Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.
This project aims at analysing the influence of competing national and international bureaucracies on the fragmentation of the international forest regime complex (IFRC). Its objectives are: - describing the political dimension of fragmentation of the IFRC programme- explaining the political dimension of fragmentation based on the model of bureaucratic politics- analysing the steering consequences resulting from fragmentation - trans-disciplinary design of solutions for coping with political aspects of fragmentationBuilding on the bureaucratic politics approach these objectives will be pursued by testing the linking hypothesis: Interest and influence of the bureaucracies cause a fragmented programme of the IFRC. This programme supports the goal of profitable timber production but keeps the decision about biodiversity and CO2 sequestration open hindering the effective steering by the IFRC. The project develops an analytical framework consisting of the following independent variables: competing national and competing international bureaucracies, elected politicians, national and international non-state actors and media discourses. The fragmentation of the political programme of the IFRC is the overall dependent variable. This project will analyse the influence of bureaucracies and their coalitions on fragmentation at the international level as well as in national case studies in Sweden, Poland and Germany. The other independent variables will be covered by sub-projects 2, 3 and 4. The findings will be linked to the other political and to the economic and technic-ecological sub projects in order to contribute to the multi-disciplinary description and explanation of fragmentation and its steering consequences.
Deviant behaviour on various levels of the food supply chain may cause food risks. It entails irregular technological procedures which cause (increased probabilities of) adverse outcomes for buyers and consumers. Besides technological hazards and hitherto unknown health threats, moral hazard and malpractice in food businesses represent an additional source of risk which can be termed 'behavioural food risk'. From a regulatory perspective, adverse outcomes associated with deviance represent negative externalities that are caused by the breaking of rules designed to prevent them. From a rational choice perspective, the probability of malpractice increases with the benefits for its authors. It decreases with the probability of detection and resulting losses. It also decreases with bonds to social norms that protect producers from yielding to economic temptations. The design of mechanisms that reduce behavioural risks and prevent malpractice requires an understanding of why food businesses obey or do not obey the rules. This project aims to contribute to a better understanding of malpractice on the restaurant/retail level through comparative case studies and statistical analyses of food inspection and survey data. Accounting for the complexity of economic behaviour, we will not only look at economic incentives but consider all relevant behavioural determinants, including social context factors.
The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Research in 'silviculture' and 'forest economics' very often takes place largely independent from each other. While silviculture predominantly focuses on ecological aspects, forest eco-nomics is sometimes very theoretic. The applied bioeconomic models often lack biological realism. Investigating mixed forests this proposal tries to improve bioeconomic modelling and optimisation under uncertainty. The hypothesis is tested whether or not bioeconomic model-ling of interacting tree species and risk integration would implicitly lead to close-to-nature forestry. In a first part, economic consequences of interdependent tree species mixed at the stand level are modelled. This part is based on published literature, an improved model of timber quality and existing data on salvage harvests. A model of survival over age is then to be developed for mixed stands. A second section then builds upon data generated in part one and concentrates on the simultaneous optimisation of species proportions and harvest-ing ages. It starts with a mean-variance optimisation as a reference solution. The obtained results are compared with data from alternative approaches as stochastic dominance, down-side risk and information-gap robustness.
The rational calculus of farmers assumed in many agricultural economic models is unrealistic and non-predictive of their actual decision making. Understanding structural change in agriculture can thus be improved via a realistic modeling of the decision making by agricultural entrepreneurs. Specifically, slow disinvestment (i.e., postponing farm exit), persistence of market structures (i.e., failure to reallocate land plots towards higher efficiency), and more generally characterizing the decision making of farmers are crucial for a better understanding of structural change and policy advice. We apply economic experiments to better understand such disinvestment choices, land markets with economies of scale and private opportunity costs, different auction and bargaining forms to improve allocation efficiency of land markets, and to generally characterize the decision making of farmers.
The mission of the TIDE project will be to enhance the broad transfer and take-up of 15 innovative urban transport and mobility concepts throughout Europe and to make a visible contribution to establish them as mainstream measures. The TIDE partners will make a range of new and feasible solutions easily accessible to address key challenges of urban transport such as energy efficiency, decarbonisation, demographic change, safety, access for all and new economic and financial conditions. TIDE will focus on 15 innovative concepts in five thematic clusters: financing models and pricing measures (1), non-motorised transport (2), network and traffic management to support traveller information (3), electric vehicles (4) and public transport organisation (5). Sustainable Urban Mobility Plans will be a horizontal topic to integrate the cluster activities. The project will provide a strong approach in methodology, content and outreach. The needs of practitioners in European cities and regions will be a guiding principle. A particular focus will also be on providing guidance for finding cost-efficient solutions (cost-benefit analysis). The project will refine existing and well proven transferability methodologies and integrate them into an easy to apply handbook. Face-to-Face training and exchange events as well as guidelines and e-learning on how to successfully implement innovative solutions will be the key tools to effectively support a wide range of take-up candidates in overcoming real or perceived barriers to implementation. A broad portfolio of dissemination activities will ensure a high visibility of the project. TIDE will actively support 15 committed cities in developing implementation scenarios. They will demonstrate how to successfully prepare implementation of innovative solutions and provide examples to a wider group of cities. An experienced and committed consortium will ensure that the advanced project approach will achieve a well visible impact.
The MSY concept was included as a principle in the 2009 Green Paper on the reform of the Common Fisheries Policy (CFP) in accordance with the global imperative to manage fish stocks according to the maximum sustainable yield (MSY). This implies a commitment to direct management of fish stocks towards achieving MSY by 2015. Attaining this goal is complicated by the lack of common agreement on the interpretation of 'sustainability' and 'yield' and by the effects that achieving MSY for one stock may have on other stocks and broader ecosystem, economic, or social aspects. MYFISH will provide definitions of MSY variants which maximize other measures of 'yield' than biomass and which account for the fact that single species rarely exist in isolation. Further, MYFISH will redefine the term 'sustainable' to signify that Good Environmental Status (MSFD) is achieved and economically and socially unacceptable situations are avoided, all with acceptable levels of risk. In short, MYFISH aims at integrating the MSY concept with the overarching principals of the CFP: the precautionary and the ecosystem approach. MYFISH will achieve this objective through addressing fisheries in all RAC areas and integrating stakeholders (the fishing industry, NGOs and managers) throughout the project. Existing ecosystem and fisheries models will be modified to perform maximization of stakeholder approved yield measures while ensuring acceptable impact levels on ecosystem, economic and social aspects. Implementation plans are proposed and social aspects addressed through active involvement of stakeholders. Finally, effects of changes in environment, economy and society on MSY variants are considered, aiming at procedures rendering the MSY approach robust to such changes. The expertise of 26 partners from relevant disciplines including fisheries, ecosystem, economic and social science are involved in all aspects of the project. Global experience is engaged from North America and the South Pacific.
Forecasted change in precipitation may lead to an increase of biomass in area covered by savannah and to a consequent increase in biomass burning, affecting the carbon emissions at global scale. Understanding how tropical ecosystems will react to those changes is relevant particularly for East Africa, where population density is the highest of the continent. We generated high-resolution sediment charcoal data spanning the last 2000 years across a climatic gradient (wet to dry savannah) to assess the long-term impact of fire, climate and land use on tropical savannah ecosystems. Records of biomass burnings show contrasting fire pattern among the two regions. In wet savannah ecosystems, fire was limited by wetter periods until the colonial period (AD 1800), when biomass removal led to a decrease in burning. In contrast, in the dry setting of Kenya, fire conditions during the last 2k years peaked at intermediate rainfall, and increased in recent times following land use intensification. On the basis of our data we hypothesize that under a future scenario with increased rainfall fire will increase in the wet savannah and decrease in the (eastern) dry savannah, unless fuel will be limited by agriculture practices. Yet, it is not understood how important vegetation properties and ecosystem services such as plant biomass and diversity will respond to inter-annual to seasonal variation in the moisture balance, and how tropical species will cope with extreme events, such as droughts. The following proposal addresses highly relevant questions for todays key issues of biodiversity and the adaptation of vulnerable communities to global change. Additionally, it will contribute to ongoing multi-proxy research concerning the magnitude, frequency, and rates of past climate change in equatorial East Africa. Finally, the project will improve our understanding of tropical ecosystem functioning and its interaction with cultural and economic systems at local to regional scales.
| Origin | Count |
|---|---|
| Bund | 109 |
| Type | Count |
|---|---|
| Förderprogramm | 109 |
| License | Count |
|---|---|
| offen | 109 |
| Language | Count |
|---|---|
| Deutsch | 9 |
| Englisch | 105 |
| Resource type | Count |
|---|---|
| Keine | 86 |
| Webseite | 23 |
| Topic | Count |
|---|---|
| Boden | 97 |
| Lebewesen und Lebensräume | 108 |
| Luft | 78 |
| Mensch und Umwelt | 109 |
| Wasser | 78 |
| Weitere | 109 |