Das COSC-Bohrprojekt ('Collisional Orogeny in the Scandinavian Caledonides') ist fester Bestandteil des 'International Scientific Drilling Program' (ICDP) und des 'Swedish Scientific Drilling Program' (SSDP). COSC untersucht die altpaläozoische Schließung des Iapetus-Ozeans und die Kontinent-Kontinent-Kollision zwischen Baltica and Laurentia, die im mittleren Silur zu einer Teilsubduktion des baltischen Kontinentalrandes unter Laurentia und der Bildung eines Orogens vom Himalaya-Typus führte. Während die Platznahme des hochgradig metamorphen Allochthons im Rahmen von COSC-1 im Åre-Gebiet studiert wurde (Durchteufung der subduktionsbezogenen, untere Seve-Decke und der niedrig-gradig metamorphen Särv-Decke in 2014), wird COSC-2 die mächtige paläozoische Sedimentabfolge des Unteren Allochthon und Autochthon, den kaledonischen Hauptabscherhorizont und das präkambrische Grundgebirge des Fennoscandischen Schildes am Liten-See südöstlich Järpen untersuchen. Das beantragte DFG-Projekt konzentriert sich auf die Sedimentabfolge des Kambriums bis Silur in den höheren größer als 1200 m der Bohrung, die in verschiedenen Faziesräumen auf dem Außenschelf und im Vorlandbecken ablagert wurden. Die Schließung des Iapetus-Ozeans, die Kollission zwischen Baltica und Laurentia, die Deckenstapelung entlang der norwegisch-swedischen Deformationsfront und die durch Auflast gesteuerte flexurhafte Deformation am Kontinentalrand veränderte die Konfiguration des baltoskandischen Beckens und formte unterschiedliche Ablagerungsräume in dem zum Orogen parallel verlaufenden Vorlandbecken vom Mittelordoviz bis Silur. Die Sedimentabfolge im Untersuchungsgebiet wird detailliert im Hinblick auf Fazieswechsel und Meeresspiegelschwankungen untersucht werden. Stratigraphische Lücken im Oberordoviz und mögliche Karstbildung in den Kalken des Llandovery könnten Vereisungen und extreme Klimaschankungen wiederspiegeln während der Eiszeit-Periode vom höheren Mittelordoviz bis in das Obersilur. Die Untersuchung von oberordovizischen Sedimenten, die in tieferem Wasser abgelagert wurden, schliesst die Suche nach Spuren des intensive Vulkanismus (K-Bentonite) in dem sich schliessenden Areal des Iapetus-Oceans ein und nach Relikten von nahen Meteoriteneinschlägen in der kaledonischen Vortiefe. Die enge Kooperation mit PIs anderer Disziplinen wie Geothermie und Geophysik stehen im Hauptfokus dieses Projekts. Detaillierte lithologische Studien sind die Basis einer Beprobungsstrategie für ein geothermisches Modell. Die Kalibriering geophysikalischer Bohrlochmessungen mit den Sedimentdaten erlaubt es die Interpretation früherer reflexions-seismischer Untersuchungen zu überprüfen und die darauf basiernden Modelle des geologischen Untergrunds. Die Sedimentabfolge in der COSC 2-Bohrung wird ein Schlüssel zum Verständnis der seismischen Daten im Untersuchungsgebiet sein.
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
The dataset contains information on the European river basin districts, the river basin district sub-units, the surface water bodies and the groundwater bodies delineated for the 3rd River Basin Management Plans (RBMP) under the Water Framework Directive (WFD) as well as the European monitoring sites used for the assessment of the status of the above mentioned surface water bodies and groundwater bodies. This data set is available only for internal use of the European Commission and the European Environment Agency. Please enter the publicly available version to access data: https://sdi.eea.europa.eu/catalogue/srv/eng/catalog.search#/metadata/effd82dc-31cb-4bb6-8d8b-572322c124a2 The information was reported to the European Commission under the Water Framework Directive (WFD) reporting obligations. The dataset compiles the available spatial data related to the 3rd RBMPs due in 2022 (hereafter WFD2022). See http://rod.eionet.europa.eu/obligations/780 for further information on the WFD2022 spatial reporting. Note: * This dataset has been reported by the member states. The subsequent QC revealed some problems caused by self-intersections elements. Data in GPKG-format should be processed using QGIS.
The European inventory of Nationally designated areas holds information about designated areas and their designation types, which directly or indirectly create protected areas. The Nationally designated areas is the official source of protected area information from the 38 European member countries to the World Database of Protected Areas (WDPA). The Nationally designated areas data can be queried online in the European Nature Information System (EUNIS). Two versions of the public dataset are provided. The full dataset includes the entire geographical coverage including nationally designated areas in overseas entities. The European dataset excludes the overseas entities. The datasets are accompanied by tabular data which 1) includes information on the nationally designated sites and designated boundaries for public dissemination; and 2) contains information about designation types and the national and international legislative instruments, which directly or indirectly create protected designated areas in Europe.
The Urban Waste Water Treatment Directive concerns the collection, treatment and discharge of urban waste water and the treatment and discharge of waste water from certain industrial sectors. The objective of the Directive is to protect the environment from the adverse effects of the above mentioned waste water discharges. This series contains time series of spatial and tabular data covering Agglomerations, Discharge Points, and Treatment Plants.
Mobi-Kids-Studie: Keine Erhöhung des Hirntumor-Risikos bei Kindern durch mobile Kommunikationsgeräte Fachliche Stellungnahme des BfS zu einer internationalen Untersuchung Die MOBI-Kids-Studie untersuchte den Zusammenhang zwischen Hirntumoren und der Nutzung von drahtlosen Telefonen in einer gemeinsamen Auswertung von Daten aus 14 Ländern. Mit fast 900 Kindern und Jugendlichen mit Hirntumoren und 1900 Kindern und Jugendlichen ohne Hirntumorerkrankung handelt es sich um die bisher größte Studie zu Mobiltelefonnutzung und Hirntumoren in dieser Altersgruppe. Die Ergebnisse der Studie sprechen dafür, dass die Benutzung von Mobiltelefonen bzw. schnurlosen Telefonen das Risiko für Hirntumoren bei Jugendlichen nicht erhöht. Eine in der Studie beobachtete vermeintliche Abnahme des Hirntumorrisikos, je länger und öfter mobile Kommunikationsgeräte genutzt wurden, deutet auf ein mögliches methodisches Artefakt hin, da es keinen Grund für die Annahme eines tatsächlich existierenden schützenden Effektes gibt. Die Autoren vermuten als Gründe für den beobachteten Effekt Unsicherheiten bei den Angaben zur Nutzung, wenn diese von den Eltern statt von den Kindern und Jugendlichen selbst stammen, und Änderungen im Nutzungsverhalten bei erkrankten Personen bereits vor der Diagnose. Aufgrund möglicher Verzerrungsquellen, die in Fall-Kontroll-Studien trotz größter Sorgfalt und größtem Aufwand vorhanden sein können, kann auch auf Basis dieser Studienergebnisse ein kleiner Risikoanstieg nicht völlig ausgeschlossen werden. Insgesamt sprechen die Beobachtungen der Studie aber deutlich gegen ein substantiell erhöhtes Risiko von Hirntumoren durch die Nutzung von Mobiltelefonen und kabellosen Telefonen bei Kindern und Jugendlichen. Die Studie untermauert den aktuellen wissenschaftlichen Stand, dass es keine belastbaren wissenschaftlichen Belege dafür gibt, dass Strahlung von Mobiltelefonen das Hirntumorrisiko erhöht. Hintergrund Quelle: byswat/stock.adobe.com Drahtlose Kommunikationstechniken wie Mobiltelefone oder kabellose DECT -Telefone sind zentraler Bestandteil unseres Lebens. Dies gilt inzwischen auch für Kinder und Jugendliche, insbesondere im Bereich des Mobilfunks. Mobiltelefone wie auch kabellose DECT -Telefone sind Quellen hochfrequenter elektromagnetischer Felder und niederfrequenter Magnetfelder. Diese werden von der Weltgesundheitsorganisation WHO als "möglicherweise krebserregend" eingestuft (Gruppe 2b). Eine solche Einstufung seitens der IARC bedeutet, dass die Möglichkeit eines solchen Risikos zwar nicht wahrscheinlich ist, aber wegen Einzelhinweisen auch nicht ausgeschlossen werden kann. Bei Mobiltelefonen und DECT -Telefonen stellt sich vor allem die Frage nach einem möglichen Risiko für Hirntumoren, da die Exposition im Kopfbereich am stärksten ist. Falls ein solches Risiko bestünde, könnten Kinder und Jugendliche besonders betroffen sein. Zum einen ist das sich noch entwickelnde Gehirn bei Kindern und Jugendlichen besonders empfindlich, zum anderen können Kinder und Jugendliche bei einem frühen Nutzungsbeginn im Lauf ihres Lebens besonders lange einer entsprechenden Exposition ausgesetzt sein. Die wissenschaftliche Untersuchung der Frage, ob Telefonieren mit dem Mobiltelefon oder DECT -Telefon das Risiko für Hirntumoren bei Kindern und Jugendlichen erhöht, ist eine besondere Herausforderung. Hirntumoren treten bei Kindern und Jugendlichen glücklicherweise nur sehr selten auf. Aussagekräftige Ergebnisse sind jedoch nur von einer Studie mit einer großen Anzahl an Hirntumor-Fällen zu erwarten. Daher werden hierfür oft Fall-Kontroll-Studien durchgeführt. Hierbei ist es aber rein methodisch schwierig, rückwirkend zuverlässige Informationen über das Nutzungsverhalten zu erhalten, da sich alle Teilnehmenden an ihr zum Teil jahrelang zurückliegendes Verhalten erinnern müssen. Berücksichtigt man diese Einschränkungen jedoch in adäquater Weise, lassen sich aus sorgfältig geplanten und korrekt durchgeführten Fall-Kontroll-Studien - wie dieser - dennoch wissenschaftlich belastbare Aussagen ableiten. Generell ist für die Risikobewertung immer das Gesamtbild, das sich aus den verschiedenen Arten von Studien ergibt, relevant. In die MOBI-Kids-Studie wurden Patient*innen aus 14 Ländern eingeschlossen. Ergebnisse der Studie zum Zusammenhang zwischen der Nutzung von Mobil- und DECT -Telefonen durch Kinder und Jugendliche und deren Risiko für Hirntumoren wurden Ende Dezember 2021 in der Zeitschrift Environment International veröffentlicht ( Castaño-Vinyals et al. 2021 ). Finanziert wurde die MOBI-Kids-Studie hauptsächlich von der Europäischen Kommission (Förderungen 226873 und 603794), eine Teilfinanzierung des deutschen Projekts erfolgte durch das Bundesamt für Strahlenschutz im Rahmen des Ressortforschungsvorhabens 3609S30010 (Laufzeit 2010-2014). Bewertung Die Studie von Castaño-Vinyals et al. hat eine Reihe von Stärken im Vergleich zu bisher existierenden Studien zu dem Thema. Der Studienumfang ist deutlich größer als bei der einzigen bisher existierenden Fall-Kontroll-Studie zum Zusammenhang zwischen Mobilfunknutzung und Hirntumorerkrankungen bei Kindern und Jugendlichen ( Aydin et al. 2011 ), der sogenannten CEFALO-Studie. Diese umfasste 352 Fälle und 646 Kontrollen aus vier Ländern (Dänemark, Schweden, Norwegen und der Schweiz) und hatte ein statistisch nicht signifikant erhöhtes Risiko gezeigt. Zudem sind die durchschnittliche Nutzungsdauer und -häufigkeit in der MOBI-Kids-Studie deutlich größer als in der CEFALO-Studie, so dass sich ein Zusammenhang zwischen Mobilfunknutzung und Hirntumorrisiko in der MOBI-Kids-Studie mit größerer Wahrscheinlichkeit gezeigt hätte als in der CEFALO-Studie, wenn ein solcher Zusammenhang bestehen würde. Der Anteil der Langzeit-Nutzer*innen (> 10 Jahre) ist mit 22,5 % in der MOBI-Kids-Studie sogar größer als in der bei Erwachsenen durchgeführten INTERPHONE -Studie ( INTERPHONE Study Group, 2010 ), bei der dieser Anteil laut Castaño-Vinyals et al. bei 13,6 % lag. Damit verfügt die MOBI-Kids-Studie über eine aussagekräftigere Datenbasis als bisherige Studien. Zu beachten ist dabei, dass sich die durchschnittliche Sendeleistung der Mobiltelefone mit der flächendeckenden Einführung neuer Mobilfunktechnologien deutlich reduziert hat. Während die Exposition in der Interphone-Studie vorwiegend durch 1G (C-Netz) und 2G ( GSM ) -Telefone geschah, waren für die Nutzer*innen in der MOBI-Kids-Studie bereits Telefone mit dem deutlich effizienteren Standard 3G ( UMTS ) verfügbar, sodass bei gleichem Nutzungsverhalten von einer geringeren Exposition der Teilnehmenden der MOBI-Kids-Studie ausgegangen werden muss. Weitere Stärken der Studie sind, dass auch die Nutzung von kabellosen Telefonen berücksichtigt worden ist und dass die Auswertung zusätzlich mit einem Maß für die geschätzte Feldeinwirkung am Ort des Tumors durchgeführt wurde ( Calderón et al. 2022 ). Positiv hervorzuheben an der Studie ist zudem, dass in einer zusätzlichen Studie durch den Vergleich zwischen den Fragebogenangaben und den Angaben der Mobilfunk-Anbieter geprüft wurde, ob die Qualität der Fragebogenangaben sich zwischen Fällen und Kontrollen unterschied. Ein solcher Unterschied würde zu einer Verzerrung der Ergebnisse führen. Es zeigte sich jedoch kein relevanter Unterschied. Trotz des vergleichsweise großen Studienumfangs sind auch in dieser Studie die Fallzahlen in verschiedenen Untergruppen sehr klein, so dass aussagekräftige Auswertungen für diese Untergruppen nicht möglich sind bzw. deren Ergebnisse sehr ungenau sind. Schwächen der Studie, die jedoch für praktisch alle Fall-Kontroll-Studien gelten, sind zudem, dass eine gewisse Verzerrung der Ergebnisse durch unterschiedliche Teilnahmebereitschaft von Fällen und Kontrollen in Abhängigkeit vom Nutzungsverhalten („Selektionsbias“) nicht ausgeschlossen werden kann, und dass die Angaben zum Nutzungsverhalten im Nachhinein erhoben worden sind. Im Unterschied zu Fall-Kontroll-Studien besteht bei Kohortenstudien das Problem der selektiven Teilnahmebereitschaft von erkrankten und nicht erkrankten Personen nicht und es ist möglich, Angaben zum Nutzungsverhalten fortlaufend zu erheben. Kohortenstudien sind jedoch deutlich aufwändiger als Fall-Kontroll-Studien . Zurzeit läuft mit der COSMOS-Studie eine Langzeit- Kohortenstudie , die 300.000 Teilnehmer aus sechs Nationen (die Niederlande, England, Schweden, Finnland, Dänemark und Frankreich) umfasst ( Schüz et al. 2011 ). Ergebnisse liegen bisher noch nicht vor. Die Ergebnisse der MOBI-Kids-Studie stützen die Ergebnisse vorliegender Studien an Erwachsenen, die mehrheitlich kein erhöhtes Risiko für das Auftreten von Hirntumoren in Abhängigkeit von Mobiltelefon-Nutzung fanden. Die bisher einzige Studie zu Mobiltelefon-Nutzung und Hirntumoren bei Kindern und Jugendlichen ( Aydin et al. 2011 ) zeigte keinen statistisch signifikanten Zusammenhang. Die Studie betrachtete aber deutlich kleinere Fallzahlen und die Nutzungsdauer war wesentlich kürzer als in der MOBI-Kids-Studie. Fazit Bisher gibt es keine wissenschaftlichen Belege für einen ursächlichen Zusammenhang zwischen Mobiltelefonnutzung und dem Risiko für Hirntumoren bei Kindern und Jugendlichen, wie es auch im Standpunkt des BfS zum Thema 5G erläutert wird. Die Ergebnisse der MOBI-Kids-Studie liefern ebenfalls keinen Hinweis auf einen entsprechenden Zusammenhang. Die große sorgfältig durchgeführte multizentrische Studie trägt damit wesentlich zur Verringerung bestehender Unsicherheiten bezüglich des Gesundheitsrisikos von Kindern und Jugendlichen durch Nutzung von drahtlosen Telefonen bei. Stand: 26.09.2025
This dataset contains the location and administrative data for the largest industrial complexes in Europe, releases and transfers of regulated substances to all media, waste transfers reported under the European Pollutant Release and Transfer Register (E-PRTR) and as well as more detailed data on energy input and emissions for large combustion plants (reported under IED Art.72).
<p>Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt.</p><p>Vom Wasser zum Strom</p><p>Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet.</p><p>Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet.</p><p>Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können.</p><p>Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie</p><p>Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a> ist bekannt, dass in 37 Prozent aller berichteten <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserkrper#alphabar">Wasserkörper</a> – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen:</p><p>Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen.</p><p>Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz </p><p>Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft:</p><p>Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein <a href="https://www.umweltbundesamt.de/dokument/die-besondere-bedeutung-der-erneuerbaren-energien">Factsheet</a> erstellt.</p><p>Wasserkraftnutzung in Deutschland </p><p>Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten.</p><p>In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller.</p><p>Wasserkraftanlagen in Deutschland</p><p>Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen).</p><p>Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent.</p><p>Stromproduktion aus Wasserkraft in Deutschland</p><p>In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen.</p><p>Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Aktuelle Zahlen</a> zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die <a href="https://www.bmwk.de/Redaktion/DE/Downloads/S-T/schlussbericht-wasserkraft-231027.pdf?__blob=publicationFile&v=6%20l">EEG-Erfahrungsberichte</a>. Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar.</p><p>Wasserkraftpotenzial in Deutschland</p><p>Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen.</p><p>Die Rolle der Wasserkraft bei der Energiewende</p><p>In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie "<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-konzepte-fuer-die-klimaschutz/rescue-wege-in-eine-ressourcenschonende">RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität</a>" des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen Bruttostromerzeugung leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft.</p><p>Wasserkraft und Klimawandel</p><p>Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der Klimawandel mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft <a href="https://www.umweltbundesamt.de/publikationen/klimafolgen-fuer-wasserkraftnutzung-in-deutschland">untersuchen lassen</a>. Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden.</p><p>So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern.</p><p>Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert.</p><p>Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert.</p><p>Wasserkraftanlage in der Sieg (Unkelmühle).</p><p>Demonstration der Nutzung von Wasserkraft.</p><p>Wasserkraftanlage in der Saale bei Öblitz.</p><p>Wasserkraftanlage in der Saale unterhalb von Jena.</p><p>Wasserkraftnutzung im Bayerischen Wald.</p><p>Ausleitungswehr für die Wasserkraftnutzung bei Tübingen.</p><p>Literatur</p><p>Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227.</p><p>Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a> (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010.</p><p>Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht).</p><p>International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights.</p><p>Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18.</p><p>LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017.</p><p>LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. <a href="https://www.energieatlas.bayern.de/thema_wasser/daten.html">https://www.energieatlas.bayern.de/thema_wasser/daten.html</a>. Zugriff am 04.05.2021.</p><p>MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg.</p><p>Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748.</p><p>Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870.</p><p>Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23.</p><p>Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011.</p><p>TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150.</p><p>UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.</p>
The dataset contains information on the European river basin districts, the river basin district sub-units, the surface water bodies and the groundwater bodies delineated for the 2nd River Basin Management Plans (RBMP) under the Water Framework Directive (WFD) as well as the European monitoring sites used for the assessment of the status of the above mentioned surface water bodies and groundwater bodies. The information was reported to the European Commission under the Water Framework Directive (WFD) reporting obligations. The dataset compiles the available spatial data related to the 2nd RBMPs due in 2016 (hereafter WFD2016). See http://rod.eionet.europa.eu/obligations/715 for further information on the WFD2016 reporting. See also https://rod.eionet.europa.eu/obligations/766 for information on the Environmental Quality Standards Directive - Preliminary programmes of measures and supplementary monitoring. Where available, spatial data related to the 3rd RBMPs due in 2022 (hereafter WFD2022) was used to update the WFD2016 data. See https://rod.eionet.europa.eu/obligations/780 for further information on the WFD2022 reporting. Note: * This dataset has been reported by the member states. The subsequent QC revealed some problems caused by self-intersections elements. Data in GPKG-format should be processed using QGIS.
| Origin | Count |
|---|---|
| Bund | 534 |
| Europa | 146 |
| Land | 80 |
| Wissenschaft | 11 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 5 |
| Ereignis | 41 |
| Förderprogramm | 247 |
| Taxon | 5 |
| Text | 187 |
| Umweltprüfung | 1 |
| unbekannt | 210 |
| License | Count |
|---|---|
| geschlossen | 107 |
| offen | 312 |
| unbekannt | 277 |
| Language | Count |
|---|---|
| Deutsch | 451 |
| Englisch | 322 |
| Resource type | Count |
|---|---|
| Archiv | 119 |
| Bild | 12 |
| Datei | 177 |
| Dokument | 197 |
| Keine | 235 |
| Unbekannt | 1 |
| Webdienst | 45 |
| Webseite | 314 |
| Topic | Count |
|---|---|
| Boden | 405 |
| Lebewesen und Lebensräume | 441 |
| Luft | 371 |
| Mensch und Umwelt | 696 |
| Wasser | 420 |
| Weitere | 696 |