API src

Found 700 results.

Related terms

Species diversity in the fungal genera Hebeloma and Alnicola in Central Europe

By combining morphological and molecular approaches, the taxonomy of the Genera Hebeloma and Alnicola are being enlightened. The examined exemplars either result from field collections or from herbar collections in Germany, Norway and The Netherlands.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Globale Relevanz von Gashydrat-gefüllten Rissen für Hangstabilität

Submarine Hangrutschungen stellen ein bedeutendes Risiko für Offshore-Infrastrukturen und Küstengebiete dar, da sie zum Beispiel gefährliche Tsunamis auslösen können, wie der Storegga Slide vor der Küste Norwegens. Neben anderen Präkonditionierung für Hangrutschungen, wie steile Hangneigung oder Überdruck in den Porenräumen der Sedimente verursach im Zusammenhang mit Eiszeiten, wurde die Auflösung von Gashydraten in vielen Studien diskutiert. Die weltweite räumliche Überscheidungen von submarinen Hangrutschungen und Gashydratvorkommen hat zu der Hypothese geführt, dass die Auflösung von Gashydraten in Zeiten von Meeresspiegelsenkung oder Erderwärmung eine Hangrutschung auslösen kann. Dieser Prozess entfernt die zementierenden Gasyhdrate aus den Porenräumen und das frei werdende Gas verursacht zusätzlichen Überdruck . Obwohl Studien mithilfe von numerischen Modellierungen gezeigt haben, dass diese Hypothese realistisch ist, konnte die Forschung keine geologischen oder geophysikalischen Beweise dafür finden, dass dieser Prozess wirklich eine Hangrutschung ausgelöst hat. Außerdem zeigen verschiedene Studien, dass viele submarine Hangrutschungen retrogressiv sind und auf dem mittleren bis unteren Kontinentalhang ausgelöst werden. Diese Beobachtung lässt vermuten, dass andere Prozesse die Rutschungen auslösen. Davon abgesehen gibt es keinen Zweifel, dass Gashydrate die geotechnischen Eigenschaften von Sedimenten stark beeinflussen. Daher ist es wichtig ihren Einfluss auf die Hangstabilität weiter zu untersuchen und neue Hypothesen zu testen. Das übergeordnete wissenschaftliche Ziel dieses Antrags ist es, (1) die globale Relevanz von Gashydratgefüllten Rissen für Hangstabilität zu ergründen und (2) den Einfluss von Scherfestigkeitsvariationen auf Störungsverläufe und Stressmerkmale, wie z.B. Bohrlochausbrüche, zu verstehen. Bis jetzt war es nicht möglich gewesen, den Zusammenhang zwischen Gashydraten und Hangstabilität herzustellen, da ein umfangreicher Datensatz aus geotechnischen, geologischen und geophysikalischen Daten aus einem Gebiet mit Gashydrate verursachten Rutschungen nicht verfügbar war. Die IODP Expedition 372 hat dies geändert. Uns stehen jetzt Logging-While-Drilling Daten und Sedimentkerne von dieser Expedition zur Verfügung, genauso wie ein hochauflösender 3D Seismik Datensatz, der mit dem GEOMAR P-Cable System im Jahre 2014 aufgezeichnet wurde. Diese Daten im Zusammenhang mit einer Scherzelle für Gashydrathaltige Sedimente auf dem neusten Stand der Technik am GEOMAR, die es erlaubt die Deformation der Probe live mit einem 4D X-ray CT zu beobachten, wird es uns ermöglichen, einen Entscheidenden Schritt vorwärts in der Gashydrat- und Hangstabilitätsforschung zu machen.

Überprüfung von Treibhausgasinventaren im Rahmen von Reviews unter der Klimarahmenkonvention: Finnland, Großbritannien, Kanada, Litauen, Niederlande, Norwegen, Schweden, Spanien, Tschechische Republik, Ungarn

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Die Öffnung der Fram-Straße und ihr Einfluss auf Sedimenttransport, Klima und Ozeanzirkulation zwischen Arktis und Nordatlantik

Die Öffnung im frühen Neogen und anschließende Verbreiterung und Vertiefung der Fram-Straße, der einzigen Tiefenwasserverbindung zwischen Arktischem und Atlantischem Ozean, stellt ein grundlegendes tektonisches Ereignis dar, das weitreichende Konsequenzen fuer die globale Ozeanzirkulation und die Klimaentwicklung sowie fuer Sedimentationsprozesse in den angrenzenden Ozeanbecken und entlang der Kontinentalränder hatte. Die entstandenen Sedimentarchive erlauben es in der Kombination von seismischen Kartierungen mit stratigraphischen Untersuchungen an existierenden DSDP/ODP-Bohrkernen, Rueckschluesse auf die Entwicklungsgeschichte dieser tiefen Meeresstrasse auf tektonischen Zeitskalen (100.000-1.000.000 Jahre) zu ziehen. Die seismostratigraphische Untersuchung von sedimentären Strukturen anhand teilweise neu zu bearbeitender reflexionsseismischer Profile in der Fram-Straße und den Antragstellern neu zugänglich gemachter externer Daten von den angrenzenden bzw. konjugierten Kontinentalrändern von Grönland und Norwegen (Daten von BGR, NPD, GEUS) stellt somit wertvolle Informationen ueber die regionale tektonische, ozeanographische und klimatische Entwicklung bereit, u.a der Vereisungsgeschichte der nördlichen Hemisphäre. Unser Ziel ist es, aus den Reflexionsmustern und internen Sedimentstrukturen seismischer Profile auf die Ablagerungsmechanismen zu schließen, um damit wiederum tektonische Prozesse sowie Veränderungen der ozeanischen Zirkulation in der Fram-Straße zu rekonstruieren. Einen wesentlichen Beitrag dazu leisten veröffentlichte und geplante Überarbeitungen der Chronostratigraphie der DSDP/ODP-Bohrkerne der Lokationen 343, 642/643, 909, 910, 912 und 913, die eine Datierung der seismischen Grenzflächen (Reflektoren) und eine sedimentologische Charakterisierung der seismischen Einheiten ermöglichen.

Model Output Statistics for KRISTIANSAND-KJEVIK (01452)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Industrial Reporting under the Industrial Emissions Directive 2010/75/EU and European Pollutant Release and Transfer Register Regulation (EC) No 166/2006

This dataset contains the location and administrative data for the largest industrial complexes in Europe, releases and transfers of regulated substances to all media, waste transfers reported under the European Pollutant Release and Transfer Register (E-PRTR) and as well as more detailed data on energy input and emissions for large combustion plants (reported under IED Art.72).

Nutzung der Wasserkraft

<p>Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt.</p><p>Vom Wasser zum Strom</p><p>Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet.</p><p>Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet.</p><p>Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können.</p><p>Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie</p><p>Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a>⁠ ist bekannt, dass in 37 Prozent aller berichteten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserkrper#alphabar">Wasserkörper</a>⁠ – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen:</p><p>Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen.</p><p>Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz </p><p>Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft:</p><p>Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein <a href="https://www.umweltbundesamt.de/dokument/die-besondere-bedeutung-der-erneuerbaren-energien">Factsheet</a> erstellt.</p><p>Wasserkraftnutzung in Deutschland </p><p>Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten.</p><p>In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller.</p><p>Wasserkraftanlagen in Deutschland</p><p>Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen).</p><p>Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent.</p><p>Stromproduktion aus Wasserkraft in Deutschland</p><p>In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen.</p><p>Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Aktuelle Zahlen</a> zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die <a href="https://www.bmwk.de/Redaktion/DE/Downloads/S-T/schlussbericht-wasserkraft-231027.pdf?__blob=publicationFile&amp;v=6%20l">EEG-Erfahrungsberichte</a>. Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar.</p><p>Wasserkraftpotenzial in Deutschland</p><p>Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen.</p><p>Die Rolle der Wasserkraft bei der Energiewende</p><p>In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie "<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-konzepte-fuer-die-klimaschutz/rescue-wege-in-eine-ressourcenschonende">RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität</a>" des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen ⁠Bruttostromerzeugung⁠ leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft.</p><p>Wasserkraft und Klimawandel</p><p>Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der ⁠Klimawandel⁠ mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft <a href="https://www.umweltbundesamt.de/publikationen/klimafolgen-fuer-wasserkraftnutzung-in-deutschland">untersuchen lassen</a>. Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden.</p><p>So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern.</p><p>Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert.</p><p>Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert.</p><p>Wasserkraftanlage in der Sieg (Unkelmühle).</p><p>Demonstration der Nutzung von Wasserkraft.</p><p>Wasserkraftanlage in der Saale bei Öblitz.</p><p>Wasserkraftanlage in der Saale unterhalb von Jena.</p><p>Wasserkraftnutzung im Bayerischen Wald.</p><p>Ausleitungswehr für die Wasserkraftnutzung bei Tübingen.</p><p>Literatur</p><p>Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227.</p><p>Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39.</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a>⁠ (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010.</p><p>Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht).</p><p>International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights.</p><p>Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18.</p><p>LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water &amp; Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017.</p><p>LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. <a href="https://www.energieatlas.bayern.de/thema_wasser/daten.html">https://www.energieatlas.bayern.de/thema_wasser/daten.html</a>. Zugriff am 04.05.2021.</p><p>MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg.</p><p>Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748.</p><p>Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870.</p><p>Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23.</p><p>Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011.</p><p>TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011.</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150.</p><p>UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.</p>

WISE WFD Reference Spatial Datasets reported under Water Framework Directive 2016 - PUBLIC VERSION - version 1.9, Sep. 2025

The dataset contains information on the European river basin districts, the river basin district sub-units, the surface water bodies and the groundwater bodies delineated for the 2nd River Basin Management Plans (RBMP) under the Water Framework Directive (WFD) as well as the European monitoring sites used for the assessment of the status of the above mentioned surface water bodies and groundwater bodies. The information was reported to the European Commission under the Water Framework Directive (WFD) reporting obligations. The dataset compiles the available spatial data related to the 2nd RBMPs due in 2016 (hereafter WFD2016). See http://rod.eionet.europa.eu/obligations/715 for further information on the WFD2016 reporting. See also https://rod.eionet.europa.eu/obligations/766 for information on the Environmental Quality Standards Directive - Preliminary programmes of measures and supplementary monitoring. Where available, spatial data related to the 3rd RBMPs due in 2022 (hereafter WFD2022) was used to update the WFD2016 data. See https://rod.eionet.europa.eu/obligations/780 for further information on the WFD2022 reporting. Note: * This dataset has been reported by the member states. The subsequent QC revealed some problems caused by self-intersections elements. Data in GPKG-format should be processed using QGIS.

Menschliches Bioklima in der Arktis im Zeitalter des Klimawandels

Der Klimawandel hat in der Arktis weitreichende direkte und indirekte Auswirkungen auf die Gesundheit der indigene und nicht-indigene Bevölkerung. Die Klima- und Wetterbedingungen der nördlichen Breiten und die jüngsten dramatischen Klimaveränderungen führen zu Temperaturextremen, die sich auf die soziale und wirtschaftliche Struktur der städtischen und ländlichen Gebiete auswirken werden. Eine eingehende Analyse dieser Veränderungen sollte sich sowohl mit den spezifischen natürlichen und sozialen Merkmalen befassen als auch mit den Anliegen der indigenen Bevölkerung. Das menschliche Wohlbefinden im Kontext von Klima- und Wetterextremen lässt sich mit dem Universal Thermal Climate Index (UTCI) erfassen. Während die Lufttemperatur allein ein guter Indikator für die aktuellen und zukünftigen Wetter- und Klimabedingungen ist, kann das Wohlbefinden durch starke Winde und hohe Luftfeuchtigkeit beeinflusst werden. Gerade in Küstengebieten verschärfen sich die klimatischen Situationen im Winter durch das Zusammenspiel von Wind und Kälte. Das Projekt zielt darauf ab, die aktuellen bioklimatischen Bedingungen zu identifizieren und mittels dem UTCI zu bewerten. Der Schwerpunkt liegt auf der thermischen Belastung für den menschlichen Körper und der Bewertung der sozialen Anfälligkeit, die sich aus den rezenten extremen klimatischen Schwankungen in der Arktis ergeben. Es werden auch die positiven Folgen der globalen Klimaerwärmung und der gesellschaftliche Nutzen aus diesen Veränderungen der nördlichen Breitengrade diskutiert. Zur Bestimmung der sozialen Verwundbarkeit und der sozialen Sensibilität und Anpassungsfähigkeit in den nördlichen Breiten berechnen wir den Social Vulnerability Index (SVI). Die SVI konkretisiert die sozialen Probleme, die sich aus dem fortschreitenden Klimawandel ergeben und liefert Erkenntnisse für die Entwicklung von Anpassungsstrategien in dieser Region. Um sich in die regionalen Details des SVI zu vertiefen, wird das sozioökonomische Umfeld der Gemeinden im Norden Norwegens als Fallstudie betrachtet. Die Ergebnisse des Projekts können als nützliches Instrument zur Minimierung von Bevölkerungsverlusten und zur Gewährleistung der sozialen Sicherheit in der Arktis dienen und politischen Entscheidungsträgern eine solide wissenschaftliche Grundlage für die Prävention und Eindämmung von Klimakatastrophen bieten, was für die Menschen in den nördlichen Gebieten äußerst wichtig ist in Zeiten des Klimawandels.

Entfernung von gelöstem Sauerstoff aus Aminlösungen für die CO2-Abtrennung

MeDORA zielt entsprechend der Vorrangigen Forschungsrichtungen von Mission Innovation auf die beschleunigte Umsetzung umweltfreundlicher Prozesse zur CO2-Abscheidung ab und setzt die im 7. Energieforschungsprogramm 'Innovationen für die Energiewende' des Bundes in Abschnitt 3.15 'Technologien für die CO2-Kreislaufwirtschaft' genannte Zielsetzung der Weiterentwicklung von Komponenten und Werkstoffen für die CO2-Abtrennung konsequent um. In MeDORA soll mittels eines innovativen Membranverfahrens der in Amin-Waschmitteln von CO2-Abtrennungsanlagen gelöste Sauerstoff entfernt werden, um die oxidative Waschmittelzersetzung um 50% zu reduzieren und darüber hinaus den O2-Gehalt im abgetrennten CO2 auf kleiner als 10 ppmv zu begrenzen. Die angestrebte Erhöhung der Waschmittellebensdauer lässt eine Senkung der Betriebskosten für das Waschmittelmanagement um bis zu 70 % erwarten und kann damit die Umweltauswirkungen einer Abscheidungsanlage durch geringe Abfallmengen beim Waschmittelmanagement (Reclaiming) und reduzierte Emissionen (insbesondere des flüchtigen Zersetzungsprodukts NH3) deutlich senken. Die höhere Reinheit des CO2-Produkts erlaubt es die strengen Spezifikationen geologischer Speicherprojekte (z.B. Northern Lights in Norwegen) ohne aufwändige Nachbehandlung zu erfüllen und senkt entsprechend auch die Kosten für CCU-Anwendungen, bei denen O2-Spuren Katalysatoren schädigen. MeDORA, mit 6 Partnern aus 3 europäischen Ländern, wird von einem starken industriebasierten Konsortium geleitet, das die gesamte Wertschöpfungskette abdeckt. Die Langzeittests von MeDORA (TRL 7-8) in Niederaußem, hier erstmalig auch mit innovativen asymmetrischen Membranen, und bei HVC in den Niederlanden stellen die industrielle Anwendbarkeit sicher und werden begleitet von technisch-wirtschaftlichen Analysen, LCA, Vergleich mit anderen Techniken zur O2-Reduzierung im Waschmittel und im Produkt-CO2, werkstoffwissenschaftlichen Untersuchungen sowie der Entwicklung eines Verwertungsplanes.

1 2 3 4 568 69 70