The Urban Waste Water Treatment Directive concerns the collection, treatment and discharge of urban waste water and the treatment and discharge of waste water from certain industrial sectors. The objective of the Directive is to protect the environment from the adverse effects of the above mentioned waste water discharges. This series contains time series of spatial and tabular data covering Agglomerations, Discharge Points, and Treatment Plants.
Der vorliegende Antrag stellt die zentrale Modellierungskomponente des internationalen Gemeinschaftsprojekts MAGIC-DML, an dem Wissenschaftler aus Schweden, USA, Deutschland, dem Vereinigten Königreich und Norwegen teilnehmen, vor. MAGIC-DML zielt auf die Rekonstruktion von langfristigen Mustern und der zeitlichen Abfolge von Änderungen der Eiserhebung im ostantarktischen Eisschild über Dronning-Maud-Land (DML) ab. Die Modellierungskomponente von MAGIC-DML soll Informationen über vergangene Eisoberflächenhöhen über DML, gewonnen durch Kartierung (Fernerkundung) und absoluten Altersbestimmungen (kosmogene Datierung) glazialer Landformen auf Nunataks, und anderen Gebieten der östlichen Antarktis mit hochaufgelöster Eisschild-Modellierung verknüpfen, um Einblicke in langfristige Veränderungen des ostantarktischen Eisschildes und regionalen Klimas zu erhalten. Im Rahmen unserer numerischen Experimente werden wir eine große Zahl von Klimamodellergebnissen überprüfen und folgende Hypothesen testen:- Die Inland-Regionen des ostantarktischen Eisschildes haben seit dem Pliozän langfristige Reduzierungen der Eishöhen erfahren.- Der Eisschild zog sich zuletzt von seiner maximalen Ausdehnung nach 25 ka (tausend Jahre vor heute) zurück, zu welcher Zeit die Eisoberfläche nahe der Küste mehrere hundert Meter höher war; allerdings war sie nicht höher - und vielleicht sogar niedriger - über den meisten Gebieten des östlichen antarktischen Kontinents. Unser Ansatz, Eisschild-Modellierung mit geochronologischen Daten und klimamodellbasierten Rekonstruktionen zu kombinieren, wird es uns erlauben, den relativen Beitrag des ostantarktischen Eisschildes zu vergangenen Meeresspiegelschwankungen einzugrenzen und Unsicherheiten in vergangenen Klimabedingungen über der Antarktis zu verringern. Als Teil des Vorhabens werden wir die Reaktion des ostantarktischen Eisrandes auf wärmere Klimabedingungen als die heutigen, so wie sie für das Pliozän, den Marinen Isotopenstadien 11c (420 - 400 ka) und 5e (124 -119 ka) rekonstruiert wurden, quantifizieren. Hierdurch können Analogszenarien hinsichtlich der Reaktion des ostantarktischen Eisschildes auf zukünftig zu erwartende Klimaveränderungen dargeboten werden.
DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]
The WISE WFD reference spatial datasets contain information on the European river basin districts, the river basin district sub-units, the surface water bodies and the groundwater bodies delineated for the River Basin Management Plans (RBMP) under the Water Framework Directive (WFD) as well as the monitoring sites located in surface water bodies and groundwater bodies. The dataset includes EU Member States, Norway and Iceland.
<p>Der Europäische Emissionshandel ist seit 2005 das zentrale Klimaschutzinstrument der EU. Ziel ist die Reduktion der Treibhausgas-Emissionen der teilnehmenden Energiewirtschaft und der energieintensiven Industrie. Seit 2012 nimmt der innereuropäische Luftverkehr teil und seit 2024 auch der Seeverkehr.</p><p>Teilnehmer, Prinzip und Umsetzung des Europäischen Emissionshandels</p><p>Der Europäische Emissionshandel (EU-ETS 1) wurde 2005 zur Umsetzung des internationalen Klimaschutzabkommens von Kyoto eingeführt und ist das zentrale europäische Klimaschutzinstrument. Neben den 27 EU-Mitgliedstaaten haben sich auch Norwegen, Island und Liechtenstein dem EU-Emissionshandel angeschlossen (EU 30). Das Vereinigte Königreich Großbritannien und Nordirland (kurz: Großbritannien/GB) nahm bis zum 31.12.2020 am EU-ETS 1 teil. Seit dem 01.01.2021 ist dort ein nationales Emissionshandelssystem in Kraft. Im EU-ETS 1 werden die Emissionen von europaweit rund 9.000 Anlagen der Energiewirtschaft und der energieintensiven Industrie erfasst. Zusammen verursachen diese Anlagen fast 40 % der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen in Europa.</p><p>Seit 2012 ist der innereuropäische Luftverkehr in den EU-ETS 1 einbezogen und seit 2024 der Seeverkehr. Seit 2020 ist das System außerdem mit dem Schweizer Emissionshandelssystem <a href="https://www.dehst.de/SharedDocs/downloads/DE/luftverkehr/schweiz.pdf">verlinkt</a>. Ab 2027 wird ergänzend zum EU-ETS 1 ein europäischer Emissionshandel für Brennstoffe eingeführt (EU-ETS 2), der insbesondere im Verkehrs- und Gebäudebereich zur Anwendung kommt. </p><p>Der EU-ETS 1 funktioniert nach dem Prinzip des sogenannten „Cap & Trade“. Eine Obergrenze (Cap) legt fest, wie viele Treibhausgas-Emissionen von den emissionshandelspflichtigen Anlagen insgesamt ausgestoßen werden dürfen. Die Mitgliedstaaten geben eine entsprechende Menge an Emissionsberechtigungen an die Anlagen aus – teilweise kostenlos, teilweise über Versteigerungen. Eine Berechtigung erlaubt den Ausstoß einer Tonne Kohlendioxid-Äquivalent (CO2-Äq). Die Emissionsberechtigungen können auf dem Markt frei gehandelt werden (Trade). Hierdurch bildet sich ein Preis für den Ausstoß von Treibhausgasen. Dieser Preis setzt Anreize bei den beteiligten Unternehmen ihre Treibhausgas-Emissionen zu reduzieren.</p><p>Infolge wenig ambitionierter Caps, krisenbedingter Produktions- und Emissionsrückgänge und der umfangreichen Nutzung von internationalen Projektgutschriften hatte sich seit 2008 eine große Menge überschüssiger Emissionsberechtigungen im EU-ETS 1 angesammelt. Diese rechnerischen Überschüsse haben wesentlich zu dem bis 2017 anhaltenden Preisrückgang für europäische Emissionsberechtigungen (EUA) beigetragen, sodass der Emissionshandel in diesem Zeitraum nur eine eingeschränkte Lenkungswirkung entfaltet konnte. Zwischenzeitlich wurde mit unter 3 Euro das niedrigste Niveau seit dem Beginn der zweiten Handelsperiode (2008-2012) erreicht. Seit Mitte 2017 sind die EUA-Preise in Folge der letzten beiden Reformpakete zum EU-ETS 1 deutlich gestiegen. Der bemerkenswerte Preisanstieg zeigt, dass die Reform des EU-ETS 1 Vertrauen in den Markt zurückgebracht hat. Zwischen Mitte 2017 und Februar 2023 hatte sich der EUA-Preis von rund 5 Euro auf zwischenzeitlich knapp über 100 Euro verzwanzigfacht, den höchsten Stand seit Beginn des EU-ETS 1 im Jahr 2005. Seit dem Rekordhoch im Februar 2023 befindet sich der EUA-Preis jedoch in einer Konsolidierungsphase und bewegt sich eher seitwärts. Aktuell notiert der EUA-Preis bei rund 70 Euro (Stand 30.06.2025) (siehe Abb. „Preisentwicklung für Emissionsberechtigungen (EUA) seit 2008).</p><p>Vergleich von Emissionen und Emissionsobergrenzen (Cap) im EU-ETS 1</p><p>In den ersten beiden Handelsperioden (2005-2007 und 2008-2012) hatte jeder Mitgliedstaat der EU sein Cap in Abstimmung mit der Europäischen Kommission selbst festgelegt. Das gesamteuropäische Cap ergab sich dann aus der Summe der nationalstaatlichen Emissionsobergrenzen. Innerhalb dieser Zeiträume standen in jedem Jahr jeweils die gleichen Mengen an Emissionsberechtigungen für den Emissionshandel zur Verfügung. Ab der dritten Handelsperiode (2013-2020) wurde erstmals eine europaweite Emissionsobergrenze (Cap) von insgesamt 15,6 Milliarden Emissionsberechtigungen festgelegt, wobei Berechtigungen auf die acht Jahre der Handelsperiode derart verteilt wurden, dass sich ein sinkender Verlauf des Caps ergab (siehe blaue durchgezogene Linie in Abb. „Cap und Emissionen im Europäischen Emissionshandel 1“). Dies dient der graduellen Verknappung des Angebots und wurde in der aktuell laufenden, 4. Handelsperiode (2021 – 2030) fortgesetzt, ab 2024 mit stärkeren jährlichen Absenkungen (siehe unten zum „Fit for 55“-Paket).</p><p>Zusätzlich zu den Emissionsberechtigungen konnten die Betreiber im EU-ETS 1 bis zum Ende der dritten Handelsperiode in einem festgelegten Umfang auch internationale Gutschriften aus CDM- und JI-Projekten (CER/ERU) nutzen. Durch diese internationalen Mechanismen wurde das Cap erhöht (siehe blaue gestrichelte Linie in Abb. „Cap und Emissionen im Europäischen Emissionshandel 1“). Die Abbildung zeigt deutlich, dass mit Ausnahme des Jahres 2008 die Emissionen im EU-ETS 1 (siehe hellblaue Säulen) bislang immer unterhalb des Caps lagen: So unterschritten die Emissionen im EU-ETS 1 bereits im Jahr 2014 den Zielwert für das Jahr 2020. Damit haben sich das Cap und die Emissionen im EU-ETS 1 strukturell auseinanderentwickelt. Durch das sog. Backloading (Zurückhalten von für die Versteigerung vorgesehenen Emissionsberechtigungen) in den Jahren 2014 bis 2016 und ab 2019 durch die sogenannte Marktstabilitätsreserve (MSR) wurde dieser Überschuss an Emissionsberechtigungen schrittweise abgebaut.</p><p>Das „Fit for 55“ Paket ist maßgeblich durch eine Stärkung des Europäischen Emissionshandels (EU-ETS 1) geprägt. Nach einer politischen Einigung im Dezember 2022 zwischen Mitgliedsstaaten, Kommission und dem EU-Parlament sind die Änderungen an der Emissionshandelsrichtlinie am 16. Mai 2023 im Amtsblatt der Europäischen Union veröffentlicht worden. Neben der Einbeziehung des Seeverkehrs ab 2024 (siehe im nächsten Absatz) wird vor allem die Klimaschutzambition für die laufende vierte Handelsperiode (2021-2030) deutlich erhöht. Das Minderungsziel in den ETS 1-Sektoren für 2030 wurde von aktuell 43 auf 62 % gegenüber 2005 verschärft. Dieses Ziel soll durch eine Erhöhung des linearen Reduktionsfaktors (LRF) von 2,2 auf 4,3 % ab 2024 und auf 4,4 % ab 2028 erreicht werden. Außerdem wird zu zwei Zeitpunkten (2024 und 2026) eine zusätzliche Reduktion des Caps (verfügbare Menge an Emissionszertifikaten im EU-ETS 1) durchgeführt. Für das Jahr 2024 wurde das Cap zusätzlich um 90 Mio. Emissionsberechtigungen abgesenkt und im Jahr 2026 um weitere 27 Mio. Berechtigungen (siehe schwarze Linie in Abb. „Cap und Emissionen im Europäischen Emissionshandel 1“).</p><p>Diese schwarze Linie stellt dabei den Cap-Anteil dar, der auf die stationären Anlagen entfällt. Ab 2024 wurde zudem der Seeverkehr vollständig in den EU-ETS 1 integriert, weshalb das Cap im Jahr 2024 um 74,5 Mio. Emissionsberechtigungen erhöht wurde. Für den Seeverkehr ist keine kostenloseZuteilung vorgesehen, womit eine Vollversteigerung gilt.</p><p>Für den Luftverkehr wird die kostenlose Zuteilung bis 2026 auslaufen und durch die Versteigerung aller für den Luftverkehr vorgesehenen Emissionsberechtigungen ersetzt werden. Zwar wird hier weiterhin ein eigenes Cap berechnet (27,6 Millionen EUA für das Jahr 2024), da die Emissionsberechtigungen ab 2025 jedoch frei zwischen allen EU-ETS 1-Sektoren gehandelt und zur Erfüllung der Abgabepflichten genutzt werden können, ergibt sich daraus ein gemeinsames Cap für alle Sektoren des EU-ETS 1.</p><p>In Summe betrug dieses Cap (siehe Linie im Farbverlauf in Abb. „Cap und Emissionen im Europäischen Emissionshandel 1“) für alle Sektoren des EU-ETS 1 im Jahr 2024 rund 1,41 Milliarden EUA.</p><p>Die Abbildung „Cap und Emissionen im Europäischen Emissionshandel 1“ weist somit die Emissionen und das Cap auf Basis der tatsächlichen Anwendungsbereiche in den jeweiligen Handelsperioden aus. Dies ist bei der Interpretation der Daten zu berücksichtigen. So wurde der Anwendungsbereich des EU-ETS 1 im Jahr 2013 ausgeweitet, seitdem müssen auch Anlagen zur Metallverarbeitung, Herstellung von Aluminium, Adipin- und Salpetersäure, Ammoniak und andere Anlagen der chemischen Industrie ihre Emissionen berichten und eine entsprechende Menge an Emissionsberechtigungen abgeben. Weiterhin gilt seit der dritten Handelsperiode die Berichts- und Abgabepflicht nicht mehr nur für Kohlendioxid, sondern zusätzlich sowohl für die perfluorierten Kohlenwasserstoff-Emissionen der Primäraluminiumherstellung als auch für die Distickstoffmonoxid-Emissionen der Adipin- und Salpetersäureherstellung. Bei Berücksichtigung der (geschätzten) Emissionen dieser Anlagen (sogenannte „scope-Korrektur“) würden die Emissionen zwischen 2012 und 2013 nicht steigen, sondern sinken. Die scope-Korrektur ist ein Schätzverfahren der Europäischen Umweltagentur. Außerdem ist Großbritannien ab der vierten Handelsperiode nicht mehr in den angegebenen Werten für das Cap und die Emissionen enthalten.</p><p>Entwicklung der Treibhausgas-Emissionen im stationären EU-ETS 1 EU-weit</p><p>Nach Angaben der Europäischen Kommission sanken die Emissionen aller am EU-ETS 1 teilnehmenden stationären Anlagen (in den 27 EU-Mitgliedstaaten und Island, Liechtenstein, Norwegen) 2024 deutlich gegenüber dem Vorjahr: von etwa 1,09 auf 1,03 Milliarden Tonnen <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Äq, also um etwa 6,5 %. Gegenüber dem Beginn des europäischen Emissionshandels im Jahr 2005 liegt der Emissionsrückgang deutscher Anlagen im EU-ETS 1 bei etwa 47 %. Europaweit gingen die Emissionen im EU-ETS 1 sogar etwas stärker um 51 % zurück. Sie haben sich damit seit dem Beginn des EU-ETS 1 mehr als halbiert (siehe Abb. „Minderungen im EU-ETS seit 2005“).</p><p>Um die Emissionen der ersten (2005-2007), zweiten (2008-2012), dritten (2013-2020) und vierten Handelsperiode (2021-2030) vergleichbar zu machen, wurden die Ergebnisse eines Schätzverfahrens der Europäischen Umweltagentur zur Bereinigung der verschiedenen Anwendungsbereiche im EU-ETS 1 genutzt (sogenannte „scope-Korrektur“). Außerdem wurden die Emissionen Großbritanniens von den Werten aller Jahre seit 2005 abgezogen. Die Abbildung „Minderungen im EU-ETS seit 2005“ zeigt so die relative Emissionsentwicklung auf Basis des Anwendungsbereichs der stationären Anlagen der laufenden vierten Handelsperiode.</p><p>Treibhausgas-Emissionen deutscher Energie- und Industrieanlagen im Jahr 2024</p><p>Die Emissionen der 1.716 in Deutschland vom EU-ETS 1 erfassten stationären Anlagen sanken gegenüber 2023 um 5,5 % auf 273 Mio. t. CO2-Äq. Die Entwicklung verlief dabei in den Sektoren Energie und Industrie gegenläufig.</p><p>Die Emissionen der Energieanlagen sanken im Vergleich zum Vorjahr von 188 um rund 18 Mio. t. CO2-Äq (9,5 %) auf 171 Mio. t. CO2-Äq. Von 2023 auf 2024 sank die <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttostromerzeugung#alphabar">Bruttostromerzeugung</a> der Braunkohlekraftwerke um rund 8 %, der Steinkohlekraftwerke um rund 27 %. Dagegen erhöhte sich die Bruttostromerzeugung der Erdgaskraftwerke um rund 5 % (AGEB 2025). Dabei wird die im Emissionshandel geltende Abgrenzung zwischen Industrie und Energie zugrunde gelegt (siehe Abb. „Verhältnis zwischen den Emissionshandels-Sektoren Energie und Industrie“).</p><p>Die Emissionen der 838 deutschen Anlagen der energieintensiven Industrie (siehe Tab. „Emissionen der Anlagen in Deutschland nach Branchen“) betrugen im Jahresdurchschnitt der dritten Handelsperiode 2013 bis 2020 knapp 124 Mio. t. CO2-Äq. 2019 sanken sie erstmals unter dieses Niveau auf 120 Mio. t. CO2-Äq und lagen seitdem darunter. Im Jahr 202 sanken die Emissionen erneut deutlich um 10 % auf 101 Mio. t. CO2-Äq, auf den niedrigsten Stand seit 2013, als mit Beginn der dritten Handelsperiode der derzeitige Anwendungsbereich eingeführt wurde. 2024 lagen sie mit 102 Millionen Tonnen CO2-Äq – mit einem leichten Plus von 1,1 % – auf dem Niveau des Vorjahres.</p><p>Die Entwicklungen im Jahr 2024 auf Ebene der Branchen gegenüber dem Vorjahr 2023 sind sehr heterogen. Während 2023 alle Branchen rückläufige Emissionen verzeichneten, nahmen die Emissionen 2024 vor allem in der Nichteisenmetallindustrie (15 %) und der chemischen Industrie (9 %) stark zu. Leichte Anstiege der Emissionen zwischen 1,5 bis knapp 3 % konnten bei den Raffinerien, der Eisen- und Stahlindustrie, Industrie- und Baukalk und der Papier- und Zellstoffindustrie verzeichnet werden. Einzig bei der Zementklinkerherstellung ist ein Rückgang um 10 % zu verzeichnen.</p><p>In der Tabelle „Emissionen der Anlagen in Deutschland nach Branchen“ sind die Kohlendioxid-Emissionen der emissionshandelspflichtigen Anlagen der Jahre 2019 bis 2024, sowie der Jahresdurchschnitt der zweiten Handelsperiode (2008 bis 2012) und dritten Handelsperiode (2013 bis 2020) für die Sektoren Energie und Industrie sowie für die einzelnen Industriebranchen angegeben. Für die ausgewiesenen Emissionen im Gesamtzeitraum 2008 bis 2023 wird der tatsächliche Anlagenbestand des jeweiligen Jahres zugrunde gelegt. Das heißt die Emissionen stillgelegter Anlagen werden berücksichtigt. Von der Erweiterung des Anwendungsbereichs des Emissionshandels sind bis auf die Papier- und Zellstoffindustrie sowie die Raffinerien sämtliche Industriebranchen voll oder teilweise betroffen. Dies ist beim Vergleich der Emissionen aus der zweiten und dritten Handelsperiode zu beachten (zum Beispiel nehmen seit 2013 Anlagen zur Nichteisenmetallverarbeitung und zur Herstellung von Aluminium am EU-ETS 1 teil).</p><p>Luftverkehr im Emissionshandel </p><p>Seit Anfang 2012 ist auch der Luftverkehr in den Europäischen Emissionshandel (EU-ETS 1) einbezogen. 2021 ist die Einführung des Systems zur Kompensation und Minderung von Kohlenstoffemissionen der Internationalen Luftfahrt (Carbon Offsetting and Reduction Scheme for International Aviation, kurz <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CORSIA#alphabar">CORSIA</a>) erfolgt. CORSIA ist eine von der Internationalen Zivilluftfahrtorganisation (ICAO) erarbeitete globale marktbasierte Maßnahme.</p><p>Durch die Reform der Emissionshandelsrichtlinie (EHRL) im Rahmen von „Fit for 55“ werden auch für den Sektor Luftverkehr die Regeln deutlich ambitionierter. Dies geschieht zum einen dadurch, dass das Cap durch den angehobenen linearen Reduktionsfaktor deutlich reduziert wird, sowie durch das schnelle Auslaufen der kostenlosen Zuteilung bis Ende 2025. Ab 2026 werden alle Emissionsberechtigungen, mit Ausnahme der antragsbasierten, kostenlosen Zuteilung von bis zu 20 Mio. Berechtigungen für die Nutzung von nachhaltigen Flugkraftstoffen (Sustainable Aviation Fuels, SAF), versteigert. Diese Zertifikate dienen Luftfahrzeugbetreibern zur Kompensation ihrer Mehrkosten durch die verpflichtende Beimischquote nachhaltiger Kraftstoffe ab 2024 (ReFuelEU Aviation). Darüber hinaus werden ab 2025 die sogenannten Nicht-CO2-Effekte des Luftverkehrs, zunächst über ein Monitoring, später voraussichtlich auch mit einer Abgabepflicht von Emissionsberechtigungen in den EU-ETS 1 einbezogen. Zudem wird CORSIA für die Flüge von und zu sowie zwischen Drittstaaten im Rahmen der EHRL im europäischen Wirtschaftsraum (EWR) implementiert. </p><p>Die Abbildung „Luftverkehr (von Deutschland verwaltete Luftfahrzeugbetreiber), Entwicklung der emissionshandelspflichtigen Emissionen 2013 bis 2024“ zeigt die Emissionen der von Deutschland verwalteten Luftfahrzeugbetreiber zwischen 2013 und 2024. Die Emissionen der von Deutschland verwalteten Luftfahrzeugbetreiber summierten sich 2024 auf rund 9,0 Mio. t. CO2-Äq. Sie sind damit im Vergleich zum Vorjahr deutlich um etwa 1,2 Mio. t. CO2-Äq oder rund 15,9 % gestiegen. Damit erreicht das Emissionsniveau 2024 nahezu das Vor-Pandemie-Niveau aus dem Jahr 2019 von rund 9 Millionen Tonnen CO2. Der Wachstumstrend ab 2021 setzt sich somit fort, nachdem die Emissionen 2020 rapide auf unter 4 Millionen Tonnen gesunken sind. Der Anstieg der Emissionen ist einerseits mit der fortschreitenden Erholung des Luftverkehrs von den Folgen der COVID-19-Pandemie verbunden. Andererseits ist der Anstieg ab dem Jahr 2024 auch teilweise auf die zusätzlichen Berichts- und Abgabepflichten im veränderten Anwendungsbereich zurückzuführen.</p><p>Seeverkehr im Emissionshandel</p><p>Der Seeverkehrssektor ist ab 2024 in den EU-ETS 1 integriert, wobei für den Seeverkehr keine kostenlose Zuteilung vorgesehen ist und damit eine Vollversteigerung gilt. Allerdings gibt es eine bis 2026 reichende Einführungsphase. Im Gegensatz zum Luftverkehr wurde für den Seeverkehr kein gesondertes Cap eingeführt (siehe Abschnitt „Vergleich von Emissionen und Emissionsobergrenzen (Cap) im EU-ETS 1„).</p><p>Die CO2-Emissionen von Schiffen mit einer Bruttoraumzahl (BRZ) von mindestens 5.000 einer Berichts- und Abgabepflicht im EU-ETS 1. Dabei sind 100 % der Emissionen in den Häfen eines Mitgliedsstaates, sowie 100 % der Emissionen von Fahrten zwischen Häfen des Europäischen Wirtschaftsraums (EWR) emissionshandelspflichtig. Für Emissionen auf Strecken zwischen EWR-Häfen und Häfen außerhalb des EWR besteht eine Abgabepflicht von 50 %. Die Integration des Seeverkehrs in den EU-ETS 1 erfolgt schrittweise: So sind 2024 nur 40 % und 2025 dann 70 % der geprüften CO2-Emissionen abgabepflichtig. Ab 2026 werden zudem die <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Äquivalente von Methan (CH4) und Lachgas (N2O) berücksichtigt und es müssen für 100 % der geprüften Treibhausgasemissionen Berechtigungen abgegeben werden. Die CO2-Emissionen im Seeverkehr entsprachen 2022 mit 135,5 Millionen Tonnen CO2 einem Anteil von etwa 4 % der gesamten CO2-Emissionen der EU.</p><p>Aufgrund der komplexen Strukturen im Seeverkehr (Registrierung, Verifizierung, Berichtsabgabe sowohl auf Schiffs- als auch auf Unternehmensebene) sowie Verzögerungen und Problemen bei der Bereitstellung zentraler Software konnten noch nicht alle Schifffahrtsunternehmen bis zum entsprechenden Stichtag ihre Vorjahresemissionen im Register eintragen oder die jeweiligen Emissionsberichte einreichen. Mit Stand 14.04.2025 sind circa 1.200 Schifffahrtsunternehmen Deutschland zugeordnet, von denen zum Stichtag am 31.03.2025 ungefähr 470 Emissionsberichte auf Unternehmensebene fristgerecht vorlagen. Bei den Emissionsberichten auf Schiffsebene wurden knapp 1.200 von circa 2.300 zu erwartenden Berichten fristgerecht eingereicht. Eine belastbare Auswertung der Emissionen im Seeverkehr für das Jahr 2024 ist zum aktuellen Zeitpunkt daher nicht möglich ist.</p>
Der Klimawandel hat in der Arktis weitreichende direkte und indirekte Auswirkungen auf die Gesundheit der indigene und nicht-indigene Bevölkerung. Die Klima- und Wetterbedingungen der nördlichen Breiten und die jüngsten dramatischen Klimaveränderungen führen zu Temperaturextremen, die sich auf die soziale und wirtschaftliche Struktur der städtischen und ländlichen Gebiete auswirken werden. Eine eingehende Analyse dieser Veränderungen sollte sich sowohl mit den spezifischen natürlichen und sozialen Merkmalen befassen als auch mit den Anliegen der indigenen Bevölkerung. Das menschliche Wohlbefinden im Kontext von Klima- und Wetterextremen lässt sich mit dem Universal Thermal Climate Index (UTCI) erfassen. Während die Lufttemperatur allein ein guter Indikator für die aktuellen und zukünftigen Wetter- und Klimabedingungen ist, kann das Wohlbefinden durch starke Winde und hohe Luftfeuchtigkeit beeinflusst werden. Gerade in Küstengebieten verschärfen sich die klimatischen Situationen im Winter durch das Zusammenspiel von Wind und Kälte. Das Projekt zielt darauf ab, die aktuellen bioklimatischen Bedingungen zu identifizieren und mittels dem UTCI zu bewerten. Der Schwerpunkt liegt auf der thermischen Belastung für den menschlichen Körper und der Bewertung der sozialen Anfälligkeit, die sich aus den rezenten extremen klimatischen Schwankungen in der Arktis ergeben. Es werden auch die positiven Folgen der globalen Klimaerwärmung und der gesellschaftliche Nutzen aus diesen Veränderungen der nördlichen Breitengrade diskutiert. Zur Bestimmung der sozialen Verwundbarkeit und der sozialen Sensibilität und Anpassungsfähigkeit in den nördlichen Breiten berechnen wir den Social Vulnerability Index (SVI). Die SVI konkretisiert die sozialen Probleme, die sich aus dem fortschreitenden Klimawandel ergeben und liefert Erkenntnisse für die Entwicklung von Anpassungsstrategien in dieser Region. Um sich in die regionalen Details des SVI zu vertiefen, wird das sozioökonomische Umfeld der Gemeinden im Norden Norwegens als Fallstudie betrachtet. Die Ergebnisse des Projekts können als nützliches Instrument zur Minimierung von Bevölkerungsverlusten und zur Gewährleistung der sozialen Sicherheit in der Arktis dienen und politischen Entscheidungsträgern eine solide wissenschaftliche Grundlage für die Prävention und Eindämmung von Klimakatastrophen bieten, was für die Menschen in den nördlichen Gebieten äußerst wichtig ist in Zeiten des Klimawandels.
MeDORA zielt entsprechend der Vorrangigen Forschungsrichtungen von Mission Innovation auf die beschleunigte Umsetzung umweltfreundlicher Prozesse zur CO2-Abscheidung ab und setzt die im 7. Energieforschungsprogramm 'Innovationen für die Energiewende' des Bundes in Abschnitt 3.15 'Technologien für die CO2-Kreislaufwirtschaft' genannte Zielsetzung der Weiterentwicklung von Komponenten und Werkstoffen für die CO2-Abtrennung konsequent um. In MeDORA soll mittels eines innovativen Membranverfahrens der in Amin-Waschmitteln von CO2-Abtrennungsanlagen gelöste Sauerstoff entfernt werden, um die oxidative Waschmittelzersetzung um 50% zu reduzieren und darüber hinaus den O2-Gehalt im abgetrennten CO2 auf kleiner als 10 ppmv zu begrenzen. Die angestrebte Erhöhung der Waschmittellebensdauer lässt eine Senkung der Betriebskosten für das Waschmittelmanagement um bis zu 70 % erwarten und kann damit die Umweltauswirkungen einer Abscheidungsanlage durch geringe Abfallmengen beim Waschmittelmanagement (Reclaiming) und reduzierte Emissionen (insbesondere des flüchtigen Zersetzungsprodukts NH3) deutlich senken. Die höhere Reinheit des CO2-Produkts erlaubt es die strengen Spezifikationen geologischer Speicherprojekte (z.B. Northern Lights in Norwegen) ohne aufwändige Nachbehandlung zu erfüllen und senkt entsprechend auch die Kosten für CCU-Anwendungen, bei denen O2-Spuren Katalysatoren schädigen. MeDORA, mit 6 Partnern aus 3 europäischen Ländern, wird von einem starken industriebasierten Konsortium geleitet, das die gesamte Wertschöpfungskette abdeckt. Die Langzeittests von MeDORA (TRL 7-8) in Niederaußem, hier erstmalig auch mit innovativen asymmetrischen Membranen, und bei HVC in den Niederlanden stellen die industrielle Anwendbarkeit sicher und werden begleitet von technisch-wirtschaftlichen Analysen, LCA, Vergleich mit anderen Techniken zur O2-Reduzierung im Waschmittel und im Produkt-CO2, werkstoffwissenschaftlichen Untersuchungen sowie der Entwicklung eines Verwertungsplanes.
Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.
| Origin | Count |
|---|---|
| Bund | 536 |
| Europa | 144 |
| Land | 73 |
| Wissenschaft | 12 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Ereignis | 41 |
| Förderprogramm | 268 |
| Taxon | 5 |
| Text | 176 |
| Umweltprüfung | 1 |
| unbekannt | 201 |
| License | Count |
|---|---|
| geschlossen | 94 |
| offen | 356 |
| unbekannt | 246 |
| Language | Count |
|---|---|
| Deutsch | 453 |
| Englisch | 320 |
| Resource type | Count |
|---|---|
| Archiv | 119 |
| Bild | 12 |
| Datei | 177 |
| Dokument | 195 |
| Keine | 246 |
| Unbekannt | 1 |
| Webdienst | 41 |
| Webseite | 305 |
| Topic | Count |
|---|---|
| Boden | 399 |
| Lebewesen und Lebensräume | 696 |
| Luft | 366 |
| Mensch und Umwelt | 696 |
| Wasser | 420 |
| Weitere | 605 |