API src

Found 9827 results.

Related terms

Bestimmung von Flugasche in marinen und limnischen Sedimenten mit der C14-Methode

Der organisch gebundene Kohlenstoff in den Sedimenten der letzten 100 Jahre hat einen etwa 10 v.H. geringeren Gehalt an Kohlenstoff 14 als die tieferen Sedimentschichten (Erlenkeuser, Willkomm), im gleichen Bereich ist der Gehalt einiger Schwermetalle auf das 2- bis 7-fache der natuerlichen Konzentration angestiegen (Erwin Suess). Beide Effekte lassen sich durch die Ablagerung von Flugasche erklaeren.

Organischer Kohlenstoff in Flüssen - Charakterisierung, Herkunft und Abbaubarkeit

Veranlassung Der gelöste und der partikuläre organische Kohlenstoff (dissolved organic carbon, DOC und particulate organic carbon, POC) sind zentrale Komponenten im Naturhaushalt von Gewässern. Die Akkumulation von organischem Kohlenstoff - beziehungsweise die damit verbundene hohe Sauerstoffzehrung - ist insbesondere in den Ästuaren ein wichtiger Belastungsfaktor für den Sauerstoffhaushalt und trägt damit zu deren schlechtem ökologischem Zustand bei. Die Bewertung der zu erwartenden Sauerstoffzehrung kann aber nur mit umfassender Kenntnis der Qualität der organischen Kohlenstoffgehalte in gelöster Form oder als Bestandteil der Schwebstoffe erreicht werden. Des Weiteren spielt die Zusammensetzung des organischen Materials eine wichtige Rolle bei der Sorption und dem Transport von Schadstoffen, sodass eine umfassende Beschreibung des organischen Kohlenstoffs auch die Vorhersage der Ausbreitung von Schadstoffen ermöglicht. Im Projekt OrgCarbon soll eine umfassende Charakterisierung des organischen Kohlenstoffs jenseits der traditionell erfassten Parameter (TOC, DOC und POC) stattfinden, da bekannt ist, dass sowohl POC als auch DOC eine komplexe, bisher wenig erforschte Vielzahl unterschiedlicher Stoffklassen beinhaltet. In einem ersten Schritt erfolgt eine Fraktionierung von partikulärem und gelöstem organischem Material, basierend auf der chemischen Zusammensetzung und mikrobiellen Abbaubarkeit. Wichtige Parameter wie Sauerstoffverbrauch, mikrobielle Atmung, chemische Zusammensetzung und die Herkunft des organischen Materials werden für jede Kohlenstofffraktion bestimmt. Durch die daraus resultierende Verbesserung des Verständnisses bezüglich organischem Kohlenstoff in Ästuaren und Flüssen zielt das OrgCarbon-Projekt darauf ab, zu besseren Umweltmanagement- und Naturschutzstrategien für die Bundeswasserstraßen beizutragen. Ziele Ein zentrales Ziel des OrgCarbon-Projekts ist es, eine Vielzahl interdisziplinärer Methoden zu testen, um die vielfältigen Eigenschaften des Kohlenstoffes zu erfassen. Es werden verschiedene chemisch-analytische Verfahren mit Messungen zur biologischen Aktivität und Abbaubarkeit des Kohlenstoffs sowie mit mineralogischen Untersuchungen kombiniert. Dadurch lässt sich ein Set an Methoden identifizieren, das zukünftig auch mit weniger Aufwand eine detaillierte Charakterisierung des Kohlenstoffs ermöglicht. Als Ergebnis von OrgCarbon angestrebt ist die Entwicklung eines standardisierten Protokolls, das den gesamten Prozess von der Probenahme über die Kohlenstofffraktionierung bis hin zur Analyse und Datenauswertung umfasst. Dieses ermöglicht es, die Qualität des organischen Kohlenstoffs sowie dessen Eigenschaften und Abbaubarkeit in Zukunft besser abzuschätzen und gemeinsam zu interpretieren. Dieses Protokoll soll in bestehende Messprogramme der BfG integriert werden, um regelmäßig die Herkunft, das Sorptionspotenzial für Schadstoffe sowie die Abbaubarkeit und die Sauerstoffzehrung von organischem Kohlenstoff zu bestimmen. Organischer Kohlenstoff spielt eine entscheidende Rolle in Ästuaren und Flüssen. Seine Zusammensetzung beeinflusst Prozesse wie die (mikro)biologische Produktivität, den Sauerstoffverbrauch, den Schadstofftransport und die Agglomeration von Schwebstoffen. Die Bestimmung erfolgt routinemäßig nur als Summenparameter (total organic carbon, TOC) weshalb über die Zusammensetzung des organischen Materials, dessen Abbauverhalten und Quellen meist wenig bekannt ist. Darüber hinaus reicht die Betrachtung des Gesamtkohlenstoffgehalts in vielen Fällen nicht aus, um eine Vergleichbarkeit von Schwebstoffen aus unterschiedlichen Quellen zu gewährleisten. Das OrgCarbon-Projekt widmet sich darum einer umfassenden Analyse des organischen Kohlenstoffs in Feldproben aus Ästuaren und Flüssen mit unterschiedlichen Kohlenstoffgehalten und Zusammensetzungen, wie der Tide-Ems und der Tide-Elbe. (Text gekürzt)

Nachhaltige Entwicklung der Bundeswasserstraßen, Untersuchungen zum Stoffhaushalt, zur Planktondynamik sowie Biofilmen in Bundeswasserstraßen

Untersuchungen zu Aspekten der mikrobiellen Ökologie einschließlich des Phyto- und Zooplanktons. Umsetzungen des organischen Kohlenstoffs und von Nährstoffen in der Wassersäule und den Sedimenten.

Micro-scaled hydraulic heterogeneity in subsoils

Nutrient and water supply for organisms in soil is strongly affected by the physical and physico-chemical properties of the microenvironment, i.e. pore space topology (pore size, tortuosity, connectivity) and pore surface properties (surface charge, surface energy). Spatial decoupling of biological processes through the physical (spatial) separation of SOM, microorganisms and extracellular enzyme activity is apparently one of the most important factors leading to the protection and stabilization of soil organic matter (SOM) in subsoils. However, it is largely unknown, if physical constraints can explain the very low turnover rates of organic carbon in subsoils. Hence, the objective of P4 is to combine the information from the physical structure of the soil (local bulk density, macropore structure, aggregation, texture gradients) with surface properties of particles or aggregate surfaces to obtain a comprehensive set of physical important parameters. It is the goal to determine how relevant these physical factors in the subsoil are to enforce the hydraulic heterogeneity of the subsoil flow system during wetting and drying. Our hypothesis is that increasing water repellency enforces the moisture pattern heterogeneity caused already by geometrical factors. Pore space heterogeneity will be assessed by the bulk density patterns via x-ray radiography. Local pattern of soil moisture is evaluated by the difference of X-ray signals of dry and wet soil (project partner H.J. Vogel, UFZ Halle). With the innovative combination of three methods (high resolution X-ray radiography, small scale contact angle mapping, both applied to a flow cell shaped sample with undisturbed soil) it will be determined if the impact of water repellency leads to an increase in the hydraulic flow field heterogeneity of the unsaturated sample, i.e. during infiltration events and the following redistribution phase. An interdisciplinary cooperation within the research program is the important link which is realized by using the same flow cell samples to match the spatial patterns of physical, chemical, and biological factors in undisturbed subsoil. This cooperation with respect to spatial pattern analysis will include the analysis of enzyme activities within and outside of flow paths and the spatial distribution of key soil properties (texture, organic carbon, iron oxide content) evaluated by IR mapping. To study dissolved organic matter (DOM) sorption in soils of varying mineral composition and the selective association of DOM with mineral surfaces in context with recognized flow field pattern, we will conduct a central DOM leaching experiment and the coating of iron oxides which are placed inside the flow cell during percolation with marked DOM solution. Overall objective is to elucidate if spatial separation of degrading organisms and enzymes from the substrates may be interconnected with defined physical features of the soil matrix thus explaining subsoil SOM stability and -dynami

Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch

Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.

Origin and fate of dissolved organic matter in the subsoil

Dissolved organic matter (DOM) is one major source of subsoil organic matter (OM). P5 aims at quantifying the impact of DOM input, transport, and transformation to the OC storage in the subsoil environment. The central hypotheses of this proposal are that in matric soil the increasing 14C age of organic carbon (OC) with soil depth is due to a cascade effect, thus, leading to old OC in young subsoil, whereas within preferential flowpaths sorptive stabilization is weak, and young and bioa-vailable DOM is translocated to the subsoil at high quantities. These hypotheses will be tested by a combination of DOC flux measurements with the comparative analysis of the composition and the turnover of DOM and mineral-associated OM. The work programme utilizes a DOM monitoring at the Grinderwald subsoil observatory, supplemented by defined experiments under field and labora-tory conditions, and laboratory DOM leaching experiments on soils of regional variability. A central aspect of the experiments is the link of a 13C-leaf litter labelling experiment to the 14C age of DOM and OM. With that P5 contributes to the grand goal of the research unit and addresses the general hypotheses that subsoil OM largely consists of displaced and old OM from overlying horizons, the sorption capacity of DOM and the pool size of mineral-associated OM are controlled by interaction with minerals, and that preferential flowpaths represent 'hot spots' of high substrate availability.

Monsunvariabilität in SE-China - der Huguang-Maarsee (Huguangyan)

Südchina, insbes. die Provinz Guandong, ist eines der am dichtesten besiedelten Gebiete der Erde. Positive Konsequenz dieser Ballung ist eine äußerst dynamische Wirtschaftsentwicklung, aber gerade diese von subtropischem Monsunklima geprägte Region ist auch immer wieder Ausgangspunkt für sich schnell und zunehmend global ausbreitende epidemische Krankheiten wie zuletzt SARS. Mit der globalen Erwärmung einhergehende Klimaveränderungen könnten sich für diese Region insbesondere durch Veränderungen der Häufigkeit und Intensität tropischer Wirbelstürme, aber auch Änderungen der Niederschlagsmenge- und Intensität bemerkbar machen. Im Gegensatz zu den schon recht umfangreichen Datensätzen aus der Südchinesischen See (SCS) gibt es bisher jedoch nur sehr wenige terrestrische Paläoklimaarchive aus der Region, die Klimaveränderungen während des Holozäns, des Spätglazials oder Glazials hochauflösend dokumentieren. Wir haben deshalb einen an der nördlichen Küste der SCS gelegenen Maarsee ausgewählt, um über die Analyse von Proxydaten aus Seesedimenten solche Paläo-Klimavariationen zu untersuchen. Aus dem Sediment des Huguang-Maarsees wurden mittels Usinger-Präzisionsstechtechnik von einem Floss aus insgesamt 7 Sedimentsequenzen gewonnen, von denen die tiefste bis 57 m unter den Seeboden reicht. Die zeitliche Einstufung der Profile wurde mit Hilfe von 17 Radiokohlenstoff-Datierungen vorgenommen und ergab ein extrapoliertes Maximalalter von ca. 78.000 Jahren. Ein breites Spektrum aus sedimentologischen, geochemischen, paläo- und gesteinsmagnetischen sowie palynologischen Methoden kam sodann zum Einsatz, um die Paläo-Umweltbedingungen, die natürlich immer das entsprechende Klima widerspiegeln, während dieses Zeitraumes zu rekonstruieren. Überraschenderweise ergab sich ein von vielen bekannten Klimaprofilen der Nordhemisphäre (insbes. des Atlantikraumes, aber auch mariner Kerne aus dem Indik und Südostasien) abweichendes Muster. Im Gegensatz zu dem bekannten Grundmuster eines vergleichsweise stabilen Klimas während des Holozäns und stärkerer Schwankungen während des letzten Glazials weisen die Daten aus dem Huguang-Maarsee für das letzte Glazial im Zeitraum zwischen 15.000 und 40.000 Jahren auf relativ stabile Umweltbedingungen hin. Die älteren Bereiche zwischen 40.000 und ca. 78.000 Jahren haben durch Eintrag von umgelagertem Torf eine eher lokale Komponente und sind somit für den regionalen und globalen Vergleich ungeeignet. Das Holozän hingegen zeichnet sich durch hohe Schwankungsamplituden vieler Proxydaten (Karbonatgehalt, magnetische Suszeptibilität, organischer Kohlenstoff, Trockendichte, gesteinsmagnetische Parameter, Redox-Verhältnisse) aus, die auf ein recht variables Klima hinweisen. Besonders interessant ist die Übergangsphase vom Glazial zum Holozän, die bei etwa 15.000 Jahren vor heute in etwa zeitgleich mit dem beobachteten stärksten Meeresspiegelanstieg der Südchinesischen See einsetzt und eine abrupte Intensitätszunahme des Sommermonsuns anzeigt

Zyklische Redoxreaktionen organischer Kohlenstoffverbindungen in Binnengewässern

Das vorliegende Forschungsprojekt zielt auf die Verknüpfung zweier, bisher als unabhängig angesehener, aquatischer Transport- und Transformationsprozesse:(a) In tiefen Gewässern können sich Wasserkörper unterschiedlicher Dichte stabil übereinander schichten. Die dort ablaufenden Umsatzprozesse werden so räumlich entkoppelt und es kommt zur Bildung einer aquatischen Grenzzone. Bei deren Durchtritt können sich physikochemische Parameter, wie etwa die Sauerstoffverfügbarkeit, abrupt ändern.(b) Die Verfügbarkeit des Elektronen-Akzeptors Sauerstoff entscheidet über die Reaktionspfade, auf denen aquatische Mikroorganismen Energie gewinnen. Unter Ausschluss von Sauerstoff können sie gelöstes organisches Material als alternativen Elektronen-Akzeptor nutzen. Die Elektronen werden von redox-aktiven Verbindungen innerhalb des organischen Materials (Quinone) aufgenommen die daraufhin antioxidativ, also empfindlich auf Änderungen der Sauerstoffverfügbarkeit reagieren. Die hohe räumliche- und zeitliche Dynamik aquatischer Grenzzonen in Binnengewässern haben zur Folge, dass antioxidatives organisches Material vom sauerstoffarmen in sauerstoffreiche Wasserkörper transportiert werden kann. Die dort rasch ablaufende Re Oxidation macht gelöstes organisches Material daher zu einem vollständig regenerierbaren Elektronenakzeptorsystem. Mikrobielle Konsortien, die ihre Energiegewinnung an diesen zyklisch regenerierten organischen Elektronenakzeptor koppeln, könnten einen entscheidenden Beitrag zum Kohlenstoffumsatz in aquatischen Grenzzonen leisten. Mikroorganismen beeinflussen maßgeblich, zu welchem Anteil umgesetztes organisches Material als Kohlendioxid oder als Methan in die Atmosphäre entweicht oder stattdessen dem Kohlenstoffkreislauf durch Sedimentation entzogen wird. Da Grenzzonen durch überproportional hohe Reaktionsraten und Biodiversität gekennzeichnet sind, ist die Kenntnis der dort ablaufenden Material- und Energieflüsse von großer Bedeutung für das grundlegende Verständnis des Kohlenstoffumsatzes in Binnengewässern. Die Binnenseen der borealen Zone haben großen Anteil an den globalen Süßwasservorräten und sind durch zukünftig steigende Frachten terrestrischen organischen Kohlenstoffs gefährdet. Das beantragte Forschungsprojekt hat daher zum Ziel, durch Prozessstudien auf verschiedenen Skalen und mechanistische Modellierung einen wichtigen Beitrag zu einem besseren Verständnis der Rolle organischen Materials als Elektronendonor und -akzeptor in diesen dynamischen Ökosystemen zu leisten.

Kohlenstoffvorrat 2021 BB

Der Datensatz beinhaltet Daten vom LBGR über die Kohlenstoffvorrat 2021 Brandenburgs und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Der Layer Kohlenstoffvorrat 2021 gibt den in Moorböden gespeicherten, potentiell zu erwartenden Vorrat an organischem Kohlenstoff in [kg/qm] für das Jahr 2021 wieder. Der Kohlenstoffvorrat wurde auf Grundlage der abgeleiteten Moormächtigkeit des Jahres 2021 berechnet.

Integrierte Analyse schwebstoffdynamischer Prozesse zur Erklärung der Variabilität der Schwebstoff- und Sauerstoffgehalte sowie des Auftretens von Flüssigschlick in der Tideems

Veranlassung Das Ziel des Projektes ist es, die relevanten Einflussfaktoren zu identifizieren und zu quantifizieren, die für die Variabilität des Schwebstoff- und Sauerstoffgehaltes sowie für das temporäre Auftreten von Flüssigschlick an der Gewässersohle der Tideems verantwortlich sind. Das soll mit einer integrierten Datenanalyse auf verschiedenen Skalen durch die Verschneidung der Analyseergebnisse von kontinuierlich erfassten Schwebstoff-, Sauerstoff- und Strömungsdaten aus Dauermessungen mit den Ergebnissen von ergänzenden vertikal und zeitlich hochaufgelösten Naturmesskampagnen ermöglicht werden. Die so ermittelten Parameter werden verwendet, um die an einer Dauermessstelle auftretenden Schwebstoffgehalte mit einem künstlichen neuronalen Netz (engl.: ANN) zu reproduzieren. Mit dem ANN soll ein Werkzeug bereitgestellt werden, welches Abschätzungen und Prognosen der Entwicklung der Schwebstoffgehalte in der Unterems ermöglicht. Dieses ANN kann dann zur Optimierung und Evaluierung von Maßnahmen zur Reduzierung des Schwebstoffanfalls und zur Verbesserung des Sauerstoffhaushaltes dienen. In einem weiteren Auswerte- und Vorhersageansatz sollen die bestehenden Module des Gewässergütemodells QSim der BfG zum organischen Kohlenstoff und das Sauerstoffmodul auf deren Tauglichkeit zur Anwendung für die Tideems getestet werden. Ziele - verbessertes Prozess- und Systemverständnis der ästuarinen Schwebstoffdynamik beim Auftreten von Flüssigschlick als Grundlage für die Optimierung von Sedimentmanagementkonzepten - Identifikation und Quantifizierung der relevanten Einflussfaktoren, die für die Variabilität des Schwebstoff- und Sauerstoffhaushalts sowie der Flüssigschlickdynamik verantwortlich sind - Erkenntnisse zum Fließverhalten von Flüssigschlick als Funktion von mechanischen (z. B. Scherrate) und sedimentologischen Parametern (Dichte, Organikanteil, Korngrößenverteilung) - ANN soll eingesetzt werden als ein Werkzeug zur Abschätzung und Prognose der Schwebstoffgehalte mit dem Ziel der Optimierung und Evaluierung von Maßnahmen zur Reduzierung des Schlickaufkommens Die hohen Schwebstoffgehalte und insbesondere das Auftreten von Flüssigschlick (Fluid Mud) und die dadurch hervorgerufenen Sauerstoffdefizite sind derzeit die entscheidende Ursache für den schlechten ökologischen Zustand der Tideems. Diese Schlickproblematik soll mithilfe verschiedener Maßnahmen im Rahmen des Masterplanes Ems 2050 gelöst werden. In Ästuaren, in denen Fluid Mud auftritt, gibt es allerdings noch große Lücken im Prozessverständnis der Schwebstoffdynamik und deren Interaktion mit dem Sauerstoffhaushalt. Eine besondere Herausforderung stellt hierbei die hohe Variabilität der Flüssigschlickdynamik auf unterschiedlichen räumlichen und zeitlichen Skalen dar, die bisher in Modellstudien nicht abgebildet werden kann und auch messtechnisch bisher nur unzureichend erfasst wurde. Diese Kenntnisse werden jedoch benötigt, um wirkungsvolle Maßnahmen umzusetzen und zu optimieren. Die Variabilität des ästuarinen Schwebstoff- und Sauerstoffhaushaltes und insbesondere das Auftreten von Fluid Mud soll mit einer integrierten Auswertung vorhandener Daten und ergänzender Naturmessungen unter Verwendung von KI-Verfahren untersucht werden.

1 2 3 4 5981 982 983