Although global pesticide use increases steadily, our field-data based knowledge regarding exposure of non-target ecosystems is very restricted. Consequently, this meta-analysis will for the first time evaluate the worldwide available peer-reviewed information on agricultural insecticide concentrations in surface water or sediment and test the following two hypotheses: I) Insecticide concentrations in the field largely exceed regulatory threshold levels and II) Additional factors important for threshold level exceedances can be quantified using retrospective meta-analysis. A feasibility study using a restricted dataset (n = 377) suggested the significance of the expected results, i.e. an threshold level exceedance rate of more than 50Prozent of the detected concentrations. Subsequent to a comprehensive database search in the peer-reviewed literature of the past 60 years, analysis of covariance with the relevant threshold level exceedance as the continuous dependent variable (about 10,000 cases) will be performed and the impact of significant predictor variables will be quantified. Parameters not yet considered in pesticide exposure assessment will be included as independent variables, such as compound class, environmental regulatory quality, and sampling design. The simultaneous presence of several insecticide compounds as a well as their metabolites will also be considered in the evaluation. The present approach may provide an innovative and integrated view on the potential environmental side effects of global high-intensity agriculture and in particular of pesticides use.
Outbreaks of foodborne illness linked to consumptions of fresh, or partially processed, agricultural products are a growing concern in industrialized and developing countries. The incidence of human pathogens on fresh fruits and vegetables is often related to the use of recycled wastewaster in surface irrigation as well as high amounts of animal manure in agricultural management practice. Thereby the soil inhabiting fauna plays an important role in the transport and dissemination of microorganisms. The focus of the proposed project is on nematodes, well known vectors for bacteria and viruses in soil. The major goals are to: (1) survey human pathogens in soil and on/in free-living and plant parasitic nematodes in agriculture field sites irrigated with recycled wastewater or fertilized with fresh animal manure in Israel and the Palestinian Authority, (2) assess the function of nematodes as vectors in transmitting bacteria from microbial hot spots to plants, and (3) localize bacteria on and/or within the nematode and identify bacterial factors required for survival in the nematode host. Understanding the mechanisms involved in dissemination of human pathogens by nematodes will enhance the ability to develop practical means to minimize contamination of fresh produce and increase safety in food production.
Recent and predicted increases in extremely dry and hot summers emphasise the need for silvicultural approaches to increase the drought tolerance of existing forests in the short-term, before adaptation through species changes may be possible. We aim to investigate whether resistance during droughts, as well as the recovery following drought events (resilience), can be increased by allocating more growing space to individual trees through thinning. Thinning increases access of promoted trees to soil stored water, as long as this is available. However, these trees may also be disadvantaged through a higher transpirational surface, or the increased neighbourhood competition by ground vegetation. To assess whether trees with different growing space differ in drought tolerance, tree discs and cores from thinning experiments of Pinus sylvestris and Pseudotsuga menziesii stands will be used to examine transpirational stress and growth reduction during previous droughts as well as their subsequent recovery. Dendroecology and stable isotopes of carbon and oxygen in tree-rings will be used to quantify how assimilation rate and stomatal conductance were altered through thinning. The results will provide crucial information for the development of short-term silvicultural adaptation strategies to adapt forest ecosystems to climate change. In addition, this study will improve our understanding of the relationship between resistance and resilience of trees in relation to extreme stress events.
Agriculture is the major contributor of nitrogen to ecosystems, both by organic and inorganic fertilizers. Percolation of nitrate to groundwater and further transport to surface waters is assumed to be one of the major pathways in the fate of this nitrogen. The quantification of groundwater and associated nitrate flux to streams is still challenging. In particular because we lack understanding of the spatial distribution and temporal variability of groundwater and associated NO3- fluxes. In this preliminary study we will focus on the identification and quantification of groundwater and associated nitrate fluxes by combining high resolution distributed fiber-optic temperature sensing (DTS) with in situ UV photometry (ProPS). DTS is a new technique that is capable to measure temperature over distances of km with a spatial resolution of ca1 m and an accuracy of 0.01 K. It has been applied successfully to identify and quantify sources of groundwater discharge to streams. ProPS is a submersible UV process photometer, which uses high precision spectral analyses to provide single substance concentrations, in our case NO3-, at minute intervals and a detection limit of less than 0.05 mg l-1 (ca.0.01 mg NO3--Nl-1). We will conduct field experiments using artificial point sources of lateral inflow to test DTS and ProPS based quantification approaches and estimate their uncertainty. The selected study area is the Schwingbach catchment in Hessen, Germany, which has a good monitoring infrastructure. Preliminary research on hydrological fluxes and field observations indicate that the catchment favors the intended study.
Sandy soils of the arid/semiarid dune fields of the Palestinian Gaza Strip and the Israeli western Negev are extensively covered by biological soil crusts (BSC), which stabilize the surface and prevent desertification. Political discussions in Israel suggest transferring a large part of this sand belt to the Gaza Strip within a final peace accord. Inappropriate land uses may lead to destruction of the BSC and initiate desertification, as already occurring in parts of the Gaza Strip. In this interdisciplinary project the influence of environmental factors on the vitality, stability and the recovery potential of the BSC will be investigated in order to evaluate the carrying capacity of this fragile landscape, in relation to rainfall, soil and relief conditions. A transect stretching from the Mediterranean coast in the Palestinian Gaza Strip (370 mm rainfall) to 65 km southwards in Israel ( Nizzana , less than 100 mm rainfall) has been selected. The interactions of molecular biological, physiological, physical and soil chemical processes, expressed in specific characteristics of the BSC and the underlying soil, will be assessed from the molecular to the landscape scale.
The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.
In structured soils, the interaction of percolating water and reactive solutes with the soil matrix is mostly restricted to the surfaces of preferential flow paths. Flow paths, i.e., macropores, are formed by worm burrows, decayed root channels, cracks, and inter-aggregate spaces. While biopores are covered by earthworm casts and mucilage or by root residues, aggregates and cracks are often coated by soil organic matter (SOM), oxides, and clay minerals especially in the clay illuviation horizons of Luvisols. The SOM as well as the clay mineral composition and concentration strongly determine the wettability and sorption capacity of the coatings and thus control water and solute movement as well as the mass exchange between the preferential flow paths and the soil matrix. The objective of this proposal is the quantitative description of the small-scale distribution of physicochemical properties of intact structural surfaces and flow path surfaces and of their distribution in the soil volume. Samples of Bt horizons of Luvisols from Loess will be compared with those from glacial till. At intact structural surfaces prepared from soil clods, the spatial distribution (mm-scale) of SOM and clay mineral composition will be characterized with DRIFT (Diffuse reflectance infrared Fourier transform) spectroscopy using a self-developed mapping technique. For samples manually separated from coated surfaces and biopore walls, the contents of organic carbon (Corg) and the cation exchange capacity (CEC) will be analyzed and related to the intensities of specific signals in DRIFT spectra using Partial Least Square Regression (PLSR) analysis. The signal intensities of the DRIFT mapping spectra will be used to quantify the spatial distribution of Corg and CEC at these structural surfaces. The DRIFT mapping data will also be used for qualitatively characterizing the small scale distribution of the recalcitrance, humification, and microbial activity of the SOM from structural surfaces. The clay mineral composition of defined surface regions will be characterized by combining DRIFT spectroscopic with X-ray diffractometric analysis of manually separated samples. Subsequently, the spatial distribution of the clay mineral composition at structural surfaces will be determined from the intensities of clay mineral-specific signals in the DRIFT mapping spectra and exemplarily compared to scanning electron microscopic and infrared microscopic analysis of thin sections and thin polished micro-sections. The three-dimensional spatial distribution of the total structural surfaces in the volume of the Bt horizons will be quantified using X-ray computed tomography (CT) analysis of soil cores. The active preferential flow paths will be visualized and quantified by field tracer experiments. These CT and tracer data will be used to transfer the properties of the structural surfaces characterized by DRIFT mapping onto the active preferential flow paths in the Bt horizons.
For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.
We consider clay minerals, iron oxides and charcoal as major components controlling the formation of interfaces relevant for sorption of organic chemicals, as they control the assemblage of organic matter and mineral particles. We studied the formation of interfaces in batch incubation experiments with inoculated artificial soils consisting of model compounds (clay minerals, iron oxide, char) and natural soil samples. Results show a relevant contribution of both iron oxides and clay minerals to the formation of organic matter as sorptive interfaces for hydrophobic compounds. Thus, we intend to focus our work in the second phase on the characterization of the interface as formed by organic matter associated with clay minerals and iron oxides. The interfaces will be characterized by the BET-N2 and ethylene glycol monoethyl ether (EGME) methods and 129Xe and 13C NMR spectroscopy for determination of specific surface area, sorptive domains in the organic matter and microporosity. A major step forward is expected by the analysis of the composition of the interface at different resolution by reflected-light microscopy (mm scale), SEM (scanning electron microscopy, micrometer scale) and secondary ion mass spectrometry at the nanometer scale (nanoSIMS). The outcomes obtained in combination with findings from cooperation partners will help to unravel the contribution of different types of soil components on the formation and characteristics of the biogeochemical interfaces and their effect on organic chemical sorption.
The nature of the microbial communities inhabiting the deeper soil horizons is largely unknown. It is also not clear why subsurface microorganisms do not make faster use of organic compounds under field conditions. The answer could be provided by a reciprocal soil transfer experiment studying the response of transferred soils to fluctuations in microclimate, organic inputs, and soil biota. The subproject P9 will be responsible for the establishment of reciprocal transfer experiments offering a strong link between subgroups interested in organic matter quality, transport of organic substances, as well as functions of the soil microbial community. A single, high molecular weight substrate (13C labelled cellulose) will be applied at two different levels in the pre-experiment to understand the dose-dependent reaction of soil microorganisms in transferred surface and sub-soils. Uniformly 13C labelled beech roots - representing complex substrates - will be used for the main reciprocal soil transfer experiment. We hypothesize that transferring soil cores between subsoil and surface soil as well as addition of labelled cellulose or roots will allow us to evaluate the relative impact of surface/subsurface habitat conditions and resource availability on abundance, function, and diversity of the soil microbial community. The second objective of the subproject is to understand whether minerals buried within different soil compartments (topsoil vs. subsoil) in the field contribute to creation of hot spots of microbial abundance and activity within a period of two to five years. We hypothesize that soil microorganisms colonize organo-mineral complexes depending on their nutritional composition and substrate availability. The existence of micro-habitat specific microbial communities could be important for short term carbon storage (1 to 6 years). The third objective is to understand the biogeography and function of soil microorganisms in different subsoils. Parent material as well as mineral composition might control niche differentiation during soil development. Depending on size and interconnectedness of niches, colonization and survival of soil microbial communities might be different in soils derived from loess, sand, terra fusca, or sandstone. From the methodological point of view, our specific interest is to place community composition into context with soil microbial functions in subsoils. Our subgroup will be responsible for determining the abundance, diversity, und function of soil microorganisms (13C microbial biomass, 13C PLFA, enzyme activities, DNA extraction followed by quantitative PCR). Quantitative PCR will be used to estimate total abundances of bacteria, archaea and fungi as well as abundances of specific groups of bacteria at high taxonomic levels. We will apply taxa specific bacterial primers because classes or phyla might be differentiated into ecological categories on the basis of their life strategies.
Origin | Count |
---|---|
Bund | 141 |
Type | Count |
---|---|
Förderprogramm | 141 |
License | Count |
---|---|
offen | 141 |
Language | Count |
---|---|
Deutsch | 14 |
Englisch | 133 |
Resource type | Count |
---|---|
Keine | 117 |
Webseite | 24 |
Topic | Count |
---|---|
Boden | 134 |
Lebewesen und Lebensräume | 132 |
Luft | 123 |
Mensch und Umwelt | 141 |
Wasser | 128 |
Weitere | 141 |