API src

Found 104 results.

Related terms

Klimawandel und Klimafolgen in Nordrhein-Westfalen - Ergebnisse aus den Monitoringprogrammen 2016

Wir alle wissen es: Der anthropogene Klimawandel ist Realität und seine Auswirkungen sind auch in Nordrhein-Westfalen (NRW) deutlich zu spüren. Langjährige Messungen zeigen dass die Temperaturen ansteigen, bei den Niederschlägen ändern sich die Intensität und die Verteilung. Das hat Folgen: So verschieben sich die Blühphasen heimischer Pflanzen, Gewässer- und Bodentemperaturen steigen und besonders in den nordrhein-westfälischen Städten und Ballungsräumen steigt im Sommer die Hitzebelastung für die Bevölkerung. Das Landesamt für Natur, Umwelt und Verbraucherschutz NRW (LANUV) hat im vorliegenden Fachbericht »Klimawandel und Klimafolgen in NRW« Trends, die bereits 2010 im ersten Klimabericht veröffentlicht worden waren, aktualisiert und fortgeschrieben. Hinzu kommen viele neue Erkenntnisse zum Klimawandel und seinen Folgen. NRW ist das am dichtesten besiedelte Bundesland, viele Menschen leben in großen Metropolen und Ballungsräumen - daher haben wir eine besondere Verantwortung für die städtische Bevölkerung. Vor diesem Hintergrund widmen wir ein ganzes Kapitel den Auswirkungen des Klimawandels in Städten. In dem Klimabericht wurden wichtige Erkenntnisse aus den Fachinformationssystemen des LANUV, dem Klimaatlas NRW und dem Klimafolgenmonitoring NRW aufbereitet und ausgewertet. Hier finden Sie viele weitere Informationen. So gibt der Klimaatlas NRW auf mehr als 300 Flächenkarten einen umfassenden Überblick über das aktuelle Klima und seine zukünftige Entwicklung. Das Klimafolgenmonitoring NRW liefert zahlreiche Zeitreihen um die Folgen des Klimawandels in NRW abzubilden. Der vorliegende Bericht kann nur einen Ausschnitt der vielfältigen vorhandenen Informationen zeigen. Darum lohnt es sich, in regelmäßigen Abständen die neu veröffentlichten Daten in den oben genannten Fachinformationssystemen abzurufen. Die Nutzung ist für jeden Bürger frei und kostenlos.

Auswirkungen des Klimawandels in Nordrhein-Westfalen - Klimafolgemonitoring 2016

Der anthropogene Klimawandel ist in Nordrhein-Westfalen angekommen und seine Folgen sind in Natur und Umwelt deutlich zu spüren. Langjährige Messungen zeigen, dass die Temperaturen ansteigen, bei den Niederschlägen ändern sich die Intensität und die Verteilung. Das hat Folgen: So verschieben sich die Blühphasen heimischer Pflanzen, Gewässer- und Bodentemperaturen steigen und insbesondere in den Städten und Ballungsräumen kommt es im Sommer vermehrt zu Hitzebelastung für die Bevölkerung. Nordrhein-Westfalen hat darum bereits 2011 als erstes Bundesland ein Klimafolgenmonitoring entwickelt. Seitdem dokumentiert das Landesamt für Natur, Umwelt und Verbraucherschutz NRW (LANUV) mithilfe von Indikatoren aus verschiedenen Umweltbereichen die Entwicklung des Klimas und seiner Folgen in Nordrhein-Westfalen. Denn nur wenn wir den Einfluss des Klimawandels auf Natur und Umwelt frühzeitig erkennen, können wir rechtzeitig und angemessen auf Veränderungen und Risiken reagieren. Die Indikatoren werden jährlich aktualisiert und sind im Internet unter www.klimafolgenmonitoring.nrw.de einsehbar. Mit dieser Broschüre möchten wir den Bürgerinnen und Bürgern Nordrhein-Westfalens einen aktuellen Überblick über die Indikatoren des Klimafolgen-monitorings geben.

Messdaten Deutscher Wetterdienst (DWD) (StALU MS Neubrandenburg)

Die Datenbank enthält Niederschlagsdaten des Deutschen Wetterdienstes, die das StALU VP als Wetterwarnung bzw. Tageswerte erreichen, bzw. Beobachtungswerte, die entsprechend dem hydrologischen Bedarf statistisch bearbeitet wurden.

Abflussbildung durch Niederschläge 1990

Verdunstung Die Abflussbildung wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und Wärmeangebot (Strahlungssaldo) sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Das Wärmeangebot wird durch die der Wärmemenge entsprechende verdunstende Wassermenge — die sogenannte potentielle Verdunstung — ersetzt. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen realer Verdunstung einerseits sowie Niederschlag, potentieller Verdunstung und Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und vgl. Abb. 1). Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Nutzbare Feldkapazität Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Einschätzung der Berechnungsverfahrens Die Aussagekraft und Genauigkeit des Berechnungsverfahrens wurde durch Vergleich des aus der Abflussbildung berechneten Gesamtabflusses mit beobachteten Abflusswerten geschlossener Flusseinzugsgebiete geprüft. Danach liegt die mittlere Abweichung des berechneten Abflusses vom Beobachtungswert für Gebietsgrößen zwischen 25 und 50 km 2 bei ca. ± 15 bis ± 10 %, für Gebiete zwischen 50 und 1.000 km 2 bei ca. ± 10 bis ± 5 % und für die Gebiete über 1.000 km 2 unter ± 5 %. Für die hier dargestellten einzelnen Rasterflächen (1 km 2 ) wird die mittlere Abweichung mit etwa ± 25 % eingeschätzt. Die Berechnungswerte der Abflussbildung wurden auf volle 5 mm/a auf- bzw. abgerundet. Die Abflussberechnung erfolgte mit dem Rechenprogramm RASTER (vgl. Glugla et al. 1989). Punktuelle Versickerung, z. B. durch Grundwasseranreicherung für Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung wurde zusätzlich zum Niederschlag für die Beregnung ein einheitlicher Näherungswert in Ansatz gebracht.

Langjährige Niederschlagsverteilung 1961 - 1990

Den Niederschlag beeinflussende Faktoren Intensität und Verteilung von Niederschlägen bestimmen nicht nur maßgeblich die meteorologischen sowie die klimatischen Verhältnisse in einem Gebiet, sondern unmittelbar auch die Grundwasserneubildung und die Versorgung der Vegetation mit pflanzenverfügbarem Wasser . Darüber hinaus bestimmen sie Auswaschungen aus der Atmosphäre und — über das Transportmedium "Sickerwasser" — Schadstoffverlagerungen im Untergrund. Die mittlere Niederschlagsverteilung liefert wesentliche Grundaussagen für das Niederschlagsgeschehen in einem Gebiet. Für Einzelereignisse können die Niederschlagsverteilungen jedoch erheblich von den mittleren Niederschlagsverteilungen abweichen. So führten etwa die Starkregen im Anschluss an das Reaktorunglück in Tschernobyl im Mai 1986 zu einer sehr spezifischen zusätzlichen Belastungsverteilung der radioaktiven Kontamination in Europa aufgrund der unterschiedlichen Verteilung der Niederschläge (vgl. Karte 01.09, SenStadtUm 1992a). Einen bedeutenden Einfluss auf die Witterungsverhältnisse in einem Gebiet hat die Oberflächengestalt der Erde . Gebirgs- und kleinere Hügelzüge aber auch bereits niedrige Landrücken haben einen Einfluss auf die Niederschlagshöhe, wie die vorliegenden Karten mittlerer Niederschlagsverhältnisse eines Landes oder einer Landschaft zeigen. Andere Einflussfaktoren stellen Wälder, Seen, Felder u. ä. dar (vgl. Flohn 1954). Auch Städte haben mit ihren Häuseransammlungen ab einer gewissen Flächengröße einen Einfluss auf die Höhe und Verteilung der Niederschläge. Die Erhöhung von Niederschlägen, z. B. durch Steigungsregen, innerhalb eines begrenzten Gebietes ist vor allem auf den Einfluss der Bodenreibung, den sogenannten Rauhigkeitsparameter, zurückzuführen. Außerdem beeinflussen die über Stadtgebieten vermehrt auftretenden Aerosole, die als Kondensationskerne wirken, die Wolken- und Niederschlagsbildung. Zusätzliche Niederschläge verursacht die Erwärmung eines Stadtgebietes bei speziellen Wettersituationen (Konvektionsniederschlag). Bei den Betrachtungen der Wirkungen von Stadtlandschaften auf Höhe und Verteilung von Niederschlägen ist zu unterscheiden zwischen dem Einfluss der Stadtlandschaft auf die jeweils stattfindenden Niederschlagsprozesse und ihre Rolle als eigentlicher Auslöser von Niederschlägen. Auswirkung von Niederschlägen Bei der Wirkung von Niederschlagsereignissen ist ebenfalls zu differenzieren in die Atmosphäre reinigende Prozesse und die Belastungen für Teile der Natur. So bewirken starke Niederschläge nicht nur eine Reinigung der Luft. Durch die starke Oberflächenversiegelung als Folge aufwendiger Entsorgung von Regen und Abwasser erfolgt gleichzeitig ein Ausspülen einer Reihe von Schadstoffen, die konzentriert in die Regenwasserkanäle und damit in die Gewässer gelangen (vgl. Karte 02.09, SenStadtUm 1992b). Berlin besitzt im Bereich des Trennsystems etwa 3.000 km reine Regenwasserkanäle, über die das durch Staub, Luftschadstoffe, Abrieb der Straßendecke und Autoreifen, Ölverluste etc. stark verunreinigte Niederschlagswasser an ca. 730 Stellen direkt in kleinere und größere Oberflächengewässer geleitet wird. Innerhalb des Mischsystems, in dem häusliche, gewerbliche und industrielle Schmutzwässer sowie Regenwasser gemeinsam in einem Kanal gesammelt werden, können Starkregenereignisse zu einer kurzfristigen Überlastung des Entsorgungssystems führen, so dass das gesamte Mischwasser ungereinigt in die Gewässer fließt. Die Quantifizierung der Auswirkungen einer städtischen Struktur auf den Niederschlag setzt in jedem Fall den langjährigen Betrieb eines umfangreichen Messnetzes voraus, da anders als im ländlich geprägten Umland die Nutzungsstrukturen mit ihren Auswirkungen auf die vertikale Struktur der Stadt (Gebäude- und Vegetationshöhen) zusätzlich zu den topographischen Geländebewegungen zu betrachten sind. Regionale Einordnung der Niederschlagsverhältnisse Berlins Im regionalen Maßstab werden die Niederschlagsverhältnisse Berlins durch die Lage im Übergangsbereich zwischen kontinental und mehr ozeanisch geprägtem Klima bestimmt. Berlin gehört im deutschen Vergleich eher zu den trockenen Gebieten. So liegt hier die jährliche Durchschnittsniederschlagsmenge bei 568 mm pro Quadratmeter, während im gleichen Zeitraum auf dem Brocken ca. 1.400 mm niedergehen (vgl. Abb. 1). Zusätzlich zu den bisher genannten Einflussgrößen muss zukünftig auch mit Auswirkungen der globalen Klimaänderungen auf das regionale Wasserdargebot gerechnet werden. Während der vergangenen 10.000 Jahre haben Klimaänderungen die geographische Verteilung der Niederschläge deutlich verändert. Obwohl Klimaänderungen in gleicher Größenordnung — nur erheblich rascher — in den nächsten 100 Jahren erwartet werden, lassen sich deren Auswirkungen auf Verteilung und Menge des regionalen Niederschlags jedoch noch nicht abschätzen (vgl. Kleeberg et al. 1994).

Oberflächenabfluss, Versickerung und Gesamtabfluss aus Niederschlägen 2017

Mitte der 90er Jahre wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25.000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3.2) und mit aktualisierten Daten erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasserflurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherungsanlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten, Wochenendhäuser, Parks, Friedhöfe, Baumschulen/Gartenbau und z.T. bei Wohn- oder Gemeinbedarfs- und Sondernutzungen) wurde zum Niederschlag für die Bewässerung ein Näherungswert addiert (50 – 100 mm/Jahr). Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Die Verdunstung der Block(teil)flächen wird dann aus der Differenz von korrigiertem Niederschlag (Korrigierter Niederschlag = Niederschlag multipliziert mit dem Faktor 1,09 pauschal für Berlin) und Gesamtabfluss berechnet. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit typischen Nutzungen und ihren unterschiedlichen typischen Eigenschaften das Modell ABIMO angewandt und die Ergebnisse in Tab. 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wird seit der Ausgabe 2012 die Version des Programms ABIMO 3.2 verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Berücksichtigung des Einflusses begrünter Dächer auf die Daten zum Wasserhaushalt Durch die mit der Umweltatlaskarte 06.11 Gründächer (Ausgabe 2017) erstmalig vorliegenden flächendeckenden räumlichen Daten zu begrünten Dachflächen konnte für die aktuelle Ausgabe die Effekte der Gründächer auf den Wasserhaushalt erstmalig mit berechnet werden. Da das ursprüngliche Modell die Berücksichtigung grüner Dächer nicht vorsieht, musste ein Verfahren entwickelt werden, das erlaubt, diese Effekte trotzdem zu bilanzieren. Dazu war es zunächst erforderlich, belastbare Werte zum Verdunstungsverhalten aus der Literatur zu ermitteln. Die Literaturrecherche ergab unterschiedliche Jahresabflussbeiwerte für intensiv und extensiv begrünte Dächer (vgl. z. B. Rüngeler 1998, SenStadtWohn 2017). In der für die verwendete Datengrundlage ( Karte 06.11 , Ausgabe 2017) gewählten Methode wird auf Basis der spektralen Reflexionseigenschaften der Fernerkundungsdaten nur zwischen extensiv und intensiv begrünt unterschieden. Weitere wichtige Eigenschaften, wie z. B. Höhe des Bewuchses oder Substrataufbau können auf diese Weise nicht erfasst werden und liegen daher für die Auswertung bzgl. des Wasserhaushaltes auch nicht vor. Für die weitere Berechnung wurde deshalb von einem einheitlichen Jahresabflussbeiwert von 0,5 für alle Gründächer ausgegangen, d. h. sie verdunsten 50 % des Niederschlages. Ein normales, unbegrüntes Dach verdunstet auch einen geringen Teil des Niederschlages. Die Berechnung dieser Verdunstung erfolgt für jede Block- und Blockteilfläche mit ABIMO 3.2. Unbegrünte Gebäudedächer verdunsten demnach zwischen 75,5 mm/a und 83,6 mm/a unabhängig von den Kanalisierungsgraden und den Belagsarten. Das entspricht 12,3 % und 13,4 % des korrigierten Niederschlages. Zunächst wurde die zusätzliche Verdunstung eines begrünten Daches mit der folgenden Formel berechnet: Verdunstung GründachZusätzlich = Verdunstung Gründach – Verdunstung Normaldach Anschließend wurde die zusätzliche Verdunstung aller begrünten Dächer einer Block- bzw. Blockteilfläche summiert und von den Parametern Gesamtabfluss, Oberflächenabfluss sowie Versickerung abgezogen. Die Verdunstung mit Gründach berechnet sich aus der Verdunstung und der zusätzlichen Verdunstung. Diese Berechnungen wurde außerhalb des Programms ABIMO 3.2 im Nachgang durchgeführt (vgl. Goedecke/Gerstenberg 2019). Endergebnis Im Ergebnis der Berechnungen liegen für ca. 25.000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, die Verdunstung, den Oberflächenabfluss und die Versickerung inkl. der Berücksichtigung der Gründächer vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z. B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines Quadratmeters unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.

Oberflächenabfluss, Versickerung und Gesamtabfluss aus Niederschlägen 1990

In den vergangenen Jahren wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25 000 Einzelflächen aus dem Umweltinformationssystem (UIS) zur Verfügung gestellt werden. Das von Glugla entwickelte Abflußbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepaßt. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluß (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluß als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluß und Oberflächenabfluß bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluß wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflußgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluß ermittelt werden. Zur Berechnung der grundwasserbeeinflußten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flußeinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflußte Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflußten Bedingungen erhöhte Verdunstung auf. Die Abflußbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflußbildung werden negativ (z. B. Fluß- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherunganlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten) wurde zum Niederschlag für die Bewässerung ein einheitlicher Näherungswert addiert. Nachdem der mittlere Gesamtabfluß als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluß bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluß dem Gesamtabfluß. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluß. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluß wird – abhängig von dem Anschlußgrad an die Kanalisation – als Oberflächenabfluß über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfaßt, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluß und Oberflächenabfluß entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mußten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozeß durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Im Ergebnis der Berechnungen liegen für die 25 000 Einzelflächen langjährige Mittelwerte für den Gesamtabfluß, den Oberflächenabfluß und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muß beachtet werden, daß die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu sind im Rahmen des Umweltinformationssystems spezielle ebenfalls flächendeckende und blockbezogene Auswertungen vorgenommen worden.

Oberflächenabfluss, Versickerung, Gesamtabfluss und Verdunstung aus Niederschlägen 2012

Mitte der 90er Jahre wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25.000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3) und mit aktualisierten Daten erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherungsanlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten, Wochenendhäuser, Parks, Friedhöfe, Baumschulen/Gartenbau und z.T. bei Wohn- oder Gemeinbedarfs- und Sondernutzungen) wurde zum Niederschlag für die Bewässerung ein Näherungswert addiert (50 – 100 mm/Jahr). Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit unterschiedlichen Eingangsgrößen das Modell ABIMO angewandt und die Ergebnisse in Tabelle 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wurde eine neue Version des Programms ABIMO verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Im Ergebnis der Berechnungen liegen für die 25.000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, die Verdunstung, den Oberflächenabfluss und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.

Oberflächenabfluss, Versickerung, Gesamtabfluss und Verdunstung aus Niederschlägen 2005

Vor etwa 10 Jahren wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25 000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde verbessert (ABIMO 3) und mit aktualisierten Daten zur Ableitung des Regenwassers über die Kanalisation erneut angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherunganlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten) wurde zum Niederschlag für die Bewässerung ein einheitlicher Näherungswert addiert. Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit unterschiedlichen Eingangsgrößen das Modell ABIMO angewandt und die Ergebnisse in Tabelle 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Für die aktuelle Berechnung wurde eine neue Version des Programms ABIMO verwendet. Diese Version unterscheidet sich von der alten vor allem durch eine verbesserte Parametersteuerung bei der Zuordnung der Werte für den Anschlussgrad der Dachflächen an die Kanalisation. Im Ergebnis der Berechnungen liegen für die 25 000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, den Oberflächenabfluss und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.

Oberflächenabfluss, Versickerung, Gesamtabfluss und Verdunstung aus Niederschlägen 2001

Vor knapp 10 Jahren wurde in Kooperation mit der Bundesanstalt für Gewässerkunde, Außenstelle Berlin, ein Modell entwickelt, programmiert und angewendet, das die wichtigsten Größen des Wasserhaushaltes berechnet. Die etwa 25 erforderlichen Grunddaten bzw. Eingangsparameter konnten für jede der ca. 25 000 Einzelflächen aus dem Informationssystem Stadt und Umwelt (ISU) zur Verfügung gestellt werden. Dieses Modell wurde nun unverändert aber mit den aktualisierten Daten (vgl. Datengrundlage) angewendet. Das von Glugla entwickelte Abflussbildungsmodell ABIMO ist auf der Grundlage bereits seit den 70er Jahren entwickelter Modelle zur Berechnung des Grundwasserdargebots entstanden, und um Bausteine erweitert worden, die der speziellen Situation in urbanen Gebieten Rechnung tragen. Diese Erweiterung wurde gutachterlich durch das Institut für Ökologie (Bodenkunde) der TU Berlin und durch eine Diplomarbeit am Fachbereich Geographie der FU Berlin unterstützt. Bei der rechentechnischen Realisierung, die durch ein externes Softwarebüro erfolgte, wurde es außerdem an die spezielle Datenlage in Berlin angepasst. Das Berechnungsverfahren ermittelt zunächst die tatsächliche Verdunstung, um den Gesamtabfluss (Niederschlag minus Verdunstung) zu errechnen. Im zweiten Arbeitsschritt wird der Oberflächenabfluss als Teil des Gesamtabflusses bestimmt. Die Differenz aus Gesamtabfluss und Oberflächenabfluss bildet dann den Versickerungsanteil. Einen Eindruck von der Komplexität des Verfahrens vermittelt Abb. 2. Der Gesamtabfluss wird aus der Differenz der langjährigen Jahresmittelwerte des Niederschlags und der realen Verdunstung berechnet. Die reale Verdunstung , wie sie im Mittel tatsächlich an Standorten und in Gebieten auftritt, wird aus den wichtigsten Einflussgrößen Niederschlag und potentielle Verdunstung sowie den mittleren Speichereigenschaften der verdunstenden Flächen berechnet. Bei ausreichender Feuchtezufuhr zur verdunstenden Fläche nähert sich die reale Verdunstung der potentiellen. Die reale Verdunstung wird zusätzlich durch die Speichereigenschaften der verdunstenden Fläche modifiziert. Höhere Speicherwirkung (z. B. größere Bindigkeit des Bodens und größere Durchwurzelungstiefe) bewirkt eine höhere Verdunstung. Dem aufgezeigten Zusammenhang zwischen den mehrjährigen Mittelwerten der realen Verdunstung einerseits sowie des Niederschlags, der potentiellen Verdunstung und der Verdunstungseffektivität des Standorts andererseits genügt die Beziehung nach Bagrov (vgl. Glugla et al. 1971, Glugla et al. 1976, Bamberg et al. 1981 und Abb. 3). Die Bagrov-Beziehung beruht auf der Auswertung langjähriger Lysimeter-Versuche und beschreibt das nichtlineare Verhältnis zwischen Niederschlag und Verdunstung in Abhängigkeit von den Standorteigenschaften. Mit der Bagrov-Beziehung kann bei Kenntnis der Klimagrößen Niederschlag P und potentielle Verdunstung EP (Quotient P/EP) sowie des Effektivitätsparameters n der Quotient reale Verdunstung / potentielle Verdunstung (ER/EP) und somit die reale Verdunstung ER für Standorte und Gebiete ohne Grundwassereinfluss ermittelt werden. Zur Berechnung der grundwasserbeeinflussten Verdunstung wird ebenfalls das Bagrov-Verfahren in modifizierter Form genutzt, indem die mittlere Kapillarwasserzufuhr aus dem Grundwasser dem Niederschlag zugerechnet wird. Mit wachsendem Niederschlag P nähert sich die reale Verdunstung ER der potentiellen Verdunstung EP, d. h. der Quotient ER/EP nähert sich dem Wert 1. Bei abnehmendem Niederschlag P (P/EP geht gegen den Wert 0) nähert sich die reale Verdunstung ER dem Niederschlag P. Die Intensität, mit der diese Randbedingungen erreicht werden, wird durch die Speichereigenschaften der verdunstenden Fläche (Effektivitätsparameter n) verändert. Die Speichereigenschaften des Standorts werden insbesondere durch die Nutzungsform (zunehmende Speicherwirksamkeit in der Reihenfolge versiegelte Fläche, vegetationsloser Boden, landwirtschaftliche, gärtnerische bzw. forstliche Nutzung) sowie die Bodenart (zunehmende Speicherwirksamkeit mit höherer Bindigkeit des Bodens) bestimmt. Maß für die Speicherwirksamkeit des unversiegelten Bodens ist die nutzbare Feldkapazität als Differenz der Feuchtewerte des Bodens für Feldkapazität (Beginn der Wasserversickerung im Boden) und für den permanenten Welkepunkt (bleibende Trockenschäden an den Pflanzen). Weitere Landnutzungsfaktoren, wie Hektarertrag, Baumart und -alter, modifizieren den Parameterwert n. Der Parameter n wurde in Auswertung von Beobachtungsergebnissen zahlreicher in- und ausländischer Lysimeterstationen und von Wasserhaushaltsuntersuchungen in Flusseinzugsgebieten quantifiziert. Für Standorte und Gebiete mit flurnahem Grundwasser tritt infolge Kapillaraufstiegs von Grundwasser in die verdunstungsbeeinflusste Bodenzone je nach Grundwasser-Flurabstand und Bodeneigenschaften eine gegenüber grundwasserunbeeinflussten Bedingungen erhöhte Verdunstung auf. Die Abflussbildung vermindert sich. Übersteigt die reale Verdunstung den Niederschlag, tritt Wasserzehrung auf, und die Werte für die Abflussbildung werden negativ (z. B. Fluss- und Seeniederungen). Bei Gewässerflächen tritt infolge höheren Wärmeangebots (geringeres Reflexionsvermögen der Einstrahlung) eine gegenüber Landflächen erhöhte potentielle Verdunstung auf. Die tatsächliche Gewässerverdunstung wird näherungsweise dieser erhöhten potentiellen Verdunstung gleichgesetzt. Punktuelle Versickerung, z. B. durch die Grundwasseranreicherungsanlagen der Wasserwerke wurde nicht berücksichtigt. Bei gärtnerischer Nutzung (Kleingärten) wurde zum Niederschlag für die Bewässerung ein einheitlicher Näherungswert addiert. Nachdem der mittlere Gesamtabfluss als Differenz aus Niederschlag und realer Verdunstung berechnet wurde, wird nun in einem zweiten Arbeitsschritt der Oberflächenabfluss bestimmt. Auf Dachflächen, die in die Kanalisation entwässern, entspricht der Oberflächenabfluss dem Gesamtabfluss. Flächen, die nicht an die Kanalisation angeschlossen sind, erzeugen keinen Oberflächenabfluss. Unbebaut versiegelte Flächen infiltrieren abhängig von der Art der Oberflächenbeläge (Belagsarten) einen Teil des Abflusses in den Untergrund. Dieser Infiltrationsfaktor ist abhängig von der Breite, dem Alter und der Art der Fugen. Der nicht versickernde Abfluss wird – abhängig von dem Anschlussgrad an die Kanalisation – als Oberflächenabfluss über die Kanalisation abgeleitet oder versickert, sofern er nicht von der Kanalisation erfasst, am Rande der versiegelten Flächen. Ebenso versickern die Anteile der nicht an die Kanalisation angeschlossenen Dachflächen (vgl. Tab. 1). Die Differenz aus Gesamtabfluss und Oberflächenabfluss entspricht somit der Versickerung als Ausgangsgröße für die Grundwasserneubildung. Für die Anwendung des Verfahrens für urbane Gebiete mussten die Parameter n und die Infiltrationsfaktoren für die unterschiedlichen Versiegelungsmaterialien bestimmt werden. Hierzu wurden sowohl Lysimeterversuche mit verschiedenen Versiegelungsmaterialien als auch Berechnungen zum Benetzungsverlust ausgewertet (vgl. Wessolek/Facklam 1997). Die gewählten Größen für die genannten Parameter sind in Tab. 2 aufgeführt. Die mit dem Alterungsprozess durch Verdichtung und Verschlämmung der Fugen einhergehende Veränderung dieser Parameter wurde dabei berücksichtigt. Aufgrund nach wie vor unzureichender wissenschaftlicher Grundlagen sind die Angaben jedoch noch mit gewissen Unsicherheiten verbunden. Darüber hinaus wäre für hydrologische Fragestellungen eine andere Zusammenfassung der Belagsarten zu Belagsklassen wünschenswert. Um einen Eindruck zu vermitteln, wie die unterschiedlichen Flächennutzungen, Versiegelungsparameter und Bedingungen der Kanalisation den Wasserhaushalt beeinflussen wurde für ca. 35 Beispielsflächen mit unterschiedlichen Eingangsgrößen das Modell ABIMO angewandt und die Ergebnisse in Tabelle 3 dargestellt. Das Verhältnis von Oberflächenabfluss, Versiegelung und Verdunstung ist entscheidend vom Ausmaß der Versiegelung und der Ableitung des Regenwassers in die Kanalisation abhängig. Im Ergebnis der Berechnungen liegen für die 25 000 Einzelflächen aktualisierte langjährige Mittelwerte für den Gesamtabfluss, den Oberflächenabfluss und die Versickerung vor. Die Werte wurden klassifiziert in mm/Jahr in den vorliegenden Karten dargestellt; die Gesamtmengen in m³/Jahr wurden ebenfalls errechnet und bilanziert. Es muss beachtet werden, dass die dargestellten Werte Mittelwerte über die als einheitliche Flächen dargestellten Blöcke sind, die in der Realität inhomogene Strukturen aufweisen. Die Abflüsse versiegelter und unversiegelter Flächen werden hier zu einem Durchschnittswert pro Block gemittelt. Außerdem werden die Abflüsse der Straßen den angrenzenden Blöcken zugeschlagen. Aus den Karten kann z.B. nicht abgelesen werden, wie hoch die Versickerungsleistung eines m² unversiegelten Bodens ist. Hierzu ist daher eine ebenfalls flächendeckende und blockbezogene Berechnung mit veränderten Randparametern – also unter der Annahme gänzlich unversiegelter Verhältnisse – vorgenommen worden, deren Ergebnisse in der Karte 02.13.4 dargestellt sind.

1 2 3 4 59 10 11