API src

Found 35 results.

Best Available Techniques (BAT) reference document for the non-ferrous metals industries

The BAT reference document (BREF) entitled 'Non-Ferrous Metals Industries' forms part of a series presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and, where necessary, update BAT reference documents as required by Article 13(1) of the Directive 2010/75/EU on industrial emissions. This document is published by the European Commission pursuant to Article 13(6) of the Directive. This BREF for 'Non-Ferrous Metals Industries' concerns the activities specified in Sections 2 and 6.8 of Annex I to Directive 2010/75/EU, namely: - 2.1: Metal ore (including sulphide ore) roasting or sintering; - 2.5: Processing of non-ferrous metals: (a) production of non-ferrous crude metals from ore, concentrates or secondary raw materials by metallurgical, chemical or electrolytic processes; (b) melting, including the alloyage, of non-ferrous metals, including recovered products and operation of non-ferrous metal foundries, with a melting capacity exceeding 4 tonnes per day for lead and cadmium or 20 tonnes per day for all other metals; - 6.8: Production of carbon (hard-burnt coal) or electrographite by means of incineration or graphitisation. This document also covers: - the production of zinc oxide from fumes during the production of other metals; - the production of nickel compounds from liquors during the production of a metal; - the production of silicon-calcium (CaSi) and silicon (Si) in the same furnace as the production of ferro-silicon; - the production of aluminium oxide from bauxite prior to the production of primary aluminium, where this is an integral part of the production of the metal; - the recycling of aluminium salt slag. Important issues for the implementation of Directive 2010/75/EU in the non-ferrous metals industries are the emissions to air of dust, metals, organic compounds (which can result in the formation of PCDD/F) and sulphur dioxide; diffuse air emissions; emissions to water of metals (e.g. Hg, Cd, Cu, Pb, Zn); resource efficiency; and the prevention of emissions to soil and groundwater. This BREF contains 12 chapters. Chapters 1 and 2 provide general information on the non-ferrous metals industry and on the common industrial processes and techniques used within the whole sector. Chapters 3, 4, 5, 6, 7, 8, 9 and 10 correspond to the following specific production sectors: copper, aluminium, lead and/or tin, zinc and/or cadmium, precious metals, ferro-alloys, nickel and/or cobalt, and carbon and graphite. For each specific production sector, these eight chapters provide information and data concerning the applied processes and techniques; the environmental performance of installations in terms of current emissions, consumption of raw materials, water and energy, and generation of waste; the techniques to prevent or, where this is not practicable, to reduce the environmental impact of operating installations in these sectors that were considered in determining the BAT; and the emerging techniques as defined in Article 3(14) of the Directive. Chapter 11 presents the BAT conclusions as defined in Article 3(12) of the Directive. Chapter 12 is dedicated to concluding remarks and recommendations for future work. Quelle: BAT-Merkblatt JRC 107041

Markt für Nickel, Klasse 1

technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of processing of nickel-rich materials (GLO): Based on typical current technology. technologyComment of smelting and refining of nickel concentrate, 16% Ni (GLO): Extrapolated from a typical technology for smelting and refining of nickel ore. MINING: 95% of sulphidic nickel ores are mined underground in depths between 200m and 1800m, the ore is transferred to the beneficiation. Widening of the tunnels is mainly done by blasting. The overburden – material, which does not contain PGM-bearing ore – is deposed off-site and is partially refilled into the tunnels. Emissions: The major emissions are due to mineral born pollutants in the effluents. The underground mining operations generate roughly 80 % of the dust emissions from open pit operations, since the major dust sources do not take place underground. Rain percolate through overburden and accounts to metal emissions to groundwater. Waste: Overburden is deposed close to the mine. Acid rock drainage occurs over a long period of time. BENEFICIATION: After mining, the ore is first ground. In a next step it is subjected to gravity concentration to separate the metallic particles from the PGM-bearing minerals. After this first concentration step, flotation is carried out to remove the gangue from the sulphidic minerals. For neutralisation lime is added. In the flotation several organic chemicals are used as collector, frother, activator, depressor and flocculant. Sometimes cyanide is used as depressant for pyrite. Tailings usually are led to tailing heaps or ponds. As a result, nickel concentrates containing 7 - 25% Ni are produced. Emissions: Ore handling and processing produce large amounts of dust, containing PM10 and several metals from the ore itself. Flotation produce effluents containing several organic agents used. Some of these chemicals evaporate and account for VOC emissions to air. Namely xanthates decompose hydrolytically to release carbon disulphide. Tailings effluent contains additional sulphuric acid from acid rock drainage. Waste: Tailings are deposed as piles and in ponds. Acid rock drainage occurs over a long period of time. METALLURGY AND REFINING: There are many different process possibilities to win the metal. The chosen process depends on the composition of the ore, the local costs of energy carrier and the local legislation. Basically two different types can be distinguished: the hydrometallurgical and the pyrometallurgical process, which paired up with the refining processes, make up five major production routes (See Tab.1). All this routes are covered, aggregated according to their market share in 1994. imageUrlTagReplace00ebef53-ae97-400f-a602-7405e896cb76 Pyrometallurgy. The pyrometallurgical treatment of nickel concentrates includes three types of unit operation: roasting, smelting, and converting. In the roasting step sulphur is driven off as sulphur dioxide and part of the iron is oxidised. In smelting, the roaster product is melted with a siliceous flux which combines with the oxidised iron to produce two immiscible phases, a liquid silicate slag which can be discarded, and a solution of molten sulphides which contains the metal values. In the converting operation on the sulphide melt, more sulphur is driven off as sulphur dioxide, and the remaining iron is oxidised and fluxed for removal as silicate slag, leaving a high-grade nickel – copper sulphide matte. In several modern operations the roasting step has been eliminated, and the nickel sulphide concentrate is treated directly in the smelter. Hydrometallurgy: Several hydrometallurgical processes are in commercial operation for the treatment of nickel – copper mattes to produce separate nickel and copper products. In addition, the hydrometal-lurgical process developed by Sherritt Gordon in the early 1950s for the direct treatment of nickel sulphide concentrates, as an alternative to smelting, is still commercially viable and competitive, despite very significant improvements in the economics and energy efficiency of nickel smelting technology. In a typical hydrometallurgical process, the concentrate or matte is first leached in a sulphate or chloride solution to dissolve nickel, cobalt, and some of the copper, while the sulphide is oxidised to insoluble elemental sulphur or soluble sulphate. Frequently, leaching is carried out in a two-stage countercurrent system so that the matte can be used to partially purify the solution, for example, by precipitating copper by cementation. In this way a nickel – copper matte can be treated in a two-stage leach process to produce a copper-free nickel sulphate or nickel chloride solution, and a leach residue enriched in copper. Refining: In many applications, high-purity nickel is essential and Class I nickel products, which include electrolytic cathode, carbonyl powder, and hydrogen-reduced powder, are made by a variety of refining processes. The carbonyl refining process uses the property of nickel to form volatile nickel-carbonyl compounds from which elemental nickel subsides to form granules. Electrolytic nickel refineries treat cast raw nickel anodes in a electrolyte. Under current the anode dissolves and pure nickel deposits on the cathode. This electrorefining process is obsolete because of high energy demand and the necessity of building the crude nickel anode by reduction with coke. It is still practised in Russia. Most refineries recover electrolytic nickel by direct electrowinning from purified solutions produced by the leaching of nickel or nickel – copper mattes. Some companies recover refined nickel powder from purified ammoniacal solution by reduction with hydrogen. Emissions: In all of the metallurgical steps, sulphur dioxide is emitted to air. Recovery of sulphur dioxide is only economic for high concentrated off-gas. Given that In the beneficiation step, considerable amounts of lime are added to the ore for pH-stabilisation, lime forms later flux in the metallurgical step, and decomposes into CO2 to form calcite. Dust carry over from the roasting, smelting and converting processes. Particulate emissions to the air consist of metals and thus are often returned to the leaching process after treatment. Chlorine is used in some leaching stages and is produced during the subsequent electrolysis of chloride solution. The chlorine evolved is collected and re-used in the leach stage. The presence of chlorine in wastewater can lead to the formation of organic chlorine compounds (AOX) if solvents etc. are also present in a mixed wastewater. VOCs can be emitted from the solvent extraction stages. A variety of solvents are used an they contain various complexing agents to form complexes with the desired metal that are soluble in the organic layer. Metals and their compounds and substances in suspension are the main pollutants emitted to water. The metals concerned are Cu, Ni, Co, As and Cr. Other significant substances are chlorides and sulphates. Wastewater from wet gas cleaning (if used) of the different metallurgical stages are the most important sources. The leaching stages are usually operated on a closed circuit and drainage systems, and are therefore regarded as minor sources. In the refining step, the combustion of sulphur leads to emissions of SO2. Nitrogen oxides are produced in significant amounts during acid digestion using nitric acid. Chlorine and HCl can be formed during a number of digestion, electrolytic and purification processes. Chlorine is used extensively in the Miller process and in the dissolution stages using hydrochloric acid and chlorine mixtrues respectively. Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Large quantities of effluents contain amounts of metals and organic substances. Waste: Regarding the metallurgical step, several co-products, residues and wastes, which are listed in the European Waste Catalogue, are generated. Some of the process specific residues can be reused or recovered in preliminary process steps (e. g. dross, filter dust) or construction (e. g. cleaned slag). Residues also arise from the treatment of liquid effluents, the main residue being gypsum waste and metal hydroxides from the wastewater neutralisation plant. These residuals have to be disposed, usually in lined ponds. In the refining step, quantities of solid residuals are also generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (ironhydroxide, 60% water, cat I industrial waste). References: Kerfoot D. G. E. (1997) Nickel. In: Ullmann's encyclopedia of industrial chemis-try (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. technologyComment of smelting and refining of nickel concentrate, 7% Ni (CN): The nickel concentrate (6.78% beneficiated - product of the mining and beneficiation processes) undergoes drying, melting in flash furnace and converting to produce high nickel matte. The nickel matte undergoes grinding-floating separation and is refined through anode plate casting and electrolysis in order to produce electrolytic nickel 99.98% pure. Deng, S. Y., & Gong, X. Z. (2018). Life Cycle Assessment of Nickel Production in China. Materials Science Forum, 913, 1004-1010. doi:10.4028/www.scientific.net/MSF.913.1004 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining.

Nickel

Wirkungen von Nickel Nickel ist vor allem als ein starkes Kontaktallergen der Haut bekannt. Bei beruflich belasteten Personen sowie bei Personen, die mit nickelhaltigen Kleidungsstücken und anderen Gegenständen in Berührung kamen, wurden Kontaktdermatitis und Hautekzeme beobachtet. Frauen sind hierbei stärker betroffen, wobei die genaue Ursache hierfür noch unklar ist. Auch können bei bereits dermal gegen Nickel sensibilisierten Personen durch sehr geringe oral aufgenommene Mengen von Nickel allergische Symptome ausgelöst werden. Als mögliche nachteilige Wirkungen bei der oralen Aufnahme von Nickel und seinen Verbindungen sind neben der Auslösung allergischer Symptome vor allem die reproduktionstoxischen Effekte und Hyperglykämie zu nennen. Obgleich der größte Teil der Aufnahme von Nickel mit der Nahrung erfolgt, steht für den gesundheitsbezogenen Umweltschutz aber nicht das oral, sondern das inhalativ aufgenommene Nickel im Vordergrund. Inhalierte Nickelstäube können bereits in Konzentrationen, die nicht zu einer nennenswerten Erhöhung der gesamten Körperbelastung führen, schädliche Wirkungen im Atemtrakt hervorrufen. Nach langfristiger inhalativer Aufnahme kann Nickel kanzerogene Wirkungen sowie vor allem lungentoxische, nierentoxische, fruchtschädigende oder sensibilisierende Wirkungen aufweisen. Die Lungentoxizität stellt den empfindlichsten Wirkendpunkt von Nickel dar. Lungentoxische Wirkungen treten unter Umständen bereits in einem Konzentrationsbereich auf, der nicht zu einer relevanten Erhöhung des Lungenkrebsrisikos führt. Auch nach kurzfristiger inhalativer Exposition gegenüber Nickel und seinen Verbindungen stehen die lungentoxischen Effekte im Vordergrund. Die Erkenntnisse zu den akuten Effekten von Nickel basieren auf Ergebnissen aus Tierversuchen. Für den Menschen sind keine Berichte über akute bzw. subakute Wirkungen nach inhalativer Exposition vorhanden. Nickel ist ein erwiesenes Humankanzerogen, d. h. Nickelmetall, Nickelacetat und vergleichbare lösliche Salze, Nickelcarbonat, Nickelchlorid, Nickelmonoxid, Nickeldioxid, Dinickeltrioxid, Nickelhydroxid, Nickelsulfid, Nickelsubsulfid und Nickelsulfat sind nach Einstufung der Deutschen Forschungsgemeinschaft (DFG) beim Menschen krebserzeugend (Krebserzeugende Kategorie 1). Hinsichtlich der toxischen und kanzerogenen Wirkungen ist zwischen den verschiedenen Nickelverbindungen, und insbesondere zwischen löslichen und schwerlöslichen Nickelverbindungen, zu unterscheiden. Allerdings sind die möglichen toxischen Unterschiede zwischen den verschiedenen Nickelverbindungen bislang nicht abschließend geklärt. Eine geringere Toxizität von schwerlöslichen Verbindungen im Vergleich zu gut wasserlöslichen Verbindungen erscheint bei Betrachtung der Datenlage möglich, ist jedoch nicht quantifizierbar. Insgesamt wird derzeit davon ausgegangen, dass Nickelverbindungen mit unterschiedlichen physikochemischen Eigenschaften wie insbesondere der Wasserlöslichkeit keine gravierenden Unterschiede in der respirationstoxischen Wirkung aufweisen. Nickel und seine schwerlöslichen Verbindungen haben sich als stärker karzinogen erwiesen als seine wasserlöslichen Verbindungen. Aber auch hier ist eine abschließende Beurteilung nicht möglich. Ableitungen von Bewertungsmaßstäben beruhen auf Untersuchungen mit bestimmten Nickelverbindungen wie z. B. Nickelsulfat und Nickelsubsulfid Beurteilungsmaßstäbe Zur Bewertung der möglichen gesundheitlichen Wirkungen nach langfristiger inhalativer Exposition gegenüber Nickel ist im Rahmen der Luftreinhalteplanung der Zielwert der 39. BImSchV von 20 ng/m³ maßgebend. Ein Zielwert ist nach 39. BImSchV „ ... ein Wert, der mit dem Ziel festgelegt wird, schädliche Auswirkungen auf die menschliche Gesundheit oder die Umwelt insgesamt zu vermeiden, zu verhindern oder zu verringern, und der nach Möglichkeit innerhalb eines bestimmten Zeitraums eingehalten werden muss.“ Der Zielwert der 39. BImSchV basiert auf dem Zielwert der "Richtlinie 2004/107/EG des europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Kadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft". Diese EU-Richtlinie inklusive des Zielwertes für Nickel wurde durch die 39. BImSchV in bundesdeutsches Recht umgesetzt. Zur Bewertung im Rahmen der Anlagengenehmigung und -überwachung nach Bundes-Immissionsschutzgesetz (BImSchG) bzw. der Sonderfallprüfung nach Nr. 4.8 TA Luft (Technische Anleitung zur Reinhaltung der Luft) kann der Orientierungswert des Länderausschuss für Immissionsschutz 1 (LAI 2004) von 20 ng/m 3 herangezogen werden. Der Begrenzung des Krebsrisikos sei mit der Einhaltung des Orientierungswertes laut LAI ausreichend Rechnung getragen. Der LAI hatte sich bei der Ableitung des Orientierungswertes für Nickel an dem Zielwert der "Richtlinie 2004/107/EG des europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Kadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft" (veröffentlicht im Amtsblatt der Europäischen Union vom 26.01.2005) orientiert. Dieser wurde auf der Basis der lungentoxischen Wirkungen von Nickelsulfat abgeleitet. Bei der Festsetzung des Zielwertes von 20 ng/m 3 wurde angenommen, dass der lösliche Anteil der Nickelverbindungen bei maximal 50 % liegt. (Stand: Januar 2022) 1 jetzt Bund/Länder-Arbeitsgemeinschaft Immissionsschutz

Untersuchung der Zusammensetzung und Struktur von oxidischen Komponenten in freigesetzten Stäuben in der Arbeitsluft bei der Herstellung und Verarbeitung nickelhaltiger metallischer Werkstoffe (Nickelhaltige Stäube)

Das Projekt "Untersuchung der Zusammensetzung und Struktur von oxidischen Komponenten in freigesetzten Stäuben in der Arbeitsluft bei der Herstellung und Verarbeitung nickelhaltiger metallischer Werkstoffe (Nickelhaltige Stäube)" wird vom Umweltbundesamt gefördert und von MOL Katalysatortechnik GmbH durchgeführt. Zielsetzung: Bei der Herstellung, Be- und Verarbeitung von Nickellegierungen können inhalierbare nickelhaltige Stäube auftreten. Im 'Verzeichnis krebserzeugender .. Stoffe' (TRGS 905) sind Nickel und Ni-Carbonat unter K3, Nickeloxid und Nickelsulfid unter K1 eingestuft. Als Grenzwert in der Luft am Arbeitsplatz (TRGS 900 gem. Bundesarbeitsblatt 4/1995) gilt für Nickelmetall und Ni-Carbonat ein MAK-Wert und für Ni-Oxid, Ni-Sulfid (und sulfidische Erze) ein TRK-Wert. Für die betriebliche Praxis der Arbeitsplatzüberwachung stellt sich damit das Problem, welcher Grenzwert jeweils anzuwenden ist, weil mit den üblichen Analyseverfahren nur der Ni-Gehalt als analytische Berechnungsbasis ermittelt werden kann. Es gibt auch Hinweise auf die Bildung von Spinellen, d.s. nickelhaltige Metallkomplexe, die aufgrund ihrer biologischen Nichtlöslichkeit möglicherweise toxikologisch unbedenklich sind. Ziel: Quantitative Analyse der Nickelverbindungen, die in bestimmten Arbeitsbereichen bzw. -verfahren im Staub auftreten; Ermittlung von Leitkomponenten für die Arbeitsplatzüberwachung; Ermittlung des Auftretens von Spinellen und ggf. der entsprechenden Parameter. Aktivitäten/Methoden: Untersuchungen von Stäuben von Arbeitsplätzen und parallel mit künstlichen Gemischen von Ni, NiO und Nickelkomplexen; quantitative Analyse von Ni (ESR/FMR), NiO und Ni-Komplexen (XRD, ESMA, IR); Ermittlung der Löslichkeit, Analyse der gelösten und ungelösten Verbindungen (AAS, XRD, DSMA, IR). Ergebnisse: Grundlagenerkenntnisse über Strukturen von Nickeloxiden; Vorschlag für Arbeitsstoff- und Arbeitsverfahren-abhängige Mess- und Bewertungsverfahren gesundheitsgefährlicher Nickeloxide am Arbeitsplatz

Fortsetzungsantrag: 725 HWT GKM

Das Projekt "Fortsetzungsantrag: 725 HWT GKM" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Otto-Graf-Institut, Materialprüfungsanstalt durchgeführt. Ziel des Vorhabens ist es. mittels einer Testschleife das Betriebs- und Versagensverhalten von Werkstoffen, Bauteilen und Armaturen bei hohen Temperaturen unter Einwirkung von mechanischen Lasten und korrosiven Medien zu erforschen und für den technischen Einsatz unter diesen Bedingungen zu qualifizieren. Damit können Wirkungsgradsteigerungen und die Erhöhung der Ressourceneffizienz bei Dampfkraftwerken erreicht werden. Aufgrund der komplexen Beanspruchung aus Druck, hoher Temperatur und aggressivem Medium ergeben sich extreme Anforderungen an die eingesetzten Werkstoffe. Im Rahmen des Projekts werden wissenschaftliche Erkenntnisse über Korrosions- und Oxidationsverhalten, langzeitige Druck- und Temperaturbelastungen, Mikrostrukturänderungen und Schädigungsmechanismen gewonnen, um zukünftig einen störungsfreien Betrieb und gleichzeitig einen so gering wie möglichen Aufwand bei Stillständen und Inspektionen in hocheffizienten Kraftwerken sicherzustellen. Zudem werden die Erkenntnisse in Form von Daten und Gesetzmäßigkeiten hinsichtlich metallkundlicher und werkstofftechnischer Beschreibungen von Schädigungsmechanismen ausgearbeitet und Beurteilungskriterien zusammengestellt. Das Arbeitsprogramm ist als Fortsetzung und Vertiefung des gleichnamigen Vorgängerprojekts mit folgenden Schwerpunkten anzusehen: - Wichtige Erkenntnisse zum (Schädigungs-) Verhalten von neuen Werkstoffen und deren Schweißverbindungen für hocheffiziente Kraftwerke unter tatsächlichen Kraftwerksbedingungen - Wichtige Erkenntnisse zum (Schädigungs-) Verhalten von neuen Werkstoffen unter nicht bestimmungsgemäßen Beanspruchungen (Störfall) - Erkenntnisse über das Oxidations- und Korrosionsverhalten der eingesetzten Werkstoffe - Erstellung von Auslegungskonzepten und Entwicklung von optimierten Berechnungsverfahren - Adäquate Beurteilung der Lebensdauer und der Werkstoffe für einen sicheren und ökonomischen Betrieb - Neue Erkenntnisse über mögliche Wärmebehandlungen von Ni-Basislegierungen unter realen Bedingungen - Überprüfung des konzipierten Überwachungskonzeptes - Betriebsverhalten und Zuverlässigkeit der eingesetzten Regelungs- und Absperrarmaturen

Development of ceramic oxide fuel cell (SOFC) for power

Das Projekt "Development of ceramic oxide fuel cell (SOFC) for power" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Objective: Design concept and development of a large surfaced sofc consisting of a yttria stabilized zirconia electrolyte with electrodes on both sides and a corrugated structured bipolar plate. Because of using a metallic bipolar plate (which has to ensure besides the cells connection also the transport and distribution of gases) the cell operating temperature should be 900-950 celsius degree. The electrode material will also be suited to this temperature range. General information: within the contract en3e-0180-uk managed by imperial college and entitled 'fabrication and evaluation of small (100w) sofc reactors', sofc stocks will be built up and tested. The main differences (cell construction operating temperature, material of bipolar plate, test conditions) between the Siemens and the IC. Contracts are well defined. This work programme includes the development of a new corrugated structured sofc from the concept up to the test of one single or several cells. Main points are the preparation of thin, solid and mechanic stable electrolyte foils, the optimization of electrodes with respect to conductivity and pore structure (adaptation to the relative low temperature range of 900 - 950 celsius degrees) and the development of a bipolar plate, which ensures the mechanical stability of the electrolyte and the gas distribution. A wide-spread technical knowledge in the field of electro ceramics, bonding technique and electrochemics is available at Siemens. In addition all essential equipment and tools for preparation of defined porous structures etc. And for the analysis and characterization of materials are existing. Achievements: Siemens is proposing a new planar concept with metal separator plate for the ceramic oxide fuel cell (SOFC) reactor. Main goal of the preparation phase was the development of single SOFC cells with internationally comparable power data. The development of the ceramic compounds and the metal separator plate for the planar Siemens SOFC concept can be summarized as follows: manufacture of electrolyte bulk material by the mixed oxide process as well as from chemically prepared YSZ materials (FSZ and PSZ); physicochemical characterization of these electrolyte specimens; sintering studies with various tape casted electrolyte materials; development of a sintering process for a flat plate electrolyte with dimensions 100 x 100 x 0.15 mm(3); manufacture of cathode bulk material in the system La(1-u)Sr(u)Mn(1-x)Co(x)Mn03 by the mixed oxide process; physicochemical characterization of these cathode specimens; manufacture of anode bulk material of 10 to 100 per cent nickel content by the mixed oxide process; physicochemical characterization of these anode specimens; development of a screen printing technique for electrodes; manufacture of ceramic trilayers by tape casting screen printing; design and construction of a bench cell testing facility; bench cell testing of ceramic trilayers with various anode compositions; selection of ...

Part 2

Das Projekt "Part 2" wird vom Umweltbundesamt gefördert und von ALSTOM Boiler Deutschland GmbH durchgeführt. Ziel des Vorhabens ist es. mittels einer Testschleife das Betriebs- und Versagensverhalten von Werkstoffen, Bauteilen und Armaturen bei hohen Temperaturen unter Einwirkung von mechanischen Lasten und korrosiven Medien zu erforschen und für den technischen Einsatz unter diesen Bedingungen zu qualifizieren. Damit können Wirkungsgradsteigerungen und die Erhöhung der Ressourceneffizienz bei Dampfkraftwerken erreicht werden. Aufgrund der komplexen Beanspruchung aus Druck, hoher Temperatur und aggressivem Medium ergeben sich extreme Anforderungen an die eingesetzten Werkstoffe. Im Rahmen des Projekts werden wissenschaftliche Erkenntnisse über Korrosions- und Oxidationsverhalten, langzeitige Druck- und Temperaturbelastungen, Mikrostrukturänderungen und Schädigungsmechanismen gewonnen, um zukünftig einen störungsfreien Betrieb und gleichzeitig einen so gering wie möglichen Aufwand bei Stillständen und Inspektionen in hocheffizienten Kraftwerken sicherzustellen. Zudem werden die Erkenntnisse in Form von Daten und Gesetzmäßigkeiten hinsichtlich metallkundlicher und werkstofftechnischer Beschreibungen von Schädigungsmechanismen ausgearbeitet und Beurteilungskriterien zusammengestellt. Das Arbeitsprogramm ist als Fortsetzung und Vertiefung des gleichnamigen Vorgängerprojekts mit folgenden Schwerpunkten anzusehen: - Wichtige Erkenntnisse zum (Schädigungs-) Verhalten von neuen Werkstoffen und deren Schweißverbindungen für hocheffiziente Kraftwerke unter tatsächlichen Kraftwerksbedingungen - Wichtige Erkenntnisse zum (Schädigungs-) Verhalten von neuen Werkstoffen unter nicht bestimmungsgemäßen Beanspruchungen (Störfall) - Erkenntnisse über das Oxidations- und Korrosionsverhalten der eingesetzten Werkstoffe - Erstellung von Auslegungskonzepten und Entwicklung von optimierten Berechnungsverfahren - Adäquate Beurteilung der Lebensdauer und der Werkstoffe für einen sicheren und ökonomischen Betrieb - Neue Erkenntnisse über mögliche Wärmebehandlungen von Ni-Basislegierungen unter realen Bedingungen - Überprüfung des konzipierten Überwachungskonzeptes - Betriebsverhalten und Zuverlässigkeit der eingesetzten Regelungs- und Absperrarmaturen

Emissionen von Metallverbindungen in der chemischen Industrie

Das Projekt "Emissionen von Metallverbindungen in der chemischen Industrie" wird vom Umweltbundesamt gefördert und von Technischer Überwachungs-Verein Rheinland durchgeführt. Wegen ihrer carcinogenen Wirkung soll eine Untersuchung ueber die Art und das Ausmass der Emission von Chrom-, Nickel- und Berylliumverbindungen bei der Herstellung, Verarbeitung und Anwendung sowie eine Ermittlung des Standes der Technik der Emissionsverminderung druchgefuehrt werden. Ziel der Untersuchung ist die Ermittlung des Standes der Technik zur Fortschreibung der TA-Luft und Erstellung von RVO's nach Paragraph 7 BImSchG. Vorstudie: 1.1.1978-31.12.1978 = DM 161010 (Eigenanteil: DM 17890).

Vorhaben: Hydrothermale Fluide am Kermadec-Inselbogen und ihre Rolle für den Stoffeintrag in den Ozean

Das Projekt "Vorhaben: Hydrothermale Fluide am Kermadec-Inselbogen und ihre Rolle für den Stoffeintrag in den Ozean" wird vom Umweltbundesamt gefördert und von Jacobs University Bremen gGmbH, Focus Area Health - Physics & Earth Sciences durchgeführt. Ziel des Vorhabens ist es, zusammen mit den Kooperationspartnern die bisher wenig untersuchten Stoffeinträge von hydrothermalen Systemen des Kermadec-Vulkanbogens in den Ozean zu charakterisieren und deren Bedeutung für den globalen Stoffhaushalt der Meere sowie die lokalen chemischen und biologischen Prozesse in der Wassersäule und am Meeresboden zu verstehen. Ein besonderer Fokus wird auf die Bedeutung chemischer Speziierung und Komplexierung von Metallen und Spurenelementen (unter besonderer Berücksichtigung von Interaktionen mit gelöstem organischem Material) für den Export in den Ozean und die Bioverfügbarkeit gelegt. Um diese Ziele zu erreichen, sollen hydrothermale Fluide, Festphasen, und Plumes und biologische Gemeinschaften von verschiedenartigen Hydrothermalquellen im südlichen und mittleren Kermadec-Bogen mit Hilfe des ROVs Quest, CTD/Wasserschöpfern und Multicorern interdisziplinär untersucht werden. Neben der Probenaufbereitung und Konservierung werden an Bord Analysen von kurzlebigen chemischen Spezies durchgeführt, Weiterhin werden hydrothermale Schlüsselparameter wie pH, Eh, O2 und Mg direkt an Bord bestimmt. Für Fe-Isotopen Analysen im konzentrierten hydrothermalen Fluid, aufsteigender Plume, lateral verdriftender Plume werden Probenaliquote genommen. Eine Fraktionierung in gelöste, kolloidale und partikuläre Größenfraktionen wird mithilfe von gestaffelten Membranfiltern entsprechender Porengröße durchgeführt. Die Membranfilter werden direkt bei -20°C eingefroren. Sedimentproben werden unter Luftausschluss direkt eingefroren. Außerdem werden Proben für die organische und anorganische Speziierung von gelösten Schwermetallen (Fe, Cu, Zn und Ni) sowie die Bestimmung von den Gesamtgehalten in unterschiedlichen Größenfraktionen genommen. Die Beprobung für die Schwermetallspezifizierung wird flächendeckend an allen Arbeitsgebieten vom konzentrierten hydrothermalen Fluid bis zur Vermischungszone in der Plume und dem umliegenden Meerwasser erfolgen.

Untersuchung der Zusammensetzung und Struktur von oxidischen Komponenten in freigesetzten Staeuben in der Arbeitsluft bei der Herstellung und Verarbeitung Ni-haltiger metallischer Werkstoffe

Das Projekt "Untersuchung der Zusammensetzung und Struktur von oxidischen Komponenten in freigesetzten Staeuben in der Arbeitsluft bei der Herstellung und Verarbeitung Ni-haltiger metallischer Werkstoffe" wird vom Umweltbundesamt gefördert und von Verein Deutscher Eisenhüttenleute durchgeführt. Klaerung der Exposition an Arbeitsplaetzen, an denen Ni-haltige Werkstoffe hergestellt, be- und verarbeitet werden. Schlussfolgerungen auf die durchzufuehrenden Massnahmen und zu stellenden Anforderungen. Strukturelle Untersuchung Ni-haltiger Staeube der Werkstoffe NiCr23Fe (2.4851), NiCr22Mo9Nb (2.4856), NiCr20Ti(2.4951), austenitischer Stahl (1.4301), bei den Arbeitsvorgaengen Schmelzen, Walzen, Schleifen, Schweissen, Schneiden. Ua erwartete Ergebnisse: Hinweise auf werkstoffliche Voraussetzung und aeussere Faktoren, durch die eine NiO-Bildung bewirkt wird bzw vermieden werden kann. Nachweis einer moeglichen NiO-Bildung und Hoehe des NiO-Gehaltes im Staub.

1 2 3 4