewegung dienen. Des Weiteren soll diese Testanlage das Potential für eine mögliche Vermarktung dieser Technologie demonstrieren und Verbesserungspotentiale für eine potenzielle Produktentwicklung aufzeigen.