API src

Found 692 results.

Related terms

Member States' greenhouse gas (GHG) emission projections

The Governance of the Energy Union and Climate Action ((EU) 2018/1999) requires Member States to report national projections of anthropogenic GHG emissions. Every two years, each EU Member State shall report GHG projections in a ‘with existing measures’ scenario for the years 2020, 2025, 2030, 2035, 2040, 2045 and 2050 by gas (or group of gases) and by sector. National projections shall take into consideration any policies and measures adopted at Union level. The reported data are quality checked by the EEA and its European Topic Centre for Climate Change Mitigation and Energy (ETC/CME).

Model Output Statistics for BJORNOYA / SVALBARD (01028)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Waterbase - UWWTD: Urban Waste Water Treatment Directive – reported data

The Urban Waste Water Treatment Directive concerns the collection, treatment and discharge of urban waste water and the treatment and discharge of waste water from certain industrial sectors. The objective of the Directive is to protect the environment from the adverse effects of the above mentioned waste water discharges. This series contains time series of spatial and tabular data covering Agglomerations, Discharge Points, and Treatment Plants.

Europäischer Emissionshandel in Sachsen-Anhalt Was ist der Europäische Emissionshandel? Wie ist die Situation in Sachsen-Anhalt? Welche Einsatzstoffe sind für Sachsen-Anhalt relevant? Wie funktionieren die Verteilung und der Handel mit Emissionsberechtigungen? Was bedeutet dies für das Land Sachsen-Anhalt?

Der Europäische Emissionshandel (EU-ETS 1) ist ein marktwirtschaftlicher Ansatz zur Reduktion von Treibhausgasen in Europa und wird derzeit bei Energie- und Industrieanlagen sowie beim Luft- und Seeverkehr zur Anwendung gebracht. Innerhalb der Europäischen Union (inklusive Island, Liechtenstein und Norwegen, EU 30) gelten feste Höchstmengen an Gesamtemissionen, die von den betreffenden Anlagen innerhalb eines Jahres ausgestoßen werden dürfen. Mit jedem Jahr verringert sich diese Höchstmenge. Dadurch kommt es zu einer Einsparung von Emissionen. Die Unternehmen, die zum Emissionshandel verpflichtet sind, müssen dafür Berechtigungen erwerben und in entsprechender Menge abgeben. Angebot und Nachfrage im Hinblick auf die Emissionsberichtigungen regulieren deren Preis. Die am Emissionshandel teilnehmenden Unternehmen entscheiden dabei selbst, ob es für sie wirtschaftlicher ist, den Preis für die Emissionsberechtigungen zu zahlen oder in Emissionsminderungsmaßnahmen zu investieren. Somit können auf die für die Unternehmen wirtschaftlichste Art Treibhausgasemissionen eingespart werden. Sachsen-Anhalt ist ein Land, das durch große Braunkohlevorkommen im Süden bereits früh gute Bedingungen für energieintensive Unternehmen bot. Aus diesem Blickwinkel ist es nicht verwunderlich, dass für Sachsen-Anhalt sowohl der Energie- als auch der Industriesektor von großer Bedeutung sind – Sektoren, die großes Potential zur Senkung von Treibhausgasen besitzen, weshalb sie seit 2005 am Europäischen Emissionshandel teilnehmen. Aus diesem Grund werden der Emissionshandel und etwaige Klimaschutzmaßnahmen der Unternehmen im Land inhaltlich begleitet, um die Ergebnisse der Politik oder der interessierten Öffentlichkeit zur Verfügung zu stellen. Das Landesamt für Umweltschutz bereitet die Informationen der Europäischen Union (Unionsregister) sowie der Deutschen Emissionshandelsstelle (DEHSt) für Sachsen-Anhalt auf. Des Weiteren fließen die Daten in den Treibhausgasbericht für Sachsen-Anhalt ein. In Sachsen-Anhalt stammen aktuell rund 60 % der Treibhausgasemissionen aus Anlagen, die am EU-ETS 1 teilnehmen. Während zur Einführung des Europäischen Emissionshandels ca. zwei Drittel der sachsen-anhaltischen EU-ETS 1-Emissionen aus Energieerzeugungsanlagen stammten, verringerte sich dieser Wert über die Jahre auf ca. die Hälfte der EU-ETS 1-Emissionen (siehe Diagramm 1). Damit stellen sie 2024 ca. 8 Millionen Tonnen CO 2 -Äquivalent (CO 2 -Äq.). Ein CO 2 -Äquivalent beschreibt dabei die Klimawirkung verschiedener Treibhausgase in Relation zu Kohlenstoffdioxid (CO 2 ). So wird beispielsweise 1 Kilogramm Lachgas (N 2 O) in seiner Klimawirkung mit einem Äquivalent von 265 Kilogramm CO 2 berücksichtigt bzw. 265 Kilogramm CO 2 -Äquivalent (1 kg CO 2 = 1 kg CO 2 -Äq.). Neuere Erkenntnisse gehen davon aus, dass man sogar für 1 Kilogramm N 2 O 273 ± 130 Kilogramm CO 2 -Äq. ansetzen sollte. Die andere Hälfte stammt aus den Industrieanlagen, deren Emissionsmenge 2013 auf ein den Energieanlagen vergleichbares Niveau gehoben wurde. Die Emissionen aus der Industrie waren lange Zeit konstant und begannen erst in den letzten Jahren etwas zu sinken. Ursachen für diese Entwicklungen liegen einerseits in der Reduktion der Emissionen aus Energieanlagen infolge des Ausbaus der Erneuerbaren Energien, dem Kohleausstieg und der Preisentwicklung am Strommarkt und für Emissionsberechtigungen. Eine Rolle spielen außerdem die Witterung in den Wintermonaten sowie das Auftreten von Wind und Sonnenschein generell. Andererseits wird das Emissionshandelssystem im Bereich der Industrieanlagen weiterhin fortwährend überarbeitet. Weitere Tätigkeiten werden einbezogen, wodurch die Zahl der Anlagen bzw. der Emissionen aus diesen teilweise schlagartig steigt (siehe 2013). Die Emissionen der letzten Jahre stehen deutlich im Zeichen der Corona-Pandemie sowie des russischen Angriffskrieges auf die Ukraine und deren wirtschaftlichen Auswirkungen. Zuletzt entspannten sich die äußeren Umstände ein wenig. Damit verbundene Rebound-Effekte führten u. a. dazu, dass die Emissionen im Jahr 2024 in Sachsen-Anhalt nicht weiter sanken. Im Hinblick auf die verwendeten Einsatzstoffe in den emissionshandelspflichtigen Anlagen in Sachsen-Anhalt zeigt sich, dass drei Stoffe bzw. Stoffgruppen das Gros der sachsen-anhaltischen Emissionen verursachen: Braunkohle, Erdgas und sonstige Brennstoffe wie beispielsweise Rest- und Abfallstoffe der Wirtschaft (siehe Diagramm 2). Der zuletzt absteigende Trend der Emissionen aus diesen Einsatzstoffen liegt in den bereits oben genannten Aspekten begründet: die Stromerzeugung mit Braunkohle ist verglichen mit anderen Energieträgern kostenintensiv, nicht zuletzt durch die hohen spezifischen Emissionen je Kilowattstunde und entsprechend hohen Kosten für den Erwerb von Emissionszertifikaten. Infolge des Ukrainekonfliktes stieg der Preis von Erdgas, was die Energieerzeugung aus diesem ebenso verteuerte. Der Einsatz sonstiger Brennstoffe, die oftmals Verwendung in Industrieprozessen finden, sank aufgrund der wirtschaftlichen Herausforderungen und, damit teilweise verbunden, sinkender Produktionsmengen der letzten Jahre ebenfalls. Berechtigungen (bzw. Zertifikate) zum Ausstoß von Treibhausgasen erhalten die zum Emissionshandel verpflichteten Unternehmen auf zwei Wegen: zum einen werden Berechtigungen unter bestimmten Bedingungen kostenlos verteilt, zum anderen können die Zertifikate an der EEX in Leipzig ersteigert werden. Zur Einführung des Emissionshandels waren die meisten Anlagen sehr gut mit kostenlosen Zertifikaten ausgestattet, bei den Industrieanlagen lag die Zahl kostenloser Zertifikate sogar über der Emissionsmenge (siehe Diagramm 3). Mit einer derartigen Konstellation zeigt ein Instrument wie der Emissionshandel wenig Wirkung. Die Preise für die Zertifikate waren sehr gering und es wurde wenig in den Klimaschutz investiert. Im Laufe der Zeit wurde der Mechanismus zur Vergabe kostenloser Emissionsberechtigungen immer weiter optimiert. Zum Beispiel erhalten Energieanlagen, die ausschließlich der Stromerzeugung dienen, seit 2013 keine kostenlosen Zertifikate mehr. Industrieanlagen werden hinsichtlich eines Benchmarks betrachtet, der die umweltschonendsten Produktionsmethoden als Standard für die Verteilung von kostenlosen Berechtigungen setzt. Seit 2013 dürfen außerdem keine Zertifikate aus Kyoto-Mechanismen in den Emissionshandel einfließen. Anhand dieser und anderer Aspekte verringerte sich die Ausstattung von Energieanlagen mit kostenlosen Zertifikaten deutlich. Sie müssen inzwischen den Großteil ihrer Zertifikate ersteigern, was wiederum Anreize für Investitionen in den Klimaschutz schafft. Industrieanlagen erhalten immer noch sehr viele Zertifikate kostenlos zugeteilt. Dies soll vor allem verhindern, dass Anlagenbetreiber ihre Produktion in Regionen auslagern, wo dem Klimaschutz eine geringere Bedeutung beigemessen wird als in der Europäischen Union (sog. Carbon Leakage). Doch auch hier wurden in den letzten Jahren Anpassungen vorgenommen. Mit dem Grenzausgleichsmechanismus CBAM werden nach und nach für Produkte, die in der Europäischen Union dem Emissionshandel unterliegen und eingeführt werden, ebenso Zertifikate fällig. Durch den zusätzlichen Kostenfaktor verlieren diese gegenüber emissionsärmer produzierten inländischen Produkten an Attraktivität. Je weiter CBAM voranschreitet, umso mehr werden die kostenlosen Berechtigungen für Industrieanlagen zurückgefahren. Es ist vorgesehen, dass im Jahr 2030 keinerlei Zertifikate mehr kostenlos zur Verfügung gestellt werden und alle Anlagenbetreiber ihren Bedarf durch Ersteigerung decken müssen. Dies gilt sowohl für Energie- als auch für Industrieanlagen. Sachsen-Anhalt hat aufgrund seiner (Industrie-)Geschichte verglichen mit anderen Bundesländern einen hohen CO 2 -Ausstoß. Viele Produkte, die in anderen Bundesländern verbraucht werden, werden in Sachsen-Anhalt hergestellt. Nichtsdestotrotz entsteht dadurch eine Verantwortung für das Land, seinen Treibhausgasausstoß zu verringern. Für die Braunkohlekraftwerke im Land, die für sehr hohe CO 2 -Emissionen verantwortlich sind, liegen teilweise bereits Pläne für die Reduzierung von Treibhausgasemissionen vor, manche befinden sich auch schon in der Umsetzung. Sachsen-Anhalts größtes Braunkohlekraftwerk beispielsweise muss infolge des Kohleverstromungsbeendigungsgesetz (KVBG) spätestens Ende 2034 den Betrieb einstellen. Da der Standort jedoch für die Energieerzeugung erhalten bleiben soll, werden hier zukünftig klimaschonendere Wege beschritten. Aber auch Kraftwerke, die nicht vom KVBG betroffen sind, müssen ihren Treibhausgasausstoß weiter verringern, um zum Ziel der Klimaneutralität im Jahr 2045 beizutragen. Auch die Industrieanlagen müssen ihre Emissionen deutlich reduzieren. Da bei den Industrieanlagen aktuell verringerte Emissionen noch vielfach auf verringerte Produktionen infolge der wirtschaftlichen Rahmenbedingungen zurückzuführen sind, sind hier noch die Herausforderungen noch größer. Letzte Aktualisierung: 20.10.2025

WISE WFD Reference Spatial Datasets reported under Water Framework Directive 2016 - PUBLIC VERSION - version 1.9, Sep. 2025

The dataset contains information on the European river basin districts, the river basin district sub-units, the surface water bodies and the groundwater bodies delineated for the 2nd River Basin Management Plans (RBMP) under the Water Framework Directive (WFD) as well as the European monitoring sites used for the assessment of the status of the above mentioned surface water bodies and groundwater bodies. The information was reported to the European Commission under the Water Framework Directive (WFD) reporting obligations. The dataset compiles the available spatial data related to the 2nd RBMPs due in 2016 (hereafter WFD2016). See http://rod.eionet.europa.eu/obligations/715 for further information on the WFD2016 reporting. See also https://rod.eionet.europa.eu/obligations/766 for information on the Environmental Quality Standards Directive - Preliminary programmes of measures and supplementary monitoring. Where available, spatial data related to the 3rd RBMPs due in 2022 (hereafter WFD2022) was used to update the WFD2016 data. See https://rod.eionet.europa.eu/obligations/780 for further information on the WFD2022 reporting. Note: * This dataset has been reported by the member states. The subsequent QC revealed some problems caused by self-intersections elements. Data in GPKG-format should be processed using QGIS.

Menschliches Bioklima in der Arktis im Zeitalter des Klimawandels

Der Klimawandel hat in der Arktis weitreichende direkte und indirekte Auswirkungen auf die Gesundheit der indigene und nicht-indigene Bevölkerung. Die Klima- und Wetterbedingungen der nördlichen Breiten und die jüngsten dramatischen Klimaveränderungen führen zu Temperaturextremen, die sich auf die soziale und wirtschaftliche Struktur der städtischen und ländlichen Gebiete auswirken werden. Eine eingehende Analyse dieser Veränderungen sollte sich sowohl mit den spezifischen natürlichen und sozialen Merkmalen befassen als auch mit den Anliegen der indigenen Bevölkerung. Das menschliche Wohlbefinden im Kontext von Klima- und Wetterextremen lässt sich mit dem Universal Thermal Climate Index (UTCI) erfassen. Während die Lufttemperatur allein ein guter Indikator für die aktuellen und zukünftigen Wetter- und Klimabedingungen ist, kann das Wohlbefinden durch starke Winde und hohe Luftfeuchtigkeit beeinflusst werden. Gerade in Küstengebieten verschärfen sich die klimatischen Situationen im Winter durch das Zusammenspiel von Wind und Kälte. Das Projekt zielt darauf ab, die aktuellen bioklimatischen Bedingungen zu identifizieren und mittels dem UTCI zu bewerten. Der Schwerpunkt liegt auf der thermischen Belastung für den menschlichen Körper und der Bewertung der sozialen Anfälligkeit, die sich aus den rezenten extremen klimatischen Schwankungen in der Arktis ergeben. Es werden auch die positiven Folgen der globalen Klimaerwärmung und der gesellschaftliche Nutzen aus diesen Veränderungen der nördlichen Breitengrade diskutiert. Zur Bestimmung der sozialen Verwundbarkeit und der sozialen Sensibilität und Anpassungsfähigkeit in den nördlichen Breiten berechnen wir den Social Vulnerability Index (SVI). Die SVI konkretisiert die sozialen Probleme, die sich aus dem fortschreitenden Klimawandel ergeben und liefert Erkenntnisse für die Entwicklung von Anpassungsstrategien in dieser Region. Um sich in die regionalen Details des SVI zu vertiefen, wird das sozioökonomische Umfeld der Gemeinden im Norden Norwegens als Fallstudie betrachtet. Die Ergebnisse des Projekts können als nützliches Instrument zur Minimierung von Bevölkerungsverlusten und zur Gewährleistung der sozialen Sicherheit in der Arktis dienen und politischen Entscheidungsträgern eine solide wissenschaftliche Grundlage für die Prävention und Eindämmung von Klimakatastrophen bieten, was für die Menschen in den nördlichen Gebieten äußerst wichtig ist in Zeiten des Klimawandels.

Entfernung von gelöstem Sauerstoff aus Aminlösungen für die CO2-Abtrennung

MeDORA zielt entsprechend der Vorrangigen Forschungsrichtungen von Mission Innovation auf die beschleunigte Umsetzung umweltfreundlicher Prozesse zur CO2-Abscheidung ab und setzt die im 7. Energieforschungsprogramm 'Innovationen für die Energiewende' des Bundes in Abschnitt 3.15 'Technologien für die CO2-Kreislaufwirtschaft' genannte Zielsetzung der Weiterentwicklung von Komponenten und Werkstoffen für die CO2-Abtrennung konsequent um. In MeDORA soll mittels eines innovativen Membranverfahrens der in Amin-Waschmitteln von CO2-Abtrennungsanlagen gelöste Sauerstoff entfernt werden, um die oxidative Waschmittelzersetzung um 50% zu reduzieren und darüber hinaus den O2-Gehalt im abgetrennten CO2 auf kleiner als 10 ppmv zu begrenzen. Die angestrebte Erhöhung der Waschmittellebensdauer lässt eine Senkung der Betriebskosten für das Waschmittelmanagement um bis zu 70 % erwarten und kann damit die Umweltauswirkungen einer Abscheidungsanlage durch geringe Abfallmengen beim Waschmittelmanagement (Reclaiming) und reduzierte Emissionen (insbesondere des flüchtigen Zersetzungsprodukts NH3) deutlich senken. Die höhere Reinheit des CO2-Produkts erlaubt es die strengen Spezifikationen geologischer Speicherprojekte (z.B. Northern Lights in Norwegen) ohne aufwändige Nachbehandlung zu erfüllen und senkt entsprechend auch die Kosten für CCU-Anwendungen, bei denen O2-Spuren Katalysatoren schädigen. MeDORA, mit 6 Partnern aus 3 europäischen Ländern, wird von einem starken industriebasierten Konsortium geleitet, das die gesamte Wertschöpfungskette abdeckt. Die Langzeittests von MeDORA (TRL 7-8) in Niederaußem, hier erstmalig auch mit innovativen asymmetrischen Membranen, und bei HVC in den Niederlanden stellen die industrielle Anwendbarkeit sicher und werden begleitet von technisch-wirtschaftlichen Analysen, LCA, Vergleich mit anderen Techniken zur O2-Reduzierung im Waschmittel und im Produkt-CO2, werkstoffwissenschaftlichen Untersuchungen sowie der Entwicklung eines Verwertungsplanes.

Langzeitvariation der stratospherischen Aerosolextinktion und der Aerosolteilchengrößen bei mittleren und hohen nördlichen Breiten

Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.

Windanalyse in der mittleren Atmosphäre mittels nächtlicher RMR-Lidar-Messungen in mittleren Breiten in Kühlungsborn (AMUN)

Der horizontale Wind nimmt eine Schlüsselrolle in der Dynamik der Atmosphäre ein. Insbesondere beeinflusst er die Ausbreitung und Dissipation von Schwerewellen und thermischen Gezeiten in der mittleren Atmosphäre. Simultane Wind- und Temperaturmessungen bieten dabei die einzigartige Möglichkeit, sowohl kinetische als auch potentielle Energiedichten der Schwerewellen zu berechnen, aus denen wiederum intrinsische Wellenparameter ableitbar sind. Windmessungen in der mittleren Atmosphäre sind jedoch insbesondere im Höhenbereich zwischen 35 und 75 km sehr selten, da hier weder Radiosonden noch Radars Daten liefern und Wind-Radiometer bzw. Satelliten keine für die Untersuchung von Schwerewellen ausreichend große Genauigkeit und Auflösung haben. Deshalb wollen wir in Kühlungsborn/Deutschland (54° N, 12° O) ein neues Lidar aufbauen, mit dem bei gekippten Teleskopen der Horizontalwind aus der Dopplerverschiebung der Rayleigh-Rückstreuung bestimmt werden kann. Neben der Erstellung einer Wind-Klimatologie steht vor allem die Untersuchung der Ausbreitung von Trägheitsschwerewellen in der mittleren Atmosphäre im Vordergrund. Dazu werden wir u.a. horizontale und vertikale Impulsflüsse und die Höhe des Impulsübertrags an die Hintergrundatmosphäre bestimmen. Diese für die Energiebilanz der Atmosphäre wesentlichen Parameter liefern wichtige Vergleichsgrößen für Zirkulationsmodelle. Ferner werden wir intrinsische Welleneigenschaften aus Wind-Hodographen analysieren, die für andere bodengebundene Messsysteme in der Regel nicht zugänglich sind. Unter Einbeziehung des lokalen Hintergrundwindes sollen aufwärts und abwärts propagierende Schwerewellen eindeutig getrennt und quantifiziert werden. Die Analysen werden insgesamt unser Verständnis der vertikalen Kopplung und der zu Grunde liegenden Zirkulation in der mittleren Atmosphäre deutlich verbessern. Das neue Lidarsystem ergänzt ein in Nordnorwegen am ALOMAR-Observatorium (69° N, 16° O) vorhandenes Windlidar, welches ebenfalls vom IAP betrieben wird. In diesem Projekt wird die dabei erworbene Expertise genutzt, um die Entwicklungsrisiken für das neue Lidar zu minimieren und schwerpunktmäßig Windmessungen in der mittleren Atmosphäre durchzuführen und zu interpretieren.

Indikatoren für veränderte Lichtverhältnisse in marinen Unterwasserökosystemen, Vorhaben: Rechtliche Dimensionen

1 2 3 4 568 69 70