We consider clay minerals, iron oxides and charcoal as major components controlling the formation of interfaces relevant for sorption of organic chemicals, as they control the assemblage of organic matter and mineral particles. We studied the formation of interfaces in batch incubation experiments with inoculated artificial soils consisting of model compounds (clay minerals, iron oxide, char) and natural soil samples. Results show a relevant contribution of both iron oxides and clay minerals to the formation of organic matter as sorptive interfaces for hydrophobic compounds. Thus, we intend to focus our work in the second phase on the characterization of the interface as formed by organic matter associated with clay minerals and iron oxides. The interfaces will be characterized by the BET-N2 and ethylene glycol monoethyl ether (EGME) methods and 129Xe and 13C NMR spectroscopy for determination of specific surface area, sorptive domains in the organic matter and microporosity. A major step forward is expected by the analysis of the composition of the interface at different resolution by reflected-light microscopy (mm scale), SEM (scanning electron microscopy, micrometer scale) and secondary ion mass spectrometry at the nanometer scale (nanoSIMS). The outcomes obtained in combination with findings from cooperation partners will help to unravel the contribution of different types of soil components on the formation and characteristics of the biogeochemical interfaces and their effect on organic chemical sorption.
In hydrology, the relationship between water storage and flow is still fundamental in characterizing and modeling hydrological systems. However, this simplification neglects important aspects of the variability of the hydrological system, such as stable or instable states, tipping points, connectivity, etc. and influences the predictability of hydrological systems, both for extreme events as well as long-term changes. We still lack appropriate data to develop theory linking internal pattern dynamics and integral responses and therefore to identify functionally similar hydrological areas and link this to structural features. We plan to investigate the similarities and differences of the dynamic patterns of state variables and the integral response in replicas of distinct landscape units. A strategic and systematic monitoring network is planned in this project, which contributes the essential dynamic datasets to the research group to characterize EFUs and DFUs and thus significantly improving the usual approach of subdividing the landscape into static entities such as the traditional HRUs. The planned monitoring network is unique and highly innovative in its linkage of surface and subsurface observations and its spatial and temporal resolution and the centerpiece of CAOS.
Magnetic resonance tomography (MRT) on microcosm soil cores (200 mm Ø) used for CeMiX, comprising naturally stacked subsoil down to 700 mm plus topsoil from CeFiT, will be implemented at a laterally partially open Split 1.5 T magnet, with intended final in-plane spatial resolution of 200 Micro m. Three-dimensional biopore distributions and dynamics of their formation within the cores will be determined non-invasively and compared to complementing CT analyses of SP 2. One major aim is a non-invasive differentiation of the biopores into earthworm- and root system-originating ones and currently air-, water-, root- and earthwormfilled ones, based on NMR relaxation parameters. Attempts will additionally be made to classify different wall coatings of the biopores with regard to their water affinity. Dynamics of water distribution within the microcosm core and its biopore structures, starting from initial values taken from CeFiT (SP 3), will be documented with an in-plane resolution of 5 mm, in parallel to measurements of root growth dynamics for calculation of biomass and root surface area. Special emphasis will be put on the role of the plant root system for a re-distribution of water/D2O (and solutes) between different soil layers. Finally we will attempt MRT-controlled sample collection from the microcosm cores, to get - together with our research unit partners of SPs 4-8 - repeated access to minimally invasively acquired data on nutrient and microorganism distributions in concert with non-invasively collected water and root distribution data as a basis for dynamic modelling of water and solute circuits in SP 10. Beside the microcosm cores, flat rhizotrons as used in SP 3 will be employed to enable measurements of root and shoot hydrostatic pressure profiles with pressure probes, in addition to MRT measurements. In this way water distributions and corresponding driving forces and growth dynamics will be measured altogether in a minimally invasive manner.
The biogeochemical interface (BGI) in this project is defined as the organo-mineral surface of soil particles colonized by microorganisms. In the preceding project it was demonstrated that the different soil particle size fractions were associated with specifically structured microbial communities, a characteristic amount of soil organic carbon, and a specific capacity for adsorption of the organic chemicals phenol and 2,4-dichlorophenol, respectively. While the diversity of the microbial community was responsive to fertilization-determined additional organic soil carbon in the larger particle size fractions, it was unaffected in clay. Stable isotope probing with 13C-labelled phenol and 2,4-dichlorophenol revealed that the soil organic carbon in the BGIs also affected the diversity of microorganisms involved in the degradation of these chemicals. All these results are yet only based on studying one soil with three organic carbon variants (Bad Lauchstädt) and only two organic compounds. The objective of this 2nd phase project is to apply the innovative technology developed in the 1st phase for studying the BGI processes with soil organic carbon variants from another soil (Ultuna, SPP 1315 site) and with the chiralic anilide Fungicide metalaxyl as an additional compound. This 2nd phase SPP 1315 project will also, in a collaborative effort with two other SPP 1315 partners, investigate (1) the importance of BGIs for the entantio-selective degradation of metalaxyl and (2) the role of soil microorganisms in the formation of bound residues, respectively. Furthermore, the project will utilize stable isotope probing and next-generation DNA sequencing to link the structural and functional diversity of the microbial communities responsible for metabolism of organic chemicals in the different BGIs determined by particle size fractions and soil organic carbon variants.
When released into surface waters, engineered inorganic nanoparticles (EINP) can be subject to multiple transformations. The objectives of MASK are to understand under which conditions EINP in aquatic systems will attach to suspended matter, under which conditions and in which time scale EINP are coated by NOM present in freshwater systems, how these coated colloidal particles are stabilized in the aquatic system and to which extent the aquatic aging processes are reversible. Homo-aggregation, coating changes, biological interactions and hetero-aggregation are hypothesized as key processes governing EINP aging in water bodies. In process orientated laboratory incubation experiments (50 ml to 6 l) with increasing complexity, MASK unravels the relevance and the interplay of inorganic colloids, aquagenic and pedogenic organic matter and solution physicochemistry for stability of EINP. These systems will successively approach situations in real waters. MASK thus provides information on EINP fluxes in the aquatic compartment, their time scales, reversibility and relative relevance. EINP will be analysed by standard light scattering techniques, ICP-MS, ESEM/EDX, WetSTEM and AFM. A method coupling hydrodynamic radius chromatography (HDC) with ICPMS recently developed by K. Tiede for nAg0 will be optimized and developed for further EINP analysis, MASK is further responsible for the virtual subproject ANALYSIS, the development and optimization of joint research unit methods of EINP analysis, sample preparation and sample storage, the exchange of methods and coordinates the joint analyses and the central EINP database.
The broad objective of the research is to gain a fundamental understanding of the surface reaction chemistry of exhaust catalysts operating under cycling conditions. Using an integrated theoretical approach we specifically target NOx abatement, with particular emphasis on the appearance and destruction of surface oxide phases as the reactor conditions cycle from oxidative to reductive during the operation of the NOx Storage Reduction (NSR) catalyst system. Methodologically this requires material-specific, quantitative and explicitly time-dependent simulation tools that can follow the evolution of the system over the macroscopic time-scales of NSR cycles, while simultaneously accounting for the atomic-scale site heterogeneity and spatial distributions at the evolving surface. To meet these challenging demands we will develop a novel multi-scale methodology relying on a multi-lattice first-principles kinetic Monte Carlo (kMC) approach. As representative example the simulations will be carried out on a PdO(101)/Pd(100) surface oxide model, but care will be taken to ensure a generalization of the multi-lattice first-principles kMC approach to other systems in which phase transformations may occur and result in a change in the surface lattice structure depending upon environmental variables.
Outbreaks of foodborne illness linked to consumptions of fresh, or partially processed, agricultural products are a growing concern in industrialized and developing countries. The incidence of human pathogens on fresh fruits and vegetables is often related to the use of recycled wastewaster in surface irrigation as well as high amounts of animal manure in agricultural management practice. Thereby the soil inhabiting fauna plays an important role in the transport and dissemination of microorganisms. The focus of the proposed project is on nematodes, well known vectors for bacteria and viruses in soil. The major goals are to: (1) survey human pathogens in soil and on/in free-living and plant parasitic nematodes in agriculture field sites irrigated with recycled wastewater or fertilized with fresh animal manure in Israel and the Palestinian Authority, (2) assess the function of nematodes as vectors in transmitting bacteria from microbial hot spots to plants, and (3) localize bacteria on and/or within the nematode and identify bacterial factors required for survival in the nematode host. Understanding the mechanisms involved in dissemination of human pathogens by nematodes will enhance the ability to develop practical means to minimize contamination of fresh produce and increase safety in food production.
Agriculture is the major contributor of nitrogen to ecosystems, both by organic and inorganic fertilizers. Percolation of nitrate to groundwater and further transport to surface waters is assumed to be one of the major pathways in the fate of this nitrogen. The quantification of groundwater and associated nitrate flux to streams is still challenging. In particular because we lack understanding of the spatial distribution and temporal variability of groundwater and associated NO3- fluxes. In this preliminary study we will focus on the identification and quantification of groundwater and associated nitrate fluxes by combining high resolution distributed fiber-optic temperature sensing (DTS) with in situ UV photometry (ProPS). DTS is a new technique that is capable to measure temperature over distances of km with a spatial resolution of ca1 m and an accuracy of 0.01 K. It has been applied successfully to identify and quantify sources of groundwater discharge to streams. ProPS is a submersible UV process photometer, which uses high precision spectral analyses to provide single substance concentrations, in our case NO3-, at minute intervals and a detection limit of less than 0.05 mg l-1 (ca.0.01 mg NO3--Nl-1). We will conduct field experiments using artificial point sources of lateral inflow to test DTS and ProPS based quantification approaches and estimate their uncertainty. The selected study area is the Schwingbach catchment in Hessen, Germany, which has a good monitoring infrastructure. Preliminary research on hydrological fluxes and field observations indicate that the catchment favors the intended study.
Recent and predicted increases in extremely dry and hot summers emphasise the need for silvicultural approaches to increase the drought tolerance of existing forests in the short-term, before adaptation through species changes may be possible. We aim to investigate whether resistance during droughts, as well as the recovery following drought events (resilience), can be increased by allocating more growing space to individual trees through thinning. Thinning increases access of promoted trees to soil stored water, as long as this is available. However, these trees may also be disadvantaged through a higher transpirational surface, or the increased neighbourhood competition by ground vegetation. To assess whether trees with different growing space differ in drought tolerance, tree discs and cores from thinning experiments of Pinus sylvestris and Pseudotsuga menziesii stands will be used to examine transpirational stress and growth reduction during previous droughts as well as their subsequent recovery. Dendroecology and stable isotopes of carbon and oxygen in tree-rings will be used to quantify how assimilation rate and stomatal conductance were altered through thinning. The results will provide crucial information for the development of short-term silvicultural adaptation strategies to adapt forest ecosystems to climate change. In addition, this study will improve our understanding of the relationship between resistance and resilience of trees in relation to extreme stress events.
Sandy soils of the arid/semiarid dune fields of the Palestinian Gaza Strip and the Israeli western Negev are extensively covered by biological soil crusts (BSC), which stabilize the surface and prevent desertification. Political discussions in Israel suggest transferring a large part of this sand belt to the Gaza Strip within a final peace accord. Inappropriate land uses may lead to destruction of the BSC and initiate desertification, as already occurring in parts of the Gaza Strip. In this interdisciplinary project the influence of environmental factors on the vitality, stability and the recovery potential of the BSC will be investigated in order to evaluate the carrying capacity of this fragile landscape, in relation to rainfall, soil and relief conditions. A transect stretching from the Mediterranean coast in the Palestinian Gaza Strip (370 mm rainfall) to 65 km southwards in Israel ( Nizzana , less than 100 mm rainfall) has been selected. The interactions of molecular biological, physiological, physical and soil chemical processes, expressed in specific characteristics of the BSC and the underlying soil, will be assessed from the molecular to the landscape scale.
| Origin | Count |
|---|---|
| Bund | 141 |
| Type | Count |
|---|---|
| Förderprogramm | 141 |
| License | Count |
|---|---|
| offen | 141 |
| Language | Count |
|---|---|
| Deutsch | 14 |
| Englisch | 133 |
| Resource type | Count |
|---|---|
| Keine | 117 |
| Webseite | 24 |
| Topic | Count |
|---|---|
| Boden | 135 |
| Lebewesen und Lebensräume | 133 |
| Luft | 124 |
| Mensch und Umwelt | 141 |
| Wasser | 128 |
| Weitere | 141 |