This publication provides an overview about data of the German PRTR ( P ollutant R elease and T ransfer R egister). For each pollutant, the number of reported facilities and their releases to air, water and land and their off-site transfer in waste water are clearly displayed. Data for industrial sectors of the current reporting year 2022 are summarized in tables while their developments since 2007 are presented in diagrams. Detailed information and search options within the PRTR are available at www.Thru.de . Veröffentlicht in Broschüren.
technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of processing of nickel-rich materials (GLO): Based on typical current technology. technologyComment of smelting and refining of nickel concentrate, 16% Ni (GLO): Extrapolated from a typical technology for smelting and refining of nickel ore. MINING: 95% of sulphidic nickel ores are mined underground in depths between 200m and 1800m, the ore is transferred to the beneficiation. Widening of the tunnels is mainly done by blasting. The overburden – material, which does not contain PGM-bearing ore – is deposed off-site and is partially refilled into the tunnels. Emissions: The major emissions are due to mineral born pollutants in the effluents. The underground mining operations generate roughly 80 % of the dust emissions from open pit operations, since the major dust sources do not take place underground. Rain percolate through overburden and accounts to metal emissions to groundwater. Waste: Overburden is deposed close to the mine. Acid rock drainage occurs over a long period of time. BENEFICIATION: After mining, the ore is first ground. In a next step it is subjected to gravity concentration to separate the metallic particles from the PGM-bearing minerals. After this first concentration step, flotation is carried out to remove the gangue from the sulphidic minerals. For neutralisation lime is added. In the flotation several organic chemicals are used as collector, frother, activator, depressor and flocculant. Sometimes cyanide is used as depressant for pyrite. Tailings usually are led to tailing heaps or ponds. As a result, nickel concentrates containing 7 - 25% Ni are produced. Emissions: Ore handling and processing produce large amounts of dust, containing PM10 and several metals from the ore itself. Flotation produce effluents containing several organic agents used. Some of these chemicals evaporate and account for VOC emissions to air. Namely xanthates decompose hydrolytically to release carbon disulphide. Tailings effluent contains additional sulphuric acid from acid rock drainage. Waste: Tailings are deposed as piles and in ponds. Acid rock drainage occurs over a long period of time. METALLURGY AND REFINING: There are many different process possibilities to win the metal. The chosen process depends on the composition of the ore, the local costs of energy carrier and the local legislation. Basically two different types can be distinguished: the hydrometallurgical and the pyrometallurgical process, which paired up with the refining processes, make up five major production routes (See Tab.1). All this routes are covered, aggregated according to their market share in 1994. imageUrlTagReplace00ebef53-ae97-400f-a602-7405e896cb76 Pyrometallurgy. The pyrometallurgical treatment of nickel concentrates includes three types of unit operation: roasting, smelting, and converting. In the roasting step sulphur is driven off as sulphur dioxide and part of the iron is oxidised. In smelting, the roaster product is melted with a siliceous flux which combines with the oxidised iron to produce two immiscible phases, a liquid silicate slag which can be discarded, and a solution of molten sulphides which contains the metal values. In the converting operation on the sulphide melt, more sulphur is driven off as sulphur dioxide, and the remaining iron is oxidised and fluxed for removal as silicate slag, leaving a high-grade nickel – copper sulphide matte. In several modern operations the roasting step has been eliminated, and the nickel sulphide concentrate is treated directly in the smelter. Hydrometallurgy: Several hydrometallurgical processes are in commercial operation for the treatment of nickel – copper mattes to produce separate nickel and copper products. In addition, the hydrometal-lurgical process developed by Sherritt Gordon in the early 1950s for the direct treatment of nickel sulphide concentrates, as an alternative to smelting, is still commercially viable and competitive, despite very significant improvements in the economics and energy efficiency of nickel smelting technology. In a typical hydrometallurgical process, the concentrate or matte is first leached in a sulphate or chloride solution to dissolve nickel, cobalt, and some of the copper, while the sulphide is oxidised to insoluble elemental sulphur or soluble sulphate. Frequently, leaching is carried out in a two-stage countercurrent system so that the matte can be used to partially purify the solution, for example, by precipitating copper by cementation. In this way a nickel – copper matte can be treated in a two-stage leach process to produce a copper-free nickel sulphate or nickel chloride solution, and a leach residue enriched in copper. Refining: In many applications, high-purity nickel is essential and Class I nickel products, which include electrolytic cathode, carbonyl powder, and hydrogen-reduced powder, are made by a variety of refining processes. The carbonyl refining process uses the property of nickel to form volatile nickel-carbonyl compounds from which elemental nickel subsides to form granules. Electrolytic nickel refineries treat cast raw nickel anodes in a electrolyte. Under current the anode dissolves and pure nickel deposits on the cathode. This electrorefining process is obsolete because of high energy demand and the necessity of building the crude nickel anode by reduction with coke. It is still practised in Russia. Most refineries recover electrolytic nickel by direct electrowinning from purified solutions produced by the leaching of nickel or nickel – copper mattes. Some companies recover refined nickel powder from purified ammoniacal solution by reduction with hydrogen. Emissions: In all of the metallurgical steps, sulphur dioxide is emitted to air. Recovery of sulphur dioxide is only economic for high concentrated off-gas. Given that In the beneficiation step, considerable amounts of lime are added to the ore for pH-stabilisation, lime forms later flux in the metallurgical step, and decomposes into CO2 to form calcite. Dust carry over from the roasting, smelting and converting processes. Particulate emissions to the air consist of metals and thus are often returned to the leaching process after treatment. Chlorine is used in some leaching stages and is produced during the subsequent electrolysis of chloride solution. The chlorine evolved is collected and re-used in the leach stage. The presence of chlorine in wastewater can lead to the formation of organic chlorine compounds (AOX) if solvents etc. are also present in a mixed wastewater. VOCs can be emitted from the solvent extraction stages. A variety of solvents are used an they contain various complexing agents to form complexes with the desired metal that are soluble in the organic layer. Metals and their compounds and substances in suspension are the main pollutants emitted to water. The metals concerned are Cu, Ni, Co, As and Cr. Other significant substances are chlorides and sulphates. Wastewater from wet gas cleaning (if used) of the different metallurgical stages are the most important sources. The leaching stages are usually operated on a closed circuit and drainage systems, and are therefore regarded as minor sources. In the refining step, the combustion of sulphur leads to emissions of SO2. Nitrogen oxides are produced in significant amounts during acid digestion using nitric acid. Chlorine and HCl can be formed during a number of digestion, electrolytic and purification processes. Chlorine is used extensively in the Miller process and in the dissolution stages using hydrochloric acid and chlorine mixtrues respectively. Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Large quantities of effluents contain amounts of metals and organic substances. Waste: Regarding the metallurgical step, several co-products, residues and wastes, which are listed in the European Waste Catalogue, are generated. Some of the process specific residues can be reused or recovered in preliminary process steps (e. g. dross, filter dust) or construction (e. g. cleaned slag). Residues also arise from the treatment of liquid effluents, the main residue being gypsum waste and metal hydroxides from the wastewater neutralisation plant. These residuals have to be disposed, usually in lined ponds. In the refining step, quantities of solid residuals are also generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (ironhydroxide, 60% water, cat I industrial waste). References: Kerfoot D. G. E. (1997) Nickel. In: Ullmann's encyclopedia of industrial chemis-try (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. technologyComment of smelting and refining of nickel concentrate, 7% Ni (CN): The nickel concentrate (6.78% beneficiated - product of the mining and beneficiation processes) undergoes drying, melting in flash furnace and converting to produce high nickel matte. The nickel matte undergoes grinding-floating separation and is refined through anode plate casting and electrolysis in order to produce electrolytic nickel 99.98% pure. Deng, S. Y., & Gong, X. Z. (2018). Life Cycle Assessment of Nickel Production in China. Materials Science Forum, 913, 1004-1010. doi:10.4028/www.scientific.net/MSF.913.1004 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining.
Wissenschaftliche Publikationen im Bereich Strahlenschutz 2004 Autor Auer M, Axelsson A, Blanchard X, Bowyer TW, Brachet G, Bulowski I, Dubasov Y, Elmgren K, Fontaine JP, Harms W, Hayes JC, T Heimbigner R, McIntyre JI, Panisko ME, Popov Y, Ringbom A, Sartorius H, Schmid S, Schulze J, Schlosser C, Taffary T, Weiss W, Wernsperger B Bährle H, Dalheimer A, Froning M, Kratzel U, Neudert N, Schäfer I, Ulbricht E Barquinero J F, Stephan G, Schmid E Barth I, Rimpler A Barth I, Rimpler A, Mielcarek J Baumgärtner F, Donhärl W Bayer A (Hrsg) Bergler I, Bernhard C, Gödde R, Löbke-Reinl A, Schmitt-Hannig A (Hrsg) Bergler I, Bernhard C, Gödde R, Löbke-Reinl A, Schmitt-Hannig A (Hrsg) Bieringer J, Schlosser C Bieringer J. Titel Intercomparison experiments of systems for the measurement of xenon radionuclides in the atmosphere. Applied Radiation and Isotopes 60: 863–877, 2004 Leitfaden zur Zertifizierung und Akkreditierung im Strahlenschutz In: Fortschritte im Strahlenschutz, Fachverband für Strahlenschutz e.V., FS-04-126-AKI, 02.2004 Effect of americium-241 α-particles on the dose-response of chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridization. Int. J. Radiat Biol 80:155-164, 2004 Strahlenexposition des Personales bei der therapeutischen Anwendung von β-Strahlern. In: Nuklearmedizin 43: 45-68, S A151, 2004 Beta-Radiation Exposure of Medical Personnel. In: 11th. International Congress of the international Radiation Protection Association, Madrid/Spanien, 2004 Non-exchangeable organnically bound tritium (OBT): its real nature. Anal Bioanal Chem 379: 204-209, 2004 Special Subject: Environmental radioactivity monitoring in Germany. Kerntechnik 69 (5-6), 2004 Strahlenschutzforschung - Programmreport 2002 - Bericht über das vom Bundesamt für Strahlenschutz fachlich begleitete und verwaltete Ressortforschungsprogramm Strahlenschutz des Bundesumweltministeriums. BfS-SG-Bericht 04/2004, Salzgitter, 2004 Strahlenschutzforschung - Programmreport 2003 - Bericht über das vom Bundesamt für Strahlenschutz fachlich und administrativ begleitete Ressortforschungsprogramm Strahlenschutz des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. BfS-Schrift 32/2004, Salzgitter, 2004 Monitoring Ground-level Air for Trace Analysis: Methods and Results. Analytical and Bioanalytical Chemistry: 379, 234-241, 2004 Strategy for taking measurements using the German Integrated Measuring and Information System (IMIS) in the case of a nuclear emergency. Kerntechnik: 69, 239-242, 2004 Secondhand smoke exposure in adulthood and risk of lung cancer among never smokers: a pooled analysis of two large studies. Int J Cancer 109:125-31, 2004 Brennan P, Buffler PA, Reynolds P, Wu AH, Wichmann HE, Agudo A, Pershagen G, Jockel KH, Benhamou S, Greenberg RS, Merletti F, Winck C, Fontham ET, Kreuzer M, Darby SC, Forastiere F, Simonato L, Boffetta P Brix G, Kiessling F, Lucht R, Darai Microcirculation and Microvasculature in Breast Tumors: Pharmacokinetic S, Wasser K, Delorme S, Griebel J Analysis of Dynamic MR Image Series. Magn Reson Med. 52: 420-429, 2004 Brix G, Lechel U, Veit R, Assessment of a Theoretical Formalism for Dose Estimation in CT: An Truckenbrodt R, Stamm G, Anthropomorphic Phantom Study. Coppenrath EM, Griebel J, Nagel Eur Radiology 2004; 14:1275-1284 HD 1 Wissenschaftliche Publikationen im Bereich Strahlenschutz 2004 Autor Brüske-Hohlfeld I, Schaffrath Rosario A, Wölke G, Heinrich J, Kreuzer M, Kreienbrock L, Wichmann HE Buchholz W, Dalheimer A, Hartmann M, König K Titel Lungenkrebsrisiko bei Beschäftigten im Uranbergbau. In: Wichmann HE, Jöckel KH, Robra BP (Hrsg): Fortschritte in der Epidemiologie. Ecomed-Verlag, Landsberg/Lech, 2004 Ergebnisse der Ringversuche der Leitstelle Inkorporationsüberwachung des BfS. In: Strahlenschutzpraxis, 10. Jahrgang, Heft 3, 22-24, 2004 Buchholz W, König K Ringversuch Herbst 2003 In-vivo Inkorporationsmessanlagen; Ganzkörper/Teilkörper Bericht BfS-SG-IB-05/04, Salzgitter, November 2004 Czarwinski, R Resources and services, quality assurance, international support of services – rapporteurs summary. In: IAEO International Conference on National Infrastructures for Radiation Safety – Towards Effective and Sustainable Systems, Rabat/Marokko, 01. – 05. 09.2003 IAEA STI/PUB/1193 Juli 2004 Doll J, Henze M, Bublitz O, Auflösungsverbessernde Bildrekonstruktion von PET-Daten mit dem Werling A, Adam LE, Haberkorn U, iterativen OSEM-Algorithmus. Semmler W, Brix G Nuklearmedizin 43: 72-78, 2004 Frasch G Air crew monitoring in Germany. In: Italian Radiological Protection Review N. 2004; 68-69 Frasch G, Almer, E, Fritzsche E, Die berufliche Strahlenexposition in Deutschland 2002. Kammerer L, Karofsky, R Kragh P, Bericht des Strahlenschutzregisters, BfS-SG-Bericht 03/04, Salzgitter Spiesl, J 2004 Gering F, Weiss W, Wirth E, Assessment and evaluation of the radiological situation of the late phase Stapel R, Jacob P, Müller H, Pröhl of a nuclear accident, Radiation Protection Dosimetry 109: 25-29, 2004 G Gering F, Richter K, Müller H Combination of measurements and model predictions after a release of radionuclides. Kerntechnik: 69, 243-247, 2004 Grosche B, Hall P, Laurier D Les agrégats de leucémie à proximité des installations nucléaires: résultats et débats récents; Contrôle. Épidemiologie et rayonnements ionisants, 156: 83-94, 2004 Guggenberger R, Heide L, Untersuchungen zur Eignung von Zuckeraustauschstoffen in der Dalheimer A Dosisrekonstruktion mit Hilfe der Chemilumineszenz. BfS-Bericht SG-IB-03/04, Berlin, 11.2004 Heide L, Bauer S, Dalheimer A, Dosisrekonstruktion mittels TL-Messungen an Ziegeln aus der Umgebung Maaß S des Atomtestgebiets Semipalatinsk. BfS-Bericht SG-IB-02/04, Salzgitter, 05.2004 Hirota M, Nemoto K, Wada A, Spatial and temporal varaitions of 85Kr observed during 1995-2001 in Igarashi Y, Aoyama M, Matsueda Japan: Estimation of atmospheric 85Kr inventory in the northern H, Hirose K, Sartorius H, hemisphere. J Radiat Res 45: 405-413, 2004 Schlosser C, Schmid S, Weiss W, Fujii K Höbler C, Hable K, Baig S, International Data and Information Exchange for Off-site Emergency Zähringer M Management - Where to go? Radiation Protection Dosimetry: 109, 59-62, 2004 Kalinowski MB, Sartorius H, Uhl S, Conclusions on plutonium separation from atmospheric krypton-85 Weiss W measured at various distances from the Karlsruhe reprocessing plant. Journal of Environmental Radioactivity 73: 203-222, 2004 Kirchner G, Ettenhuber E, Begrenzung der Radonkonzentration in Aufenthaltsräumen: Jung T, Kreuzer M, Lehmann R, Naturwissenschaftliche Grundlagen. Meyer W Schriftenreihe Umweltpolitik des BMU, Forschung zum Problemkreis „Radon“, Vortragsmanuskripte des 17. Statusgespräches, Berlin, 14./15. Oktober 2004 Kelly GN, Jones R, Crick MJ, Off-Site Nuclear Emergency Management - Summary and conclusions: Weiss W, Morrey M, Lochard J, Capabilities and Challanges. French S Radiation Protection Dosimetry 109: 155-164, 2004 2 Wissenschaftliche Publikationen im Bereich Strahlenschutz 2004 Autor Kiessling F, Boese J, Corvinus C, Ederle JR, Zuna I, Schoenberg SO, Brix G, Schmahl A, Tuengerthal S, Herth F, Kauczor HU, Essig M Kreuzer M Kreuzer M Kreuzer M, Matthes R, Pölzl Chr, Weiss W, Ziegelberger G Kreuzer M, Schnelzer M, Tschense A, Grosche B Little MP, Blettner M, Boice JD Jr, Bridges BA, Cardis E, Charles MW, de Vathaire F, Doll R, Fujimoto K, Goodhead DT, Grosche B, Hall P, Heidenreich WF, Jacob P, Moolgavkar SH, Muirhead CR, Niwa O, Paretzke HG, Richardson RB, Samet JM, Sasaki Y, Shore RE, Straume T, Wakeford R Little MP, Blettner M, Boice JD Jr, Bridges BA, Cardis E, Charles MW, de Vathaire F, Doll R, Fujimoto K, Goodhead D, Grosche B, Hall P, Heidenreich WF, Jacob P, Moolgavkar SH, Muirhead CR, Niwa O, Paretzke HG, Richardson RB, Samet JM, Sasaki Y, Shore RE, Straume T, Wakeford R Massoudi-Nickel S, Kampen WU, Henze E, Knapp WH, Hornik S Titel Perfusion CT in Patients with Advanced Bronchial Carcinomas: A Novel Chance for Characterization and Treatment Monitoring? Eur Radiology 14:1226-33, 2004 Epidemiologie des Bronchialkarzinoms bei lebenslangen Nichtrauchern. Habilitationsschrift, Medizinische Fakultät der Ludwig-Maximilians- Universität München, 2004 Radon in Wohnungen – ein wichtiger Risikofaktor für Lungenkrebs. Umweltmedizinischer Informationsdienst (UMID) 3/2004; 9-12 Forschungsprojekte zur Wirkung elektromagnetischer Felder des Mobilfunks. Tagungsbericht des 2. Fachgesprächs, Bundesamt für Strahlenschutz, SG-IB-01/04, Februar 2004 Risk of lung cancer and other cancers in the German uranium miners cohort study. In: Proceedings of the 11th International Radiation Protection Association Conference in Madrid, 2004; Funding crisis at the Radiation Effects Research Foundation (Editorial); J Radiol Prot 24:195-197, 2004 Potential funding crisis for the Radiation Effects Research Foundation (Comment); Lancet 364 (9434):557-588, 2004 Unkomplizierte Schwangerschaft und Geburt eines gesunden Kindes bei Schilddrüsen-karzinom nach 68 GBq Iod-131. Nuklearmedizin 43: N68-N70, 2004 Matthes R Public exposure from mobile phone base stations Proceedings of the International NIR Workshop & Symposium, Seville, Spain 20-22 May 2004 Meier S, Buchholz W, König K Ringversuch Herbst 2001 In-vivo Inkorporationsmessanlagen; Ganzkörper/Teilkörper Bericht BfS-SG-IB-04/04, Salzgitter, November 2004 Mestres M, Schmid E, Stephan G, Analysis of alpha-particle induced incomplete chromosome aberrations, Barrios L, Caballin MR, Barquinero using pan-centromeric and pan-telomeric DNA probes. JF Proceedings of the 11th International Congress of the International Radiation Protection Association, Madrid, ISBN 84-87078-05-2, 1a23, 2004 Meyer W, Lehmann R, Kemski J, Influence of building-specific characteristics on the transfer factor and Klingel R prognosis of the transgression probabilities of given radon concentrations. Proceedings of the 7th International Workshop on the Geological Aspects of Radon Risk Mapping, Prag, 15.-17. September 2004, 128-132 Nagel HD, Blobel J, Brix G, Ewen 5 Jahre ‚Konzertierte Aktion Dosisreduktion CT‘ – Was wurde erreicht, K, Galanski M, Höfs P, Loose R, was ist noch zu tun? Prokop M, Schneider K, Stamm G, Fortschr Röntgenstr 176: 1683-1694, 2004 Stender HS, Süss C, Türkay S, Vogel H, Wucherer M 3
What is the objective of the planned decommissioning of the Morsleben repository? It is imperative that the emplaced low- and intermediate-level radioactive waste remains separate from the biosphere – that is, the habitat of plants, animals and humans. As radioactive materials must be prevented from entering the environment, sealing structures are to be built and the shafts are to be sealed. To a large extent, the repository mine will also be backfilled with salt concrete. (See Decommissioning of the Morsleben repository .) Why is costly backfilling of the mine necessary if there are sealing structures? Backfilling the mine will serve to stabilise the rock in the vicinity of the repository. This is important because the surrounding rock prevents the ingress of solutions, acting like a raincoat and performing an important protective function. The mine is currently stable, as shown by extensive geomechanical monitoring. In some areas, however, it must be assumed that the protective function of the salt rock will not remain intact on a permanent basis if no action is taken. The reason for this is that the salt moves a few millimetres a year under the pressure exerted by the rock. Although this movement – known as convergence – is slight, it is detectable. In the long term, convergence results in local excavation-disturbed zones in the rock that harm the stability and impermeability of the salt barrier, and pathways can form that allow the transport of radioactive materials. The decommissioned repository should provide long-term safety and be maintenance-free Backfilled mine workings support the rock, and backfilling prevents the formation of further excavation-disturbed zones. Existing excavation-disturbed zones are healed by creeping movements of salt rock deposits. In the long term, a fully intact barrier forms again and encloses the emplaced waste. It is not only the large mining chambers that are backfilled. Galleries and connections between the individual levels of the repository are also designated as underground excavations. A high degree of backfilling limits dissolution processes Another advantage of backfilling is that it limits dissolution processes within the decommissioned mine workings. Although calculations in the decommissioning plans show that it is unlikely that large quantities of solution or even groundwater will enter the decommissioned Morsleben repository, the possibility has not been ruled out. These solutions could dissolve salt rock that they come into contact with. The more sections of the repository are backfilled, the less this process takes place – and the less the geometry of the mine workings changes. The likelihood of further influxes of solution decreases, and the rock remains stable in the long term. Moreover, damage at ground level due to subsidence, for example, is avoided. What is to be backfilled? The plan is to use salt concrete as the construction material for backfilling. Salt concrete is made up of cement as a binder; concrete additives such as mineral filler; other aggregates such as fine-grained salt rock and quartz sand; and mixing liquid – i.e. water and saline solution. The BGE has already backfilled 27 rock-salt mining chambers with around 935,000 cubic metres of salt concrete, thereby stabilising them, as part of the prevention of mining hazards in the central part . This process provided considerable experience in dealing with the construction material, and this experience is also to be applied to decommissioning. During decommissioning operations, the salt concrete will be prepared off-site as a pumpable mixture. On the premises of the Bartensleben shaft, the concrete will be transferred to a salt conveyor system that transports it underground through pipelines that pass through the shaft. Once underground, the salt concrete will be pumped into the respective mine workings via backfilling boreholes. In the process, the liquid concrete will have to cover a distance of several kilometres. A total of three piping systems will be provided for this purpose. Current plans involve the pumping of some 4 million cubic metres of salt concrete. In addition to salt concrete as a construction material, the process will also use magnesia cement for the seals as well as smaller quantities of other construction materials. How is backfilling to be carried out? All of the planned backfilling measures aim to ensure the long-term safety of the Morsleben repository as effectively as possible. Taking account of possible changes in geology and stability, the individual measures must fulfil a number of different purposes. During decommissioning planning, these purposes were used to determine not only the material to be used but also the different degrees of backfilling. The degree of backfilling varies depending on the nature of the cavity and on the intended purpose of backfilling. The material stabilises and/or reduces the size of the cavity. Each of the underground excavations is assigned to a backfilling category. The exceptions are the Marie and Bartensleben shafts, which constitute their own decommissioning measure in combination with the shaft closures and are completely backfilled with multiple coordinated materials – primarily gravel, bitumen and bentonite. What backfilling categories are there? Backfilling category I This includes mine workings in which sealing structures are built. Over 30 seals will be constructed in galleries and connections between the levels of the Bartensleben and Marie mines. Backfilling category II This category encompasses all open areas of the repository mine that are to undergo geomechanical stabilisation. Category II areas will be backfilled as completely as possible in order to achieve the necessary supporting effect. This work is intended to preserve the rock’s integrity or to further improve it in the long term, and corresponds to the backfilling that was already carried out as part of the prevention of mining hazards in the central part. Backfilling category III This includes all mine workings that are not assigned to another category. The degree of backfilling for each rock salt excavation in this category is determined on an individual basis, taking account of optimisation aspects. On average, the galleries and connections between the levels belonging to backfilling category III will be backfilled to a degree of 65% of the relevant pit area. Backfilling category IV This category encompasses all potash deposits of the Bartensleben and Marie pits, including the associated galleries and connections to adjacent levels. Potash salt is slightly soluble, and the backfilling measures are intended to limit the dissolution of potash salt deposits and the precipitation of minerals from the resulting solution (reprecipitation) in the event of an influx of solution. In order to limit the volume available for solutions, all potash deposits are therefore to be backfilled as completely as possible. However, the spatial conditions will mean that this is not possible in all locations – and this fact is accounted for in the safety assessments. Backfilling process The sequence of operations for backfilling the mine workings is precisely specified from both logistical and mining perspectives. In principle, backfilling will be carried out from the bottom to the top and from the outer areas of the repository mine inwards, progressing towards the Bartensleben shaft. Work will not begin on a new level until the backfilling measures for the underlying level are completed. The backfilling of the Marie mine will begin at the same time as work on the Bartensleben mine. Here, too, backfilling will be carried out from the bottom to the top and from the outside inwards, progressing towards the Marie shaft. According to current plans, it will take around 15 years to complete the backfilling of the mine workings. Main topic: stability Decommissioning of the Morsleben repository Short information about the Morsleben repository
Off-site Baggergut-Behandlung Vorlage Dosierung 4. Schritt Klassierung Hydrozyklon Teilstrom PU1 2. Schritt On-site Vorentwässerung mittels Geotextil in Schute 1. Schritt Förderung mit Schwimmgreifer GS 5a. Schritt Eindickung Flockung PU2 < 63 µm 6a. Schritt Entwässerung mechanisch PNS 3. Schritt Transport vorentwässerte Nassbaggergut Teilstrom 7a. Schritt Entsorgung >Z2 > 200 µm < Z2 BB > 63 µm PNS MP S 5b. Schritt Klassierung mechanisch 7b. Schritt Entsorgung/ Verwertung <Z2 PNW PU3 6b. Schritt Entwässerung PNW Wasser AK Off-site Baggergut-Behandlung BB GS MPS PU PNW PNS V Geotextil (Big Bag) Grobsieb Multiparametersonde Pumpe Probenahme Wasser Probenahme Sediment Verdichter Option: Reinigung Abwasser Off-site Baggergut-Behandlung V2 Luft AK Option: Abluft- Reinigung Vorlage Dosierung 5. Schritt Klassierung Hydrozyklon Teilstrom PU1 3. Schritt On-site Vorentwässerung mittels Geotextil in Schute 2. Schritt Gas-Flüssig Trennung GS 6a. Schritt Eindickung Flockung PU2 < 63 µm 7a. Schritt Entwässerung mechanisch PNS 4. Schritt Transport vorentwässerte Nassbaggergut Teilstrom > 200 µm < Z2 BB > 63 µm PNS MP S V1 8a. Schritt Entsorgung >Z2 6b. Schritt Klassierung mechanisch 8b. Schritt Entsorgung/ Verwertung <Z2 PNW PU3 7b. Schritt Entwässerung 1. Schritt Airlift Förderung mit Mammutpumpe PNW Wasser AK Off-site Baggergut-Behandlung BB GS MPS PU PNW PNS V Geotextil (Big Bag) Grobsieb Multiparametersonde Pumpe Probenahme Wasser Probenahme Sediment Verdichter Option: Reinigung Abwasser
Seitenstruktur Saale, Vorplanung zur Sicherung / Minderung /Beseitigung Altsedimentdepot Mühlgraben Halle Anlage 7.7 Mühlgraben Halle/Saale: Vorplanung zur Sicherung / Minderung / Beseitigung Altsedimentdepot. Ableitung einer Vorzugsvariante: Punktevergabe aus nichtmonetären und monetären Kriterien Variante V1 Lösen und Heben mittels Schwimmgreifer Baggerguaufbereitung mittels Vorentwässerung, Siebung, Klassierung, Eindicken/ Nachentwässerung; Entsorgung Kriterien für die Bewertung Gewichtung in % Pkt. Gew. Pkt. V2.1 Lösen und Heben mittels Saugbagger Baggerguaufbereitung mittels Vorentwässerung, Siebung, Klassierung, Eindicken/ Nachentwässerung; Entsorgung Pkt. Gew. Pkt. V2.2 Lösen und Heben mittels Airlift- Verfahren Baggerguaufbereitung mittels Vorentwässerung, Siebung, Klassierung, Eindicken/ Nachentwässerung; Entsorgung V3 in-situ capping Pkt.Gew. Pkt.Pkt.Gew. Pkt. Nicht monetäre Bewertung (mögliche Punktzahl bei der nichtmonetären Bewertung von +2 über 0 bis -2) Umweltschutz30,0%20,60020,60020,600-2-0,600 Umsetzbarkeit5,0%10,05010,05010,05010,050 Zeitaufwand der Maßnahmen5,0%00,000-1-0,050-2-0,100-1-0,050 Sekundäre Einflüsse10,0%00,00000,00010,100-2-0,200 -0,500-1-0,50010,500 Monetäre Bewertung (mögliche Punktzahl bei der monetären Bewertung von +2 über 0 bis -2) Kosten50% Punktzahl gewichtet100% -1 -0,500 0,150 -1 0,100 0,150 -0,300 *Punkteverteilung zu Kosten Je 0,5 Mio Euro Unterschied 1 Bewertungspunkt +/- Kosten* Punkte Punktzahl 2 1 0 -1 -2 Projekt-Nr.: DE0114.000514.0120 Kosten <1,5 Mio. € 1,5-2,0 Mio € 1,2,0-2,5 Mio € 2,5-3,0 Mio € >3 Mio€ V1 V2.1 V2.2 V3 2,5 2,9 2,7 1,6 -1,0 -1,0 -1,0 1,0 *in Mio € = arithmetisches Mittel aus best case und worst case Datum: 18.12.2014 Seite: 1 von 1 Seitenstruktur Saale, Vorplanung zur Sicherung / Minderung /Beseitigung Altsedimentdepot Mühlgraben Halle Anlage 7.1 Mühlgraben Halle/Saale: Vorplanung zur Sicherung / Minderung / Beseitigung Altsedimentdepot. Ableitung einer Vorzugsvariante: Monetäre Bewertungsmatrix Variante V1 V1 Variante Kgr Schwimmgreifbagger Leistungsbeschreibung Teil A: On-site Sedimentbehandlung (Lösen, Heben, Vorentwässern, Umladen) Die Variante V1 beinhaltet die vollständige Räumung (100 %) des ermittelten Altsedimentdepots mittels Schwimmgreifbagger. Das geförderte Nassbaggergut wird on-site mittels Schwerkraftentwässerung in Schwimmschuten vorentwässert und zu einer Übergabestation transportiert. Dort erfolgt die Umladung des Baggerguts auf LKW zum Weitertransport zur off-site Aufbereitung des vorentwässerten Baggerguts. Die Arbeiten an, auf und über offenem Wasser erfolgen unter Einhaltung der entsprechenden Arbeitsschutz- und Sicherheitsanforderungen. Berechnungsgrundlagen Gesamtkubatur Altsedimentdepot (Sediment in-situ) Gesamtmasse Sediment in-situ (TS plus Wasser) Förderleistung (TS und Wasser) Zweischalengreifer 0,5 m³ TS im Förderstrom Förderleistung (TS und Wasser) Förderleistung TS bei TS 80 Gew. % 200 210 Einheit m³ t m³/h Gew % t/h t/h Quelle 12.853 Arcadis 2014, Detailerkundung 16.452 Berechnet 12,5 Firmenangaben 80 Literaturwert 16 Literaturwert 12,8 Berechnet Ø Lagerungsdichte Sediment in-situ (bei TS 40 Gew. %) t/m³ 1,28 Arcadis 2014, Detailerkundung Hinweis: Die folgenden Leistungspositionen werden in Anlehnung an DIN 276 entsprechenden Kostengruppen zugeordnet. Die Mengen werden auf Basis der o.g. Berechnungsgrundlagen und in den Einzelpositionen explizit benannten Annahmen berechnet. Die Kostenschätzungen beruhen allein auf Erfahrungswerten (Preisstand 2014). Einheit Menge EP [EUR] GP [EUR] EP [EUR] GP [EUR] best case worst case Herrichten und Erschliessen (Summe Kgr. 210) 739.300 885.559 Herrichten (211-219) 739.300 885.559 211 Sicherungsmaßnahmen 17.925 22.480 Vorbereitend zur Sedimententnahme ist die Geländeoberfläche zum Gewässerzugang an 3 Stellen herzurichten und zu sichern. Baufeldfreimachung Wasserzugang räumen (Bewuchs, Hindernisse etc.) an 2 Stellen Abtrag unbelasteter Oberboden, Oberflächenabdichtung, Aufsetzen in Mieten für Wasserzufahrt an 2 Stellen (Summe L=170 m, B=5 m, T=0,2 m) Herrichten Wasserzufahrt (Baustraße) Baustraßen mit Schotter auf Geotextil an 2 Stellen herstellen, unterhalten, zurückbauen; Summe L=170 m, B=5 m 213 Behandlung Altsedimentdepot Baustelleneinrichtung für Sedimentbehandlung Liefern, Vorhalten, Betreiben, Räumen inkl. Arbeits- und Emissionsschutzmaßnahmen (z.B. S-W-Anlage; Übergabestation für Nassbaggergut, Waschplatz für Arbeitsgeräte, Werkzeuge und Fahrzeuge; Reinigung von Straßen) Sedimente Lösen und Heben Sediment Förderung: lösen,heben und laden in Schute (100% der Gesamtkubatur) bei Förderleistung TS von 12 t/h; Betriebskosten inkl. 2 Pers. Personal Aufbereitung des Nassbaggerguts (on-site) Vor-Entwässerung inkl. Bereitstellung Schute inkl. Verbrauch Geotextilmaterial inkl. Aufschlag von 20 % Wasser aus Lösen/Heben Umladen des vorentwässerten Baggerguts (max. 60 % TS) von Schute auf LKW, inkl. Transport zur off-site Aufbereitung 700 m² m³1.100 1700,3 3,5330 5950,5 4550 680 m²8502017.0002521.250 721.375 863.079 m³12.85310128.53012154.236 h1.285180231.354200257.060 m³15.42415231.35420308.472 m³10.2822,525.706330.847 Kampfmittelsondierung Aushubbegleitung zur Kampfmittelsuche durch Feuerwerker, befähigte Person; Tag Tagessatz ca. 650,- bis 700,- €/d. Baunebenkosten (Summe Kgr. 710, 720, 730, 740)161650104.431700112.464 Anrechenbare Kosten (Kgr. 200 - 500) 710 Bauherrenaufgaben (711 - 719) 712 Projektsteuerung Projektsteuerung (1 % der anrechenbaren Kosten) 131.300 739.000886.000 159.200 7.0009.000 psch17.0007.000 99.3009.0009.000 118.200 Ausführungsplanung QS-Plänepsch psch1 110.000 5.00010.000 5.00012.000 7.00012.000 7.000 Baubegleitende Beprobung und Laboranalytik von Wasser und Sedimentpsch115.00015.00018.00018.000 psch Tag Jahr1 24 0,55.000 700 95.0007.000 800 110.000psch120.000psch15.0005.000 16.800 47.500 25.000 20.000 20.000 5.000 5.0007.000 19.200 55.000 32.000 25.000 25.000 7.000 7.000 730 Ingenieurleistungen (730 - 739) 739 Architekten- und Ingenieurleistungen, Sonstiges AS-Plan, SiGe-Plan SiGe-Koordination (2 x Monat) Bauüberwachung (1 Techniker, 0,5 Jahr) 740 Gutachten und Beratung (741 - 749) 744 Vermessung Vermessungstechnische Leistungen: "pre/post-dredge" Lotung 749 Gutachten, sonstiges Immissionsschutz, Lärm und Schadstoffe Teil A Summe Kgr 200 - 700 Projekt-Nr.: DE0114.000514.0120 Datum: 18.12.2014 871.000 25.000 7.000 1.045.000 Seite: 1 von 3 Seitenstruktur Saale, Vorplanung zur Sicherung / Minderung /Beseitigung Altsedimentdepot Mühlgraben Halle V1 Variante Kgr Anlage 7.1 Schwimmgreifbagger Leistungsbeschreibung Teil B: Off-site Baggergut-Aufbereitung Die off-site Baggergut-Aufbereitung beinhaltet die Prozessschritte Siebung (Entfernung von Grob- und Störstoffen), Klassierung (Trennung Grob-Feinkorn), Eindickung/Nachentwässerung (Flockung, Siebbandpresse) mittels einer mobilen Aufbereitungsanlage. Dazu wird eine in rel. Nähe verfügbare Fläche als Anlagenstandort und Zwischenlager vorbereitet, unterhalten und zurückgebaut. Eine Dekontamination des Baggergutfeinkorns im Sinne einer Eleminierung anorganischer Schadstoffe wird in Anbetracht fehlender Verwertungsmöglichkeiten nicht durchgeführt. Stattdessen erfolgt eine konventionelle Deponierung gemäß DKI-III. Berechnungsgrundlagen Zu behandeldes BaggergutvolumenEinheit m³Quelle 10.282 Arcadis 2014, Detailerkundung Baggergutmenge (TS plus Wasser) Aufbereitungsflächet m²16.452 2.500 Zwischenlagerm²5.000 Bereitstellungsflächen (Baustraßen, Parkplätze, Materiallager, Bürocontainer etc.) Ø Lagerungsdichte Baggergut vorentwässertm²2.500 t/m³ Einheit1,60 Menge EP [EUR] best case Herrichten und Erschliessen (Summe Kgr 210, 220) 200 210 Herrichten (211-219) GP [EUR] EP [EUR] best case worst case 51.750 GP [EUR] worst case 68.750 51.750 68.750 Es ist davon auszugehen, dass aufgrund der Vornutzung keine Infrastruktur zurückgebaut/entfernt werden muss, jedoch die Flächen planiert/profiliert, abgedichtet, befestigt, unterhalten und rückgebaut werden. 214 Herrichten der Geländeoberfläche Herrichten Geländeoberfläche Baufeld räumen, einschl. Wurzelstöcke roden Oberboden abschieben, laden und zwischenlagern 219 Herrichten Sonstiges Baustraßen Baustraßen mit Schotter auf Geotextil herstellen, unterhalten, zurückbauen; L=250 m, B=5 m 220 Öffentliche Erschließung (221-229) Anschluss, Installation, Wartung für Strom, Wasser, Abwasser Außenanlagen (Summe Kgr. 510, 530, 590) 500 21.750 m² m²10.000 7.5000,3 2,53.000 18.750 25.0000,5 35.000 22.500 31.250 m²1.2502025.0002531.250 15.0005.000 5.000 1.143.29010.00010.000 10.000 1.481.078 psch Geländeflächen (511-519) Geländebearbeitung: Herstellung der Flächen für Aufbereitung und 511 Zwischenlager Aufbereitungsfläche Fläche für Baggergut-Aufbereitung einrichten, Umwallung aus abgeschobenem m² Material, Sauberkeitsschicht (ca. 10 cm), Abdichtung 2 mm starke HDPE-Folie inkl. Verschweißen, Schutz-/Tragschicht (ca. 50 cm), Abdecken der Mieten mit Planen. Zwischenlager Zwischenlager für Baggergut einrichten, Umwallung aus abgeschobenem Material, Sauberkeitsschicht (ca. 10 cm), Abdichtung 2 mm starke HDPE-Folie m² inkl. Verschweißen, Schutzschicht (ca. 10 cm), Abdecken der Mieten mit Planen. 512 Vegetationstechn. Bodenbearbeitung Rückbau Zwischenlager und Aufbereitungsfläche: Vegetationstechnische m² Maßnahmen für Gehölzflächen (Bodenplanum); auf 10 % der Gesamtfläche 510 540 m² 143.525178.750 125.000152.500 2.5002050.0002562.500 5.0001575.0001890.000 7500,30225 2250,4300 300 7502,001.500 1.5003,02.250 2.250 514 Pflanzen Rückbau Zwischenlager und Aufbereitungsfläche: Pflanzenlieferung und - arbeiten (Sträucher, Hochstämme); auf 10 % der Gesamtfläche 515 Rasen Rückbau Zwischenlager und Aufbereitungs-/Bereitstellungsfläche: Ansaat Flächen mit geringer Neigung; auf 90 % der Gesamtfläche 519 Geländeflächen, Sonstiges Rückbau Zwischenlager und Aufbereitungs-/Bereitstellungsfläche: Fertigstellungspflege 1 Jahr (Bäume, Gehölze, Rasen); auf 100 % der Gesamtfläche Rückbau Zwischenlager und Aufbereitungs-/Bereitstellungsfläche: Entwicklungspflege 2 Jahre (Bäume, Gehölze, Rasen); auf 100 % der Gesamtfläche 530 Baukonstruktionen in Außenanlagen (531 - 539) 531 Einfriedungen Einzäunung einschl. Tore 537 Kanal- und Schachtbauanlagen Entwässerungsmulden entlang der Zufahrtsstraßen und Wartungswege herstellen, z. T. befestigt, inkl. Material 27.500 1.800 m² 9.000 0,20 1.800 2.700 0,3 15.000 2.700 21.000 m²10.0000,505.0000,88.000 m²10.0001,0010.0001,313.000 25.000 28.750 m2504010.0004511.250 m2506015.0007017.500 Technische Anlagen in Außenanlagen (541 - 549) Anlagen zur Baggergut-Aufbereitung 910.050 1.189.743 Fraktionierung durch Siebung (Stör-/Grobstoffe, Steine, Kiese, Grobsand)m³10.28210102.82415154.236 Klassierung zur Trennung von Grob-Feinkorn abzgl. 10 % aus Fraktionierungm³9.25420185.08325231.354 m³4.6271569.4061883.287 Eindickung/Nachentwässerung, inkl. Verbrauch von Flockungsmittel, abzgl. 50% aus Klassierung Off-site Entsorgung inkl. Transport & Nachweisführung Projekt-Nr.: DE0114.000514.0120 Datum: 18.12.2014 Seite: 2 von 3
Seitenstruktur Saale, Vorplanung zur Sicherung / Minderung /Beseitigung Altsedimentdepot Mühlgraben Halle Ableitung einer Vorzugsvariante: nicht-monetäre Bewertungsmatrix (LHW abgestimmt) Verfahrensschritte Variante V2 V1 V1 Schwimmgreifer V2.1 SaugbaggerV2.2 Airlift pneumatisch-hydraulisch V3 In-situ Capping Lösen/Hebenmechanischpneumatisch-hydraulischVor-Entwässerung on-sitez. Bsp. Schutez. Bsp. Geotextil in Schute z. Bsp. Geotextil in Schute kein Entwässern Transport BaggergutWasser, StraßeWasser, StraßeWasser, Straßekein Baggergut-Transport Sieben, KlassierenSieben, KlassierenSieben, Klassierenkein Trennen z. Bsp. Siebbandpressez. Bsp. Siebbandpressez. Bsp. Siebbandpressekein Entwässern aktiv: Eliminieren off-site (Abtrennung mit Feinkorn <63 µm) DK I-IIIaktiv: Eliminieren off-site (Abtrennung mit Feinkorn <63 µm) DK I-IIIaktiv: Eliminieren off-site (Abtrennung mit Feinkorn <63 µm) DK I-III Trennen off-site (Störstoffe, Grob-Feinkorn) Nach-Entwässerung off-site (Eindicken) Schadstoffbehandlung Anorganik Entsorgen Umweltschutz/ Sanierungsziele Auswirkung auf Altsedimentdepot kein Lösen passiv: Abdecken keine Entsorgung Mögliche Punktzahl bei der nicht monetären Bewertung von +2 über 0 bis -2 Kriterien 2 2 Hohes Sanierungsniveau Hohes Sanierungsniveau durch sofortige und durch sofortige und vollständige Entnahme der vollständige Entnahme der Schadstoffquelle (mobilen Schadstoffquelle (mobilen und residualen) und und residualen) und großflächigen Unterbindung großflächige Unterbindung potenzieller einer potenziellen Rekontamination Rekontamination Gewichtung [%] 2-2 Hohes Sanierungsniveau durch sofortige und vollständige Entnahme der Schadstoffquelle (mobilen und residualen) und großflächige Unterbindung einer potenziellen RekontaminationEingeschränktes Sanierungsniveau durch Verbleib der Schadstoffquelle (mobilen und residualen) bei gleichzeitig großflächiger Unterbindung einer potenziellen Rekontamination Auswirkung auf Vorflut (Stromsaale)Verringertes Restrisiko Verringertes Restrisiko Verringertes Restrisiko Restrisiko durch Verbleib durch vollständige durch vollständige durch vollständige von vergleichsweise großen Entnahme (soweit technisch Entnahme (soweit technisch Entnahme (soweit technisch Mengen an möglich) der potenziellen möglich) der potenziellen möglich) der potenziellen schadstoffbehafteten Schadstoffquelle Schadstoffquelle Schadstoffquelle Sedimenten Nachhaltigkeit (kurz- bis mittelfristig)Potenziell hoch durch Potenziell hoch durch Potenziell hoch durch Potenziell niedriger durch sofortige und vollständige sofortige und vollständige sofortige und vollständige Verbleib der Entnahme (soweit technisch Entnahme (soweit technisch Entnahme (soweit technisch Schadstoffquelle möglich) der möglich) der möglich) der Schadstoffquelle Schadstoffquelle Schadstoffquelle Umsetzbarkeit erforderlicher Zugang Nutzung privater Grundstücke Wasseranfall beim Lösen Residuale Sedimente 1 wasserseitig nein geringer potenziell hoch Zeitaufwand Arbeiten im/am Gewässer Baggergutaufbereitung off-site Nachsorgeüberwachung 1 wasserseitig nein hoch potenziell geringer 0 mittel mittel 1-2 Jahre Sekundäre Einflüsse 1 wasserseitig nein hoch potenziell geringer -1 hoch hoch 1-2 Jahre 1 -1 0 1 Auswirkungen während der Ausführung (Emissionen Luft, Trübewolken, Lärm) Nutzungseinschränkung während Ausführungpotenziell hochpotenziell hochpotenziell geringerpotenziell geringer potenziell geringerpotenziell geringerpotenziell geringerpotenziell höher Auswirkung auf Hydraulikeher positiv (größerer Querschnitt)eher positiv (größerer Querschnitt)eher positiv (größerer Querschnitt)eher negativ (verringerter Querschnitt) Auswirkung auf wassertechnische Anlagengeringgeringgeringgering Auswirkung auf Regen- /Abwasseranbindungkeinekeinekeinekeine WRRL, Auswirkung auf die biologischen Qualitätskomponent WRRL, Auswirkung auf die hydromorphologischen Qualitätskomponenten Auswirkung auf städtische Planunghoch (bauzeitlich)hoch (bauzeitlich)hoch (bauzeitlich)sehr hoch hoch (bauzeitlich)hoch (bauzeitlich)hoch (bauzeitlich)sehr hoch geringgeringgeringgering Auswirkung auf Verfügbarkeit hoch von Deponieraum Summe Punktzahl nichtmonetäre Bewertung (nichthochhochkeine 2 5 5 gering nicht anwendbar 5-10 Jahre 0 3 30 wasserseitig nein kein Wasser sehr hoch, Schadstoffe verbleiben am Standort -2 hoch sehr hoch 1-2 Jahre Anlage 6 2 -2 -4 10 50 führt zur Aufwertung führt zur Abwertung neutral Projekt-Nr.: DE0114.000514.0120 Datum: 18.12.2014 Seite: 1 von 1
Mühlgraben Halle: Vorplanung zur Sicherung / Minderung / Beseitigung Altsedimentdepot Anlage 13 Zusammenfassung der vorplanungsrelevanten Daten und Annahmen Eingesetztes Verfahren: Empfohlenen Vorzugsvariante V1 "vollständige Räumung (100 %) des ermittelten Altsedimentdepots mittels Schwimmgreifbagger mit on-site Vorentwässerung mittels Schwerkraftentwässerung in Schwimmschuten und Transport zu einer Übergabestation, Straßentransport zur off-site Aufbereitung des vorentwässerten Baggerguts. Kalkulationsgrundlagen gemäß monetärer Bewertungsmatrix für Variante V1 AntragFachbehörde Wasserrechtliche GenehmigungUntere Wasserbehörde Planungsschritt Gegenstand Gewässernutzung Entnahme von Feststoffen Direkteinleitung aus der Vorentwässerung Immissionsschutzrechtlicher Antrag/Verfahren EinheitWert m1.800 m m³ in-stu12.853 m³ in-stu6.265 m³ in-stu3.200 m³ in-stu3.389 Einleitung filtriertes Überschusswasser in Mühlgraben gesamtm³2.571 im Abschnitt A2 im Abschnitt A3 im Abschnitt A4m³ m³ m³1.253 640 678 Fläche am Holzplatz (ehem. Gasometer)m²10.000 m³10.282 t16.452 m³2.500 Mühlgraben Neue Mühle bis Einleitung Saale (Abschnitte A2, A3 und A4) Dreiergraben (Zufahrt) Beräumung in den Abschnitten A2 bis A4 gesamt Immissionsschutzbehörde A2 Neue Mühle/Mühlpforte bis Dreiergraben; Länge 620 m; Querprofile 20 bis 31 A3 Dreiergraben bis Steinmühle; Länge 610 m; Querprofile 32 bis 41 A4 Steinmühle bis Einleitung Stromsaale; Länge 570 m; Querprofile 42 bis 50 zu behandelndes Gesamtvolumen Betrieb eines Zwischenlagers zur vorentwässertes Baggergut aus A2-A4 bei 20 % Aufbereitung des Baggerguts Überschusswasser zu behandelnde Gesamtmasse vorentwässertes Baggergut bei Dichte 1,6 t/m³ Abwasser aus Nachentwässerung Projekt-Nr.: DE0114.00514 Seite: 1/2 Datum: 02.12.2014 Mühlgraben Halle: Vorplanung zur Sicherung / Minderung / Beseitigung Altsedimentdepot Antrag Fachbehörde Planungsschritt Gegenstand Straßentransport von Übergabestationen zum Zwischenlager/Aufbereitung Naturschutzrechtliche Genehmigung Untere Naturschutzbehörde Eingriff in die aquatische Lebensgemeinschaft EinheitWert Distanz Übergabestation 1 "Ziegelwiese" zum Zwischenlager/Aufbereitungkm2,5 Fahrtdauer Masse vorentwässerte Baggergut aus A4 Förderleistung pro Tag LKW Fahrten pro Tag bei 10t/LKW Periode LKW Transport Distanz Übergabestation 2 "Würfelwiese" zum Zwischenlager/Aufbereitung Fahrtdauer Masse vorentwässerte Baggergut aus A2 und A3min t t/d Stk./d d km6-8 4.338 128 12,8 34 1,6 min t3-5 12.114 LKW Fahrten pro Tag bei 10 t/LKW Periode LKW TransportStk./d d12,8 95 m1.800 m²500 m²600 m²10.000 t11.514 t5.591 t5.923 betroffenen Gesamtstrecke des Mühlgrabens Übergabestation 1 "Ziegelwiese" inkl. Zufahrt ab "Peißnitzstr." Übergabestation 1 "Würfelwiese" inkl. Zufahrt ab "Pfälzer Brücke" Flächenbedarf für Zwischenlager, Fläche am Holzplatz (ehem. Gasometer) Konditionierung Flächenbeanspruchung durch Zuwegung, Übergabestation Abfallrechtliche Genehmigung Abfallbehörde Masse gesamt zur Entsorgung/Verwertung nach Konditionierung und Nachentwässerung Entsorgung/Verwertung abgetrennte Sandfraktion bei Dichte 1,5 t/m³ (EKO-EK1) Entsorgung abgetrennte Feinfraktion bei Dichte 1,6 t/m³ (DKI -DKIII) Entsorgungsweg Projekt-Nr.: DE0114.00514 Seite: 2/2 Anlage 13 Datum: 02.12.2014 Mühlgraben Halle: Vorplanung zur Sicherung / Minderung / Beseitigung Altsedimentdepot Anlage 13 Übergabestation 1 Ziegelwiese für Beräumung Abschnitt A 4: Position: hinter Verzweigung nach Steinmühle (Flächenbedarf 100 m²) Zufahrt: ab Peißnitzstr. unbefestigter Weg bis nördl. Trafostation (Flächenbedarf 70 mx 5 m = 350 m²) Übergabestation 2 Würfelwiese für Beräumung Abschnitte A2 und A3: Position: östlich Ballsportplatz (Flächenbedarf 100 m²) Zufahrt: ab Pfälzer Brücke unbefestigter Weg entlang Mühlgraben bis Höhe Zwischenlager, Konditionierung (off-site Behandlung): Position: Holzplatz ehem. Gasometer (Flächenbedarf 10.000 m²) Zufahrt: ab Mansfelder Str. in Holzpl./Pulverweiden Projekt-Nr.: DE0114.000514 Seite: 1/1 Datum: 10.12.2014
Small Modular Reactors Our overview provides the most important information on small modular reactors, or SMRs for short: What can be expected from the new reactor concepts? What are the potential applications, which countries are at the forefront of development and what are the safety risks? Expert opinion on Small Modular Reactors Assembly of the core module of the SMR Linglong One in southern China's Hainan Province. © picture alliance / Xinhua News Agency | Liu Yiwei BASE has commissioned an expert report on SMRs, which analysed 136 different historical and current reactors and SMR concepts. The report provides a scientific assessment of possible areas of application as well as the associated safety issues and risks. The report was commissioned by BASE and written by the Öko-Institut Freiburg in collaboration with the Department of Economic and Infrastructure Policy at TU Berlin and the Physikerbüro Bremen. The full 2021 report can be downloaded here (in German). SMR (" small modular reactor") concepts date back to developments from the 1950s, in particular the attempt to utilise nuclear power as a propulsion technology for military submarines. There are a wide variety of concepts and developments for SMRs around the world today. The vast majority of these are at concept study level . BASE has commissioned an expert report on SMRs. The following conclusions can be drawn from it: The concepts covered by the term SMR range from "today's" low-power light water reactors to other concepts, for which there is little or no previous industrial experience (such as high temperature or molten salt reactor concepts). In addition to regular power supply, the areas of application under discussion relate, in particular, to decentralised power supply for industry and households as well as heat for district heating, seawater desalination, and industrial processes. Military applications such as mobile microreactors are also being pursued. To produce the same worldwide electrical output that is generated by new nuclear power plants today, the number of facilities would need to be increased by a factor of 3-1000. Instead of today's approximately 400 high-power reactors, this would mean the construction of many thousands to tens of thousands of SMR units. SMRs could potentially have safety advantages over large-capacity nuclear power plants, as they have a lower radioactive inventory per reactor, for example. However, the high number of reactors required to produce the same amount of electricity would increase the risk many times over. Contrary to the information provided by some manufacturers, it must be assumed that, as far as off-site emergency protection for SMRs is concerned, there is a possibility of contamination extending well beyond the plant site. Due to the low electrical output, the construction costs for SMRs are higher in relative terms than for large nuclear power plants. A production cost calculation taking into account effects of scale , mass and learning from the nuclear industry suggests that an average of three thousand SMRs would have to be produced for SMR production to become economically viable. The following questions and answers can be derived from the report: Definition: What is an SMR? Despite the long-standing use of the term SMR , there is still no internationally standardised definition for it. An IAEA definition describes SMRs as a group of small power reactors which, compared to today's nuclear power plants, have a lower output ranging from less than (up to) 10 MWe (microreactors) up to a typical output of 300 MWe. Conventional reactors, however, have an output of over 1000 MWe. The functionality of this reactor group is very diverse: in a number of concepts, it corresponds to the functionality of today's light water reactors. These types of SMR are, therefore, subject to lower development risks, and the developers can draw on operating experience. Other types of SMRs are based on novel concepts with little or no previous industrial experience. The latter can be categorised as high-temperature reactors, reactors with a fast neutron spectrum or molten salt reactors. Areas of application: Which countries are developing SMRs? The current development of SMRs is largely state-funded and is taking place to a large extent in the USA , Canada and the United Kingdom. Provided the right conditions are met, SMRs can not only be built in those countries, but also be sold to others. Industrial and geopolitical motives as well as military interests play a role in the field of SMRs. The majority of countries pursuing SMR development activities maintain nuclear weapons programmes and build nuclear submarines and/or already have a large "civilian" nuclear programme. In addition to regular power supply, decentralised power supply for industry and households as well as heat for district heating, seawater desalination and industrial processes are mentioned; concepts for military use, such as mobile microreactors, are also being pursued. In Russia, floating nuclear power plants (Akademik Lomonossow, KLT-40S) are being used to supply remote regions. In addition to traditional nuclear energy countries, there is growing interest in SMRs from countries with a lack of expertise and infrastructure in nuclear technology, such as Saudi Arabia and Jordan. Measures against climate change: Can SMRs make a contribution? If SMRs are also suggested as a solution in the context of combating climate change and the associated reduction in greenhouse gas emissions for global electricity supply, the electricity production they achieve is relevant. Today's new nuclear power plants have electrical outputs in the range of 1,000-1,600 MWe. The SMR concepts considered in the report commissioned by BASE (see info box on this page), however, envisage planned electrical outputs of 1.5-300 MWe. This means that a 3-1000 times larger number of units would be required to provide the same electrical output. Instead of today's 400 reactors with high output, this would mean the construction of several thousand to ten thousand SMR units. This goal is a long way off. In addition, the planning process largely neglects various risks associated with multiplying the number of plants, in particular issues relating to transport, dismantling and interim and final storage. Profitability: Would SMR production be worthwhile? SMRs promise shorter production times and lower production costs thanks to their modularity. Individual components or even the entire SMR should be (mass) produced industrially and transported to the selected locations for installation as required. Similar to a modular system, a single reactor with a low output or a larger plant consisting of several small reactor modules can be constructed from the components (modules) at the site in a short time. Due to the low electrical output, the specific construction costs are higher than for large nuclear power plants, as there are no more scale effects. The report commissioned by BASE (see info box in the upper half of this page) calculates production costs taking into account scale , mass and learning effects from the nuclear industry: according to this report, an average of three thousand SMRs would have to be built for SMR production to become viable. It is therefore unlikely that the structural cost disadvantage of low-capacity reactors can be compensated for by learning or mass effects. As with large-capacity nuclear power plants, the provision of SMRs is predominantly state-run or secured by demand (end customers, military). Although spin-offs are also developing from state-funded, large- scale research institutions, and there are also newly founded start-ups, their business models are still based on long-term state funding. It is, therefore, not conceivable that SMR concepts will be able to develop organisational models other than those that have been used in the field of nuclear technology for around 70 years. Another key reason for the development of SMR concepts is the expectation of shorter time horizons, in particular shorter construction times, and possibly also less complicated dismantling. Looking at plants currently under construction or in operation, this assumption does not appear to be empirically substantiated: planning, development and construction times generally exceed the original time horizons many times over. Experience with historical SMRs indicates that the operating times of non-water-cooled SMR projects are short, and that dismantling them is a lengthy process. Regulatory requirements: How high is the safety risk for SMRs? Special application scenarios such as modularity, new manufacturing processes, materials and technological solutions for safety functions often require new regulatory approaches. The planned global spread of SMRs will, therefore, raise entirely new questions for the responsible licensing and supervisory authorities. To date, there are no SMR -specific national or international safety standards. As many SMR developers are aiming for worldwide use of their SMR concepts, an international standardisation of the requirements would become necessary. This is currently not conceivable, especially for established nuclear energy countries. On the whole, SMRs could potentially achieve safety-related advantages over high-capacity nuclear power plants, as they have a lower radioactive inventory per reactor and strive for a higher level of safety through deliberate simplification and increased use of passive systems. Due to their smaller size, developers promise a lower safety risk for the reactors. However, the high number of reactors needed to provide significant amounts of electrical power as well as their planned global utilisation will increase the risk many times over. Many SMR concepts also aim to minimise safety requirements, for example with regard to the diversity of safety systems. Some SMR concepts even call for the abandonment of current requirements, for example in the area of plant-internal emergency protection. Others completely forego external emergency response planning. These safety concepts, which are also pursued for the sake of cost efficiency, will also increase the risks. Access to nuclear weapons-grade material: Do SMRs increase the risk? Various non-water-cooled SMR concepts envisage the use of higher uranium enrichments or the utilisation of plutonium fuel and reprocessing technology. This has a negative impact on proliferation resistance - i.e. the need to prevent access to or the technology to produce nuclear weapons-grade material. Another, often-cited key difference between SMR concepts and today's power reactors is the use of systems that have a long service life and would be delivered as a closed system. Sealing them could simplify monitoring and minimise transports. Furthermore, due to the high burn-up, the fissile material will also become unattractive after some time. Yet, the high quantity of fissile material required at the start of reactor operation will have a disadvantageous effect. An additional aspect concerns the possibilities of fissile material monitoring by the International Atomic Energy Agency. Many of the standard methods for fissile material monitoring are not directly suited to the special features of SMR concepts, and this would pose new challenges. Definition: What is an SMR? Despite the long-standing use of the term SMR , there is still no internationally standardised definition for it. An IAEA definition describes SMRs as a group of small power reactors which, compared to today's nuclear power plants, have a lower output ranging from less than (up to) 10 MWe (microreactors) up to a typical output of 300 MWe. Conventional reactors, however, have an output of over 1000 MWe. The functionality of this reactor group is very diverse: in a number of concepts, it corresponds to the functionality of today's light water reactors. These types of SMR are, therefore, subject to lower development risks, and the developers can draw on operating experience. Other types of SMRs are based on novel concepts with little or no previous industrial experience. The latter can be categorised as high-temperature reactors, reactors with a fast neutron spectrum or molten salt reactors. Areas of application: Which countries are developing SMRs? The current development of SMRs is largely state-funded and is taking place to a large extent in the USA , Canada and the United Kingdom. Provided the right conditions are met, SMRs can not only be built in those countries, but also be sold to others. Industrial and geopolitical motives as well as military interests play a role in the field of SMRs. The majority of countries pursuing SMR development activities maintain nuclear weapons programmes and build nuclear submarines and/or already have a large "civilian" nuclear programme. In addition to regular power supply, decentralised power supply for industry and households as well as heat for district heating, seawater desalination and industrial processes are mentioned; concepts for military use, such as mobile microreactors, are also being pursued. In Russia, floating nuclear power plants (Akademik Lomonossow, KLT-40S) are being used to supply remote regions. In addition to traditional nuclear energy countries, there is growing interest in SMRs from countries with a lack of expertise and infrastructure in nuclear technology, such as Saudi Arabia and Jordan. Measures against climate change: Can SMRs make a contribution? If SMRs are also suggested as a solution in the context of combating climate change and the associated reduction in greenhouse gas emissions for global electricity supply, the electricity production they achieve is relevant. Today's new nuclear power plants have electrical outputs in the range of 1,000-1,600 MWe. The SMR concepts considered in the report commissioned by BASE (see info box on this page), however, envisage planned electrical outputs of 1.5-300 MWe. This means that a 3-1000 times larger number of units would be required to provide the same electrical output. Instead of today's 400 reactors with high output, this would mean the construction of several thousand to ten thousand SMR units. This goal is a long way off. In addition, the planning process largely neglects various risks associated with multiplying the number of plants, in particular issues relating to transport, dismantling and interim and final storage. Profitability: Would SMR production be worthwhile? SMRs promise shorter production times and lower production costs thanks to their modularity. Individual components or even the entire SMR should be (mass) produced industrially and transported to the selected locations for installation as required. Similar to a modular system, a single reactor with a low output or a larger plant consisting of several small reactor modules can be constructed from the components (modules) at the site in a short time. Due to the low electrical output, the specific construction costs are higher than for large nuclear power plants, as there are no more scale effects. The report commissioned by BASE (see info box in the upper half of this page) calculates production costs taking into account scale , mass and learning effects from the nuclear industry: according to this report, an average of three thousand SMRs would have to be built for SMR production to become viable. It is therefore unlikely that the structural cost disadvantage of low-capacity reactors can be compensated for by learning or mass effects. As with large-capacity nuclear power plants, the provision of SMRs is predominantly state-run or secured by demand (end customers, military). Although spin-offs are also developing from state-funded, large- scale research institutions, and there are also newly founded start-ups, their business models are still based on long-term state funding. It is, therefore, not conceivable that SMR concepts will be able to develop organisational models other than those that have been used in the field of nuclear technology for around 70 years. Another key reason for the development of SMR concepts is the expectation of shorter time horizons, in particular shorter construction times, and possibly also less complicated dismantling. Looking at plants currently under construction or in operation, this assumption does not appear to be empirically substantiated: planning, development and construction times generally exceed the original time horizons many times over. Experience with historical SMRs indicates that the operating times of non-water-cooled SMR projects are short, and that dismantling them is a lengthy process. Regulatory requirements: How high is the safety risk for SMRs? Special application scenarios such as modularity, new manufacturing processes, materials and technological solutions for safety functions often require new regulatory approaches. The planned global spread of SMRs will, therefore, raise entirely new questions for the responsible licensing and supervisory authorities. To date, there are no SMR -specific national or international safety standards. As many SMR developers are aiming for worldwide use of their SMR concepts, an international standardisation of the requirements would become necessary. This is currently not conceivable, especially for established nuclear energy countries. On the whole, SMRs could potentially achieve safety-related advantages over high-capacity nuclear power plants, as they have a lower radioactive inventory per reactor and strive for a higher level of safety through deliberate simplification and increased use of passive systems. Due to their smaller size, developers promise a lower safety risk for the reactors. However, the high number of reactors needed to provide significant amounts of electrical power as well as their planned global utilisation will increase the risk many times over. Many SMR concepts also aim to minimise safety requirements, for example with regard to the diversity of safety systems. Some SMR concepts even call for the abandonment of current requirements, for example in the area of plant-internal emergency protection. Others completely forego external emergency response planning. These safety concepts, which are also pursued for the sake of cost efficiency, will also increase the risks. Access to nuclear weapons-grade material: Do SMRs increase the risk? Various non-water-cooled SMR concepts envisage the use of higher uranium enrichments or the utilisation of plutonium fuel and reprocessing technology. This has a negative impact on proliferation resistance - i.e. the need to prevent access to or the technology to produce nuclear weapons-grade material. Another, often-cited key difference between SMR concepts and today's power reactors is the use of systems that have a long service life and would be delivered as a closed system. Sealing them could simplify monitoring and minimise transports. Furthermore, due to the high burn-up, the fissile material will also become unattractive after some time. Yet, the high quantity of fissile material required at the start of reactor operation will have a disadvantageous effect. An additional aspect concerns the possibilities of fissile material monitoring by the International Atomic Energy Agency. Many of the standard methods for fissile material monitoring are not directly suited to the special features of SMR concepts, and this would pose new challenges. Expert report for download (in German) Sicherheitstechnische Analyse und Risikobewertung einer Anwendung von SMR-Konzepten (Small Modular Reactors) Download (PDF, 3MB, File meet accessibility standards) Brief information on Small Modular Reactors Small Modular Reactors – What to expect from the new reactor concepts? Download (PDF, 146KB, File meet accessibility standards)
Das Projekt "Thermophile Mikroorganismen fuer die Bodensanierung" wird vom Umweltbundesamt gefördert und von ADW - Institut für Biotechnologie durchgeführt. Durch den Einsatz thermophiler Mikroorganismen bei der on-site-/off-site Bodensanierung soll der mikrobielle Schadstoffabbau intensiviert werden. Die bisherigen Verfahrensentwicklungen erzielten durch technische Massnahmen bei der Milieuverbesserung mit mesophilen Mikroorganismen beachtliche Steigerungen der Abbauleistungen. Das Einbringen thermophiler Mikroorganismen, die ueber ein breites Substratverwertungsspektrum verfuegen, kann besonders bei hoch belasteten Boeden zu einer zusaetzlichen Verkuerzung der Zeiten des Schadstoffabbaues fuehren.