API src

Found 109 results.

Forest management in the Earth system

The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.

A behavioural economic analysis of moral hazards in food production: the case of deviant economic behaviour and disclosure policies on the restaurant, ready-to-eat and retail level

Deviant behaviour on various levels of the food supply chain may cause food risks. It entails irregular technological procedures which cause (increased probabilities of) adverse outcomes for buyers and consumers. Besides technological hazards and hitherto unknown health threats, moral hazard and malpractice in food businesses represent an additional source of risk which can be termed 'behavioural food risk'. From a regulatory perspective, adverse outcomes associated with deviance represent negative externalities that are caused by the breaking of rules designed to prevent them. From a rational choice perspective, the probability of malpractice increases with the benefits for its authors. It decreases with the probability of detection and resulting losses. It also decreases with bonds to social norms that protect producers from yielding to economic temptations. The design of mechanisms that reduce behavioural risks and prevent malpractice requires an understanding of why food businesses obey or do not obey the rules. This project aims to contribute to a better understanding of malpractice on the restaurant/retail level through comparative case studies and statistical analyses of food inspection and survey data. Accounting for the complexity of economic behaviour, we will not only look at economic incentives but consider all relevant behavioural determinants, including social context factors.

Environmental and economic evaluation of the accelerated replacement of domestic appliances. Case study refrigerators and freezers

Human influences on forests in southern Ethiopia: the case of Shashemane-Munessa-forest

Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.

Fragmentation of the international forest regime complex: multi-dimensional descriptions, explanations, steering consequences and polital options; The production and utilisation of forest regime fragmentation by bureaucratic politics

This project aims at analysing the influence of competing national and international bureaucracies on the fragmentation of the international forest regime complex (IFRC). Its objectives are: - describing the political dimension of fragmentation of the IFRC programme- explaining the political dimension of fragmentation based on the model of bureaucratic politics- analysing the steering consequences resulting from fragmentation - trans-disciplinary design of solutions for coping with political aspects of fragmentationBuilding on the bureaucratic politics approach these objectives will be pursued by testing the linking hypothesis: Interest and influence of the bureaucracies cause a fragmented programme of the IFRC. This programme supports the goal of profitable timber production but keeps the decision about biodiversity and CO2 sequestration open hindering the effective steering by the IFRC. The project develops an analytical framework consisting of the following independent variables: competing national and competing international bureaucracies, elected politicians, national and international non-state actors and media discourses. The fragmentation of the political programme of the IFRC is the overall dependent variable. This project will analyse the influence of bureaucracies and their coalitions on fragmentation at the international level as well as in national case studies in Sweden, Poland and Germany. The other independent variables will be covered by sub-projects 2, 3 and 4. The findings will be linked to the other political and to the economic and technic-ecological sub projects in order to contribute to the multi-disciplinary description and explanation of fragmentation and its steering consequences.

Uncertainty and the bioeconomics of near-natural silviculture

Research in 'silviculture' and 'forest economics' very often takes place largely independent from each other. While silviculture predominantly focuses on ecological aspects, forest eco-nomics is sometimes very theoretic. The applied bioeconomic models often lack biological realism. Investigating mixed forests this proposal tries to improve bioeconomic modelling and optimisation under uncertainty. The hypothesis is tested whether or not bioeconomic model-ling of interacting tree species and risk integration would implicitly lead to close-to-nature forestry. In a first part, economic consequences of interdependent tree species mixed at the stand level are modelled. This part is based on published literature, an improved model of timber quality and existing data on salvage harvests. A model of survival over age is then to be developed for mixed stands. A second section then builds upon data generated in part one and concentrates on the simultaneous optimisation of species proportions and harvest-ing ages. It starts with a mean-variance optimisation as a reference solution. The obtained results are compared with data from alternative approaches as stochastic dominance, down-side risk and information-gap robustness.

Agricultural Entrepreneurs' Decision Making and Structural Change: An Experimental Approach

The rational calculus of farmers assumed in many agricultural economic models is unrealistic and non-predictive of their actual decision making. Understanding structural change in agriculture can thus be improved via a realistic modeling of the decision making by agricultural entrepreneurs. Specifically, slow disinvestment (i.e., postponing farm exit), persistence of market structures (i.e., failure to reallocate land plots towards higher efficiency), and more generally characterizing the decision making of farmers are crucial for a better understanding of structural change and policy advice. We apply economic experiments to better understand such disinvestment choices, land markets with economies of scale and private opportunity costs, different auction and bargaining forms to improve allocation efficiency of land markets, and to generally characterize the decision making of farmers.

Advanced Model Development and Validation for Improved Analysis of Costs and Impacts of Mitigation Policies (ADVANCE)

Objective: Integrated assessment and energy-economy models have become central tools for informing long-term global and regional climate mitigation strategies. There is a large demand for improved representations of complex system interactions and thorough validation of model behaviour in order to increase user confidence in climate policy assessments. ADVANCE aims to respond to this demand by facilitating the development of a new generation of integrated assessment models. This will be achieved by substantial progress in key areas where model improvements are greatly needed: end use and energy service demand; representation of heterogeneity, behaviour, innovation and consumer choices; technical change and uncertainty; system integration, path dependencies and resource constraints; and economic impacts of mitigation policies. In the past, methodological innovations and improvements were hindered by the unavailability of suitable input data. The ADVANCE project will make a large and coordinated effort to generate relevant datasets. These datasets, along with newly developed methodologies, will be made available to the broader scientific community as open-access resources. ADVANCE will also put a focus on improved model transparency, model validation, and data handling. A central objective of ADVANCE is to evaluate and to improve the suitability of models for climate policy impact assessments. The improved models will be applied to an assessment of long-term EU climate policy in a global context, and disseminated to the wider community. The ADVANCE consortium brings together long-standing expertise in integrated assessment and energy-economy modelling with a strong expertise in material flows, energy system integration, and energy service demand.

Wood2Chem: a computer aided platform to support the optimal implementation of wood-based bio refinery concepts

Wood2CHem: A computer-aided platform for developing bio-refinery concepts The bio-refinery concept offers the timber industry numerous development opportunities by integrating the production of value-added products made from biomass. The computer-aided platform Wood2CHem, developed within the scope of this project, will help to devise innovative means for promoting wood as a resource using a holistic and integrated approach. Background Due to its composition and complex chemical structure, wood can be used to make a large number of value-added products. The bio-refinery concept proposes to widen the range of products derived from wood while adopting a systemic approach aimed at promoting synergies in the production of various products by integrating different processes. It therefore offers an enormous development potential for the wood sector and opens up many new markets. The development of bio-refinery concepts poses a significant challenge. A large number of processes that integrate studies and technologies of innovative transformation need to be evaluated, integrated and optimised using a holistic approach before the most promising concepts can be identified. Aim By applying techniques from process engineering, energy integration and multi-objective optimisation, the consortium of the Wood2CHem project proposes to develop a computer-aided platform for systematically generating the most promising bio-refinery models and evaluating their thermodynamic, economic and environmental performance. This integrated platform will be developed by combining expertise in chemical engineering and process engineering. It is aimed at integrating technological developments of wood transformation and will be validated in industrial case studies. Significance The Wood2CHem project concerns the development of industrial concepts and will therefore primarily interest experts and engineers in the field who wish to develop integrated and innovative concepts for a rational promotion of wood. It will allow them to envisage and compare inegrated process chains. The platform will integrate all the actors wishing to assume the perspective of industrial ecology.

Sustainable water infrastructure planning (SWIP)

Water supply pipes, sewers and wastewater treatment plants are in need of renovation in many places. However, current water policies in Switzerland are inadequate for the durable and strategic planning of such infrastructure. How must tools and planning processes be adapted to the changes in nature and society? Background Infrastructure in the water sector should be as long-lived as possible. However, its planning is very complex: extreme events such as droughts and floods should be taken into account to the same extent as the increasing water demand or the demographic development. Also, the stakeholders are to be included in the decision making processes. The division of waste water disposal and drinking water supply into separate organizational entities is a weak point in the planning process. Instruments are available to identify infrastructural flaws in a municipality and to recommend investment plans. But they do not make long-term planning possible - amongst other things because the necessary tools are not available. Objectives and methods Decision making support will be developed so that the long-term planning of water supply and wastewater treatment infrastructure can be improved. The project will strive for a balance between economic costs, ecological aspects and social values. Special attention will be given to the fact that many communities have only limited data concerning their infrastructure and that future developments cannot be predicted with certainty. Subjective preferences of the various policy-makers will be integrated by means of a multi-layered decision analysis. Decision making support will be developed and validated in several municipalities, together with the practically-oriented partners. Significance The tools that will be developed assist the transition from problem-based 'repairs' to foresighted planning of water infrastructure. The stakeholders participating in the case studies will be sensitized for planning issues by being included in a forward-looking, joint planning process. This approach can be adapted to other difficult decision-making situations in which many different stakeholders are involved.

1 2 3 4 59 10 11