Amine sind wichtige, aber wenig untersuchte organische Bestandteile in der marinen Atmosphäre. Es gibt deutliche Hinweise, dass innerhalb der marinen Grenzschicht die Bildung neuer Aerosolpartikel und die Zunahme der Partikelmasse durch Amine beeinflusst wird. Allerdings existieren noch sehr hohe Unsicherheiten in Bezug auf die Quellen, die weiteren chemischen Reaktionen innerhalb des chemischen Mehrphasensystems der marinen Atmosphäre und der Beitrag zur marinen Aerosolmasse. Ein tieferes Verständnis der durch die Amine initialisierten Bildung des organischen Stickstoffes in marinen Aerosolpartikeln, sowie der potentiell oxidationsgesteuerten Emission von Aminen aus den Ozeanen in die Atmosphäre, erfordert grundlegende mechanistische Modellierungsstudien der Mehrphasenoxidation von Aminen in Kombination mit speziellen Feldmessungen. Solche Ansätze sind derzeit nicht vorhanden, da noch keine detaillierten Mechanismen- oder Modellierungsstudien zur Mehrphasenoxidation der Amine durchgeführt wurden.Das Ziel von ORIGAMY ist es, die Faktoren zu ermitteln, die die Emission von Aminen aus dem Ozean in die Atmosphäre beeinflussen und deren Auswirkungen auf die organische Aerosolmasse, den Aerosolsäuregehalt und die Bildung neuer Aerosolpartikel. Wir wollen die großen Wissenslücken bezüglich Quellen, Phasenverteilung und Oxidationsprozessen von Aminen in der marinen Grenzschicht schließen, indem wir spezielle neue Feldmessungen in Kombination mit neuartigen Modellierungsansätzen der Mehrphasenchemie anwenden. Die Kombination aus Feldmessungen, Emissionsmodellierung und Modellierung der chemischen Alterung der Amine zum Verständnis der Feldergebnisse ist dabei eine neue große innovative Leistung, die aus dieser Studie resultieren wird.Die Ergebnisse von ORIGAMY werden eine wichtige Grundlage schaffen, um die Bedeutung der Amine und deren weiteren chemischen Reaktionen in der marinen Grenzschicht zu erfassen. Weiterhin tragen diese Ergebnisse dazu bei, relevante atmosphärischen Prozesse der Amine zu identifizieren, die in höher-skalige Modellen implementiert werden müssen.
Poplar could succeed in nutrient rich areas as well as in nutrient poor forests soils where plants live in symbiosis with certain soil fungi to enable sufficient nutrition. Due to its huge demand, nitrogen, as major nutrient, is of special interest for poplar nutrition. In this project we want to characterize nitrate, ammonium and amino acid transporters from poplar roots that are differentially regulated as result of nitrogen nutrition (shortage or nitrogen excess), or by plant/fungus interaction. The kinetic parameters of selected transporters will be determined by heterologous expression. Tissue and organ specific expression of certain transporter genes will be investigated by Northern blot and RT-PCR and by the utilization of poplar transformants containing promoter-GFP fusions. GFP fusions with truncated promoters will also be used for the identification of cis-elements responsible for the nitrogen-dependent expression of selected transporter genes. In addition, the global impact of nitrogen nutrition on poplar gene expression will be investigated using macro and micro arrays hybridization and probes of poplar roots grown at different nitrogen sources and concentrations as well as mycorrhizas.
Reflexions-Infrarotspektroskopie im nahen (NIRS) und mittleren Infrarotbereich (MIRS) weist ein hohes Potential zur Bestimmung bodenchemischer und -biologischer Charakteristika auf, aber hinsichtlich der Vorhersagegenauigkeit und des Verständnisses der zugrundeliegenden Beziehungen herrscht noch Forschungsbedarf. Projektziele sind: (i) Die Genauigkeit von NIRS und MIRS, den Gehalt an organischem C und N und die Zusammensetzung der organischen Bodensubstanz vorherzusagen, soll optimiert werden. Hierbei wird die Population nach Bodentyp, Textur und mineralogischer Zusammensetzung klassifiziert. Teilproben werden chemisch oder thermisch oxidiert und ein modifiziertes PLS-Verfahren, ein genetischer Algorithmus, wird getestet. (ii) Allgemeine Beziehungen zwischen den Mengen an labilem, intermediärem und passivem C und N (zu erhalten aus Inkubationsexperimenten und Na2S2O8-Behandlungen) und den bedeutsamen Wellenlängen der NIRS- und MIRS-Kreuzvalidierungen sollen aus Spektren, die vor und nach den Inkubationen aufgenommen wurden, abgeleitet werden. (iii) Es soll die Vorhersagegüte von Bodenkonstituenten mittels NIRS und MIRS für offene Populationen ermittelt werden.
Die vorgeschlagene Arbeit soll die Rolle der unterschiedlichen Quellen von gelöstem Stickstoff in der Nahrung der Algenarten, von denen bekannt ist, dass sie große Blüten formen, untersuchen. Vier Arten der Gattung Prymnesiophyta werden unter Stickstofflimitierung kultiviert, mit verschiedenen Quellen des gelösten organischen Stickstoffes (DON), um die Auswirkungen der Stickstofflimitierung auf die Stockstoffaufnahme und -nutzung zu untersuchen. Es wird die Hypothese aufgestellt, dass Stickstofflimitierung unterschiedliche Wege der N-Aufnahme und -Nutzung induziert, die Wachstum mit DON erlauben. Phytoplanktonkulturen werden mit einfachen (Amino Säuren, Purin und Pyrimidine) und komplexen Quellen von DON ernährt um Wachstumsraten mit DON als alleiniger Quelle des Stickstoffes festzustellen. Enzymaktivität für Urease- und Aminosäureoxydasen werden gemessen, da es wahrscheinlich ist, dass diese beiden Enzyme in Zellen, die Stickstofflimitierung ausgesetzt sind, gebildet werden. Eine Reihe von Ansätzen werden verwendet, um spezifische Proteine zu identifizieren, die mit Stickstofflimitierung und/oder der Nutzung von DON in Verbindung zu bringen sind. Diese Ansätze umfassen die Markierung der Zelloberfläche mit biotinylhaltigen Reagenzien und zellulare Fraktionierung in cytoplamische- und Membranbereiche. Proteine, die nur bei Stickstofflimitierung und Anwendung von DON vorkommen, werden gereinigt und beschrieben. Antikörper dieser Proteine werden synthetisiert und als Sonden zur Identifizierung von Nutzung von DON, durch diese wichtige Gruppe von den Algen verwendet. Perspektivisch sollen diese Sonden auf natürliche Phytoplanktonpopulationen angewendet werden.
Atmosphärische Aerosole wirken auf die menschliche Gesundheit und beeinflussen den Strahlungshaushalt der Erde. Die Quellen, Bildungsmechanismen und Senken sekundärer Aerosole, welche aus der Transformation von organischen und anorganischen Vorläufergasen entstehen, sind nicht ausreichend verstanden, so dass eine genaue Vorhersagbarkeit der Aerosolbelastung unter gegenwärtigen Emissionen und zukünftigen Szenarien nicht möglich ist.Um ein genaueres Prozessverständnis zu erlangen, werden wir neue analytische Methoden entwickeln, die die Messung einzelner aerosolgetragener Moleküle in Echtzeit, sowie die Erstellung molekularer Fingerabdrücke von Aerosolfilterproben, ermöglichen. Hierfür werden wir ein ultra-hochauflösendes (OrbitrapTM) Massenspektrometer (MS) für die Echtzeit-Aerosolmessung adaptieren, um im Rahmen von Messkampagnen an der Simulationskammer SAPHIR am Forschungszentrum Jülich, die Chemie der Aerosole unter zukünftigen Emissionsszenarien zu untersuchen. An der SAPHIR Kammer werden wir VOC-Emissionen von Pflanzen unter Stress und deren Wechselwirkung mit SO2, NOX und NH3 studieren. Die zentrale Fragestellung dieser Experimente ist, inwiefern überschüssiges Ammoniak mit flüchtigen organischen Verbindungen (VOCs) in der Atmosphäre reagiert, und ob es im Aerosol zu einer verstärkten Bildung von absorbierenden organischen Stickstoff-Heterozyklen kommt. Die Relevanz heterogener photochemisch-induzierter Prozesse soll an der SAPHIR Kammer bei atmosphärischen Konzentrationen untersucht werden. Diese Untersuchungen sind nötig um Voraussagen darüber treffen zu können, inwieweit sich verändernde, zukünftige anorganische Emissionen und VOC-Emissionen gestresster Pflanzen einen Effekt auf die chemischen und physikalischen Eigenschaften von Aerosolen in der zukünftigen Atmosphäre haben werden.Neben den Kammermessungen in Jülich sollen Feldmessungen an solchen Orten unternommen werden, an denen eine besonders starke Wechselwirkung zwischen organischen und anorganischen Komponenten zu erwarten ist, und somit die Kammerexperimente im Hinblick auf deren atmosphärische Relevanz validiert werden können.Während der Echtzeit-Messungen mit dem online Aerosol-Orbitrap-MS werden wir Aerosolfilterproben sammeln und molekulare Fingerabdrücke der Aerosolzusammensetzung mit Hochleistungs-Flüssigchromatografie / Massenspektrometrie erstellen. Basierend auf Laborstudien zur Oxidation einzelner VOCs werden wir die molekularen Fingerabdrücke der Realproben mit den Laborexperimenten vergleichen. Eine open-access-"Aerosolomics"-Datenbank soll erschaffen werden, die die gemessenen Merkmale einzelner Oxidationsprodukte archiviert und online verfügbar macht. Dies wird eine „top-down“ Klassifizierung von Aerosolproben ermöglichen, mit deren Hilfe man Aussagen darüber treffen kann welche VOCs und welche Prozesse für die sekundäre Bildung von atmosphärischem Aerosol an den untersuchten Orten verantwortlich sind.
Zusammensetzung und Menge der organischen Bodensubstanz (OBS) werden durch die Landnutzungsform beeinflußt. Die OBS läßt sich nach ihrer Abbaubarkeit und nach ihrer Löslichkeit in verschiedene Pools einteilen. So kann die wasserlösliche organische Bodensubstanz (DOM) als Maßzahl für die abbaubare OBS herangezogen werden. Mit Natriumpyrophosphat-Lösung als Extraktionsmittel läßt sich ein weit größerer Anteil der OBS erfassen, da der stabilisierende Bindungsfaktor zwischen OBS und Bodenmineralen entfernt wird. Extrahiert man zuerst mit Wasser und anschließend mit Natriumpyrophosphat-Lösung, erhält man im letzten Schritt den schwer abbaubaren OBS-Anteil. Über die funktionelle Zusammensetzung der organischen Substanz dieser Pools und deren Abhängigkeit von Landnutzungsformen ist relativ wenig bekannt. Ziel der geplanten Untersuchung ist es, den Pool der löslichen abbaubaren und schwer abbaubaren OBS zu quantifizieren und deren funktionelle Zusammensetzung mittels FT-IR Spektroskopie zu erfassen. Die so gewonnenen Daten sollen der Validierung von Soil Organic Matter Turnover modellen (z.B. Roth 23.6) dienen und die im Modell berechneten Pools um einen qualitativen Term ergänzen. In Zusammenarbeit mit anderen Arbeitsgruppen sollen im DFG-Schwerpunktprogramm 1090: ;Böden als Quelle und Senke für CO2 die Pools der löslichen abbaubaren und schwer schwer löslichen, schwer abbaubaren organischen Bodensubstanz (OBS) quantifiziert, die funktionelle Zusammensetzung dieser Pools mittels FT-IR Spektroskopie erfasst und Abbaubarkeit der erhaltenen Extrakte überprüft werden, um Mechanismen, die zur Stabilisierung der OBS führen, aufzuklären.
AG Brumsack: Flussratenbestimmung gelöster Nährstoffen, Metallen und Metallspezies, insbesondere auch das reaktive, gelöste Mn(III), an ausgewählten hydrothermalen Fluiden und der Plume zur Quantifizierung und Bedeutung des Materialexports in den Ozean; Bestimmung der Aufenthaltszeit von gelösten Komponenten in der Plume; Ausbreitung der exportierten Stoffe am Meeresboden, Phasenänderung gelöst-partikulär in der Plume; Fraktionierung der Partikel von der Quelle bis zur Sedimentation, Quantifizierung des Porenwasserflusses aus dem Sediment ins Bodenwasser. AG Dittmar: Bestimmung von DOC und DON mittels Elementaranalyse; Aminosäurebestimmung mittels chromatographischen UPLC-Verfahrens; Analyse von thermogenen molekularen Komponenten in DOM-Konzentraten (UPLC); Bestimmung von Summenformeln von größer als 10.000 Einzelkomponenten und Identifizierung von metall-organische Verbindungen auf molekularer Ebene mittels ultrahoch-auflösender Massenspektrometrie; Auswertung des detaillierten Geo-Metaboloms in Zusammenhang mit den mikrobiologischen Informationen. AG Brumsack: Beprobung, Konservierung und quantitativen Analyse von gelösten Metallen und Nährstoffen; Präparation und Analyse der reaktiven Manganspezies, Messung der Aktivität von kurz- und langlebigen Radiumisotopen in den hydrothermalen Fluiden und der Plume; Beprobung und quantitative Elementanalyse von metallhaltigen Sedimenten und dem Porenwasserinventar im Umfeld der hydrothermalen Felder. AG Dittmar: Wassersäulen- und Porenwasserproben werden an Bord für Elementar- und Molekularanalysen vorbereitet. Sie werden gefiltert (0.2Mikro m) und Aliquote (3x10mL) für Analysen von DOC und DON, sowie für die molekulare Aminosäurebestimmung in geglühten Glasampullen bei -20 Grad Celsius konserviert. Für detaillierte geo-metabolomische Untersuchungen werden die Proben (größer als 100mL) an Bord durch etablierte Festphasenextraktion (Dittmar et al., 2008) entsalzt und das DOM angereichert (-20 Grad Celsius Lagerung in MeOH).
| Origin | Count |
|---|---|
| Bund | 95 |
| Type | Count |
|---|---|
| Förderprogramm | 95 |
| License | Count |
|---|---|
| offen | 95 |
| Language | Count |
|---|---|
| Deutsch | 78 |
| Englisch | 26 |
| Resource type | Count |
|---|---|
| Keine | 79 |
| Webseite | 16 |
| Topic | Count |
|---|---|
| Boden | 75 |
| Lebewesen und Lebensräume | 79 |
| Luft | 55 |
| Mensch und Umwelt | 95 |
| Wasser | 55 |
| Weitere | 93 |