MeDORA zielt entsprechend der Vorrangigen Forschungsrichtungen von Mission Innovation auf die beschleunigte Umsetzung umweltfreundlicher Prozesse zur CO2-Abscheidung ab und setzt die im 7. Energieforschungsprogramm 'Innovationen für die Energiewende' des Bundes in Abschnitt 3.15 'Technologien für die CO2-Kreislaufwirtschaft' genannte Zielsetzung der Weiterentwicklung von Komponenten und Werkstoffen für die CO2-Abtrennung konsequent um. In MeDORA soll mittels eines innovativen Membranverfahrens der in Amin-Waschmitteln von CO2-Abtrennungsanlagen gelöste Sauerstoff entfernt werden, um die oxidative Waschmittelzersetzung um 50% zu reduzieren und darüber hinaus den O2-Gehalt im abgetrennten CO2 auf kleiner als 10 ppmv zu begrenzen. Die angestrebte Erhöhung der Waschmittellebensdauer lässt eine Senkung der Betriebskosten für das Waschmittelmanagement um bis zu 70 % erwarten und kann damit die Umweltauswirkungen einer Abscheidungsanlage durch geringe Abfallmengen beim Waschmittelmanagement (Reclaiming) und reduzierte Emissionen (insbesondere des flüchtigen Zersetzungsprodukts NH3) deutlich senken. Die höhere Reinheit des CO2-Produkts erlaubt es die strengen Spezifikationen geologischer Speicherprojekte (z.B. Northern Lights in Norwegen) ohne aufwändige Nachbehandlung zu erfüllen und senkt entsprechend auch die Kosten für CCU-Anwendungen, bei denen O2-Spuren Katalysatoren schädigen. MeDORA, mit 6 Partnern aus 3 europäischen Ländern, wird von einem starken industriebasierten Konsortium geleitet, das die gesamte Wertschöpfungskette abdeckt. Die Langzeittests von MeDORA (TRL 7-8) in Niederaußem, hier erstmalig auch mit innovativen asymmetrischen Membranen, und bei HVC in den Niederlanden stellen die industrielle Anwendbarkeit sicher und werden begleitet von technisch-wirtschaftlichen Analysen, LCA, Vergleich mit anderen Techniken zur O2-Reduzierung im Waschmittel und im Produkt-CO2, werkstoffwissenschaftlichen Untersuchungen sowie der Entwicklung eines Verwertungsplanes.
The island of Holsnøy is located in southwestern Norway. It is composed of metastable granulite facies lower crust that was subducted at 430 Ma when fluid infiltrated the region and reacted with large portions of the area to form eclogite facies shear zones. The eclogite facies assemblages contain garnet with granulite facies cores and eclogite facies fractures and rims. This dataset contains quantitative electron microprobe transects from garnets from four different eclogite facies samples. They are divided into two groups: rim profiles that run from the garnet rims toward the cores, and fracture profiles that run perpendicular to eclogite facies fractures. Some profiles have 5–10 µm spacing and were collected at 15 kV accelerating voltage whereas others have 1 µm spacing and were collected at 10 kV which reduced analytical convolution and facilitated higher spatial resolution of the profiles.
This series refers to datasets related to the potential occurrence of a climate-induced physical event or trend that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, ecosystems and environmental resources. It includes datasets on flooding, drought, urban heat island and heatwaves, extreme temperatures and precipitations, fire danger as well as climate suitability for vectors of infectious diseases. The datasets are part of the European Climate Adaptation Platform (Climate-ADAPT) accessible here: https://climate-adapt.eea.europa.eu/
Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.
Der horizontale Wind nimmt eine Schlüsselrolle in der Dynamik der Atmosphäre ein. Insbesondere beeinflusst er die Ausbreitung und Dissipation von Schwerewellen und thermischen Gezeiten in der mittleren Atmosphäre. Simultane Wind- und Temperaturmessungen bieten dabei die einzigartige Möglichkeit, sowohl kinetische als auch potentielle Energiedichten der Schwerewellen zu berechnen, aus denen wiederum intrinsische Wellenparameter ableitbar sind. Windmessungen in der mittleren Atmosphäre sind jedoch insbesondere im Höhenbereich zwischen 35 und 75 km sehr selten, da hier weder Radiosonden noch Radars Daten liefern und Wind-Radiometer bzw. Satelliten keine für die Untersuchung von Schwerewellen ausreichend große Genauigkeit und Auflösung haben. Deshalb wollen wir in Kühlungsborn/Deutschland (54° N, 12° O) ein neues Lidar aufbauen, mit dem bei gekippten Teleskopen der Horizontalwind aus der Dopplerverschiebung der Rayleigh-Rückstreuung bestimmt werden kann. Neben der Erstellung einer Wind-Klimatologie steht vor allem die Untersuchung der Ausbreitung von Trägheitsschwerewellen in der mittleren Atmosphäre im Vordergrund. Dazu werden wir u.a. horizontale und vertikale Impulsflüsse und die Höhe des Impulsübertrags an die Hintergrundatmosphäre bestimmen. Diese für die Energiebilanz der Atmosphäre wesentlichen Parameter liefern wichtige Vergleichsgrößen für Zirkulationsmodelle. Ferner werden wir intrinsische Welleneigenschaften aus Wind-Hodographen analysieren, die für andere bodengebundene Messsysteme in der Regel nicht zugänglich sind. Unter Einbeziehung des lokalen Hintergrundwindes sollen aufwärts und abwärts propagierende Schwerewellen eindeutig getrennt und quantifiziert werden. Die Analysen werden insgesamt unser Verständnis der vertikalen Kopplung und der zu Grunde liegenden Zirkulation in der mittleren Atmosphäre deutlich verbessern. Das neue Lidarsystem ergänzt ein in Nordnorwegen am ALOMAR-Observatorium (69° N, 16° O) vorhandenes Windlidar, welches ebenfalls vom IAP betrieben wird. In diesem Projekt wird die dabei erworbene Expertise genutzt, um die Entwicklungsrisiken für das neue Lidar zu minimieren und schwerpunktmäßig Windmessungen in der mittleren Atmosphäre durchzuführen und zu interpretieren.
Permafrost-Moore sind Hotspots organischer Kohlenstoff-Vorräte. Das Auftauen von Permafrostböden fördert die Mineralisation des bodenorganischen Kohlenstoffs (SOC). Es besteht jedoch große Unsicherheit hinsichtlich der SOC-Verluste bzw. der SOC-Akkumulation in aufgetauten Permafrost-Mooren. Bislang wurde die SOC-Bilanz auftauendender Permafrost-Moore in nur sehr wenigen Regionen untersucht. Aus bisherigen Studien ist bekannt, dass die SOC-Bilanz sehr variable ist und Prognosen für auftauende Permafrost-Moore unsicher sind. Permafrost-Moore der Finnmark, der nördlichsten Provinz Norwegens, tauen derzeit schnell auf. SOC-Verluste und rezente SOC-Zuwächse wurden in den Permafrost-Mooren dieser Region bisher nicht quantifiziert. Wir werden in dieser Region Standorte untersuchen, die durch Thermokarst tief und durch aktive Schichtvertiefung oberflächennah aufgetaut sind. Bei der oberflächennahen Schichtvertiefung durch partielles Auftauen und Entwässerung entstehen oxidative Bedingungen, die den mikrobiellen SOC-Abbau fördern. Thermokarst mit anoxischen Bedingungen bildet sich, wenn das gesamte Bodenprofil auftaut, absinkt und mit Wasser gefüllt wird. Verschiedene Ansätze werden zur Quantifizierung der SOC-Verluste durch Auftauen verfolgt. Wir werden in-situ SOC-Mineralisationsraten verschiedener Torfschichten durch Messung von CO2-Emissionen und deren 14C-Signaturen quantifizieren. Diese Ergebnisse liefern Belege für die SOC-Mobilisierung beider Auftauregime in Permafrost-Mooren. Wir erwarten, dass Moore, die oberflächennah aufgetaut sind, aktuell höhere SOC-Verluste aufweisen als Thermokarst. Darüber hinaus werden Bodenkerne aus beiden Auftauregimen entnommen, i) um die Entwicklung der Torfakkumulation durch pflanzliche Makrofossilien und 14C-Datierung zu charakterisieren, ii) um SOC-Vorräte zu quantifizieren, iii) um Humifizierungsgrade der organischen Substanz zu charakterisieren und iv) um das Mineralisationspotenzial für SOC und gelösten organischen Kohlenstoff (DOC) zu bestimmen. Wir erwarten i) geringere SOC-Vorräte, ii) höhere Humifizierungsgrade, iii) geringere SOC- und DOC-Mineralisierungspotenziale und eine geringere mikrobielle Kohlenstoffnutzungs-Effizienz in Thermokarstmooren aufgrund der vorangegangenen SOC-Mineralisierung im Vergleich zu intakten Permafrost-Mooren. Schließlich werden rezente SOC-Akkumulationsraten durch 210Pb-Datierung bestimmt. Wir gehen davon aus, dass sich in Thermokarstmooren in jüngster Zeit SOC angereichert hat, die vorhergehende SOC-Verluste durch Auftauen teilweise kompensieren. Wir werden verschiedene Thermokarstmoore untersuchen, um zu überprüfen, ob die SOC-Akkumulationsrate nach dem Auftauen mit dem Grad der Bodenabsenkung zusammenhängt. Die Bilanzierung der SOC-Verluste und der SOC-Akkumulation sowie der Mineralisationspotenziale in den verschiedenen Auftauregimen kann einen wertvollen Beitrag zur Verbesserung von Prognosen zur zukünftigen Entwicklung von SOC-Vorräten in Permafrost-Regionen leisten.
Das COSC-Bohrprojekt ('Collisional Orogeny in the Scandinavian Caledonides') ist fester Bestandteil des 'International Scientific Drilling Program' (ICDP) und des 'Swedish Scientific Drilling Program' (SSDP). COSC untersucht die altpaläozoische Schließung des Iapetus-Ozeans und die Kontinent-Kontinent-Kollision zwischen Baltica and Laurentia, die im mittleren Silur zu einer Teilsubduktion des baltischen Kontinentalrandes unter Laurentia und der Bildung eines Orogens vom Himalaya-Typus führte. Während die Platznahme des hochgradig metamorphen Allochthons im Rahmen von COSC-1 im Åre-Gebiet studiert wurde (Durchteufung der subduktionsbezogenen, untere Seve-Decke und der niedrig-gradig metamorphen Särv-Decke in 2014), wird COSC-2 die mächtige paläozoische Sedimentabfolge des Unteren Allochthon und Autochthon, den kaledonischen Hauptabscherhorizont und das präkambrische Grundgebirge des Fennoscandischen Schildes am Liten-See südöstlich Järpen untersuchen. Das beantragte DFG-Projekt konzentriert sich auf die Sedimentabfolge des Kambriums bis Silur in den höheren größer als 1200 m der Bohrung, die in verschiedenen Faziesräumen auf dem Außenschelf und im Vorlandbecken ablagert wurden. Die Schließung des Iapetus-Ozeans, die Kollission zwischen Baltica und Laurentia, die Deckenstapelung entlang der norwegisch-swedischen Deformationsfront und die durch Auflast gesteuerte flexurhafte Deformation am Kontinentalrand veränderte die Konfiguration des baltoskandischen Beckens und formte unterschiedliche Ablagerungsräume in dem zum Orogen parallel verlaufenden Vorlandbecken vom Mittelordoviz bis Silur. Die Sedimentabfolge im Untersuchungsgebiet wird detailliert im Hinblick auf Fazieswechsel und Meeresspiegelschwankungen untersucht werden. Stratigraphische Lücken im Oberordoviz und mögliche Karstbildung in den Kalken des Llandovery könnten Vereisungen und extreme Klimaschankungen wiederspiegeln während der Eiszeit-Periode vom höheren Mittelordoviz bis in das Obersilur. Die Untersuchung von oberordovizischen Sedimenten, die in tieferem Wasser abgelagert wurden, schliesst die Suche nach Spuren des intensive Vulkanismus (K-Bentonite) in dem sich schliessenden Areal des Iapetus-Oceans ein und nach Relikten von nahen Meteoriteneinschlägen in der kaledonischen Vortiefe. Die enge Kooperation mit PIs anderer Disziplinen wie Geothermie und Geophysik stehen im Hauptfokus dieses Projekts. Detaillierte lithologische Studien sind die Basis einer Beprobungsstrategie für ein geothermisches Modell. Die Kalibriering geophysikalischer Bohrlochmessungen mit den Sedimentdaten erlaubt es die Interpretation früherer reflexions-seismischer Untersuchungen zu überprüfen und die darauf basiernden Modelle des geologischen Untergrunds. Die Sedimentabfolge in der COSC 2-Bohrung wird ein Schlüssel zum Verständnis der seismischen Daten im Untersuchungsgebiet sein.
| Origin | Count |
|---|---|
| Bund | 541 |
| Europa | 145 |
| Land | 66 |
| Wissenschaft | 12 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Ereignis | 41 |
| Förderprogramm | 268 |
| Taxon | 5 |
| Text | 187 |
| Umweltprüfung | 1 |
| unbekannt | 203 |
| License | Count |
|---|---|
| geschlossen | 106 |
| offen | 357 |
| unbekannt | 246 |
| Language | Count |
|---|---|
| Deutsch | 465 |
| Englisch | 325 |
| Resource type | Count |
|---|---|
| Archiv | 119 |
| Bild | 12 |
| Datei | 178 |
| Dokument | 198 |
| Keine | 247 |
| Unbekannt | 1 |
| Webdienst | 46 |
| Webseite | 315 |
| Topic | Count |
|---|---|
| Boden | 418 |
| Lebewesen und Lebensräume | 444 |
| Luft | 375 |
| Mensch und Umwelt | 709 |
| Wasser | 438 |
| Weitere | 709 |