The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.
Der Datensatz beinhaltet Daten vom LBGR über die Kohlenstoffvorrat 2021 Brandenburgs und wird über je einen Darstellungs- und Downloaddienst bereitgestellt. Der Layer Kohlenstoffvorrat 2021 gibt den in Moorböden gespeicherten, potentiell zu erwartenden Vorrat an organischem Kohlenstoff in [kg/qm] für das Jahr 2021 wieder. Der Kohlenstoffvorrat wurde auf Grundlage der abgeleiteten Moormächtigkeit des Jahres 2021 berechnet.
Untersuchungen zu Aspekten der mikrobiellen Ökologie einschließlich des Phyto- und Zooplanktons. Umsetzungen des organischen Kohlenstoffs und von Nährstoffen in der Wassersäule und den Sedimenten.
Veranlassung Der gelöste und der partikuläre organische Kohlenstoff (dissolved organic carbon, DOC und particulate organic carbon, POC) sind zentrale Komponenten im Naturhaushalt von Gewässern. Die Akkumulation von organischem Kohlenstoff - beziehungsweise die damit verbundene hohe Sauerstoffzehrung - ist insbesondere in den Ästuaren ein wichtiger Belastungsfaktor für den Sauerstoffhaushalt und trägt damit zu deren schlechtem ökologischem Zustand bei. Die Bewertung der zu erwartenden Sauerstoffzehrung kann aber nur mit umfassender Kenntnis der Qualität der organischen Kohlenstoffgehalte in gelöster Form oder als Bestandteil der Schwebstoffe erreicht werden. Des Weiteren spielt die Zusammensetzung des organischen Materials eine wichtige Rolle bei der Sorption und dem Transport von Schadstoffen, sodass eine umfassende Beschreibung des organischen Kohlenstoffs auch die Vorhersage der Ausbreitung von Schadstoffen ermöglicht. Im Projekt OrgCarbon soll eine umfassende Charakterisierung des organischen Kohlenstoffs jenseits der traditionell erfassten Parameter (TOC, DOC und POC) stattfinden, da bekannt ist, dass sowohl POC als auch DOC eine komplexe, bisher wenig erforschte Vielzahl unterschiedlicher Stoffklassen beinhaltet. In einem ersten Schritt erfolgt eine Fraktionierung von partikulärem und gelöstem organischem Material, basierend auf der chemischen Zusammensetzung und mikrobiellen Abbaubarkeit. Wichtige Parameter wie Sauerstoffverbrauch, mikrobielle Atmung, chemische Zusammensetzung und die Herkunft des organischen Materials werden für jede Kohlenstofffraktion bestimmt. Durch die daraus resultierende Verbesserung des Verständnisses bezüglich organischem Kohlenstoff in Ästuaren und Flüssen zielt das OrgCarbon-Projekt darauf ab, zu besseren Umweltmanagement- und Naturschutzstrategien für die Bundeswasserstraßen beizutragen. Ziele Ein zentrales Ziel des OrgCarbon-Projekts ist es, eine Vielzahl interdisziplinärer Methoden zu testen, um die vielfältigen Eigenschaften des Kohlenstoffes zu erfassen. Es werden verschiedene chemisch-analytische Verfahren mit Messungen zur biologischen Aktivität und Abbaubarkeit des Kohlenstoffs sowie mit mineralogischen Untersuchungen kombiniert. Dadurch lässt sich ein Set an Methoden identifizieren, das zukünftig auch mit weniger Aufwand eine detaillierte Charakterisierung des Kohlenstoffs ermöglicht. Als Ergebnis von OrgCarbon angestrebt ist die Entwicklung eines standardisierten Protokolls, das den gesamten Prozess von der Probenahme über die Kohlenstofffraktionierung bis hin zur Analyse und Datenauswertung umfasst. Dieses ermöglicht es, die Qualität des organischen Kohlenstoffs sowie dessen Eigenschaften und Abbaubarkeit in Zukunft besser abzuschätzen und gemeinsam zu interpretieren. Dieses Protokoll soll in bestehende Messprogramme der BfG integriert werden, um regelmäßig die Herkunft, das Sorptionspotenzial für Schadstoffe sowie die Abbaubarkeit und die Sauerstoffzehrung von organischem Kohlenstoff zu bestimmen. Organischer Kohlenstoff spielt eine entscheidende Rolle in Ästuaren und Flüssen. Seine Zusammensetzung beeinflusst Prozesse wie die (mikro)biologische Produktivität, den Sauerstoffverbrauch, den Schadstofftransport und die Agglomeration von Schwebstoffen. Die Bestimmung erfolgt routinemäßig nur als Summenparameter (total organic carbon, TOC) weshalb über die Zusammensetzung des organischen Materials, dessen Abbauverhalten und Quellen meist wenig bekannt ist. Darüber hinaus reicht die Betrachtung des Gesamtkohlenstoffgehalts in vielen Fällen nicht aus, um eine Vergleichbarkeit von Schwebstoffen aus unterschiedlichen Quellen zu gewährleisten. Das OrgCarbon-Projekt widmet sich darum einer umfassenden Analyse des organischen Kohlenstoffs in Feldproben aus Ästuaren und Flüssen mit unterschiedlichen Kohlenstoffgehalten und Zusammensetzungen, wie der Tide-Ems und der Tide-Elbe. (Text gekürzt)
Die Antragsteller sind durch erfolgreiche, jahrelange Forschungsarbeit Experten für das Thema N-Kreislauf, N-Verluste und Modellierung und möchten die vorhandene Kompetenz sowie schon vorhandene eigene Versuchsdaten und -ergebnisse verwenden, um den N-Kreislauf einschließlich der N-Emissionen zu simulieren. Hierfür werden wir ausgewählte Varianten von fünf Feldversuchen untersuchen, für die schon für Zeiträume zwischen vier und 116 Jahren relevante Daten z.B. zur N-Aufnahme, Gehalte des organischen Kohlenstoffs und des Gesamtstickstoffs, oder Klimagasmessungen zur Verfügung stehen. Die Versuche wurden an unterschiedlichen Standorten in ganz Deutschland angelegt und decken verschiedenste Bodencharakteristika und Klimata ab. Durch die Verwendung schon vorhandener Daten und die erweiterte eigene Beprobung kann ein viele Jahrzehnte umfassender Datensatz (Pflanze x Management x Umwelt-Interaktionen) an verschiedenen Standorten modellbasiert und damit kostengünstig ausgewertet werden. In dem vorgestellten Projekt soll die prozessbasierte dynamische open-source-Modellplattform SIMPLACE eingesetzt werden. SIMPLACE berechnet u.a. den täglichen Nährstoffumsatz im Boden, den Nitrataustrag, die N2O-Emissionen abhängig von den Bodencharakteristika sowie das Pflanzenwachstum. Die Ziele des vorgestellten Projekts sind 1) den C-/N-Kreislauf und die Verluste besser zu verstehen, 2) die vielen Daten der unterschiedlichen Standorte zu verwenden, um das Modell robust zu kalibrieren und validieren, 3) Managementszenarien (Fruchtfolgen, Zwischenfrüchte, organische und anorganische Düngung) und deren Auswirkungen auf N-Verluste zu messen und zu simulieren, um die Wirksamkeit von Maßnahmen standortdifferenziert und unter verschiedenen Wetterbedingungen zu quantifizieren, sowie 4) Emissionsminderungspotentiale unterschiedlicher Bodenmanagementstrategien aufzuzeigen, um modellgestützte deutschlandweite Handlungsempfehlungen für ein klimaschonendes Stickstoffmanagement zu ermöglichen.
Die Antragsteller sind durch erfolgreiche, jahrelange Forschungsarbeit Experten für das Thema N-Kreislauf, N-Verluste und Modellierung und möchten ihre Kompetenz sowie schon vorhandene eigene Versuchsdaten und -ergebnisse im verwenden, um den N-Kreislauf einschließlich der N-Emissionen zu simulieren. Hierfür werden wir ausgewählte Varianten von fünf Feldversuchen untersuchen, für die schon für Zeiträume zwischen vier und 116 Jahren relevante Daten z.B. zur N-Aufnahme, Gehalte des organischen Kohlenstoffs und des Gesamtstickstoffs, oder Klimagasmessungen zur Verfügung stehen. Die Versuche wurden an unterschiedlichen Standorten in ganz Deutschland angelegt und decken verschiedenste Bodencharakteristika und Klimata ab. Durch die Verwendung schon vorhandener Daten und die erweiterte eigene Beprobung kann ein viele Jahrzehnte umfassender Datensatz (Pflanze x Management x Umwelt-Interaktionen) an verschiedenen Standorten modellbasiert und damit kostengünstig ausgewertet werden. In dem vorgestellten Projekt soll die prozessbasierte dynamische open-source-Modellplattform SIMPLACE eingesetzt werden. SIMPLACE berechnet u.a. den täglichen Nährstoffumsatz im Boden, den Nitrataustrag, die N2O-Emissionen abhängig von den Bodencharakteristika sowie das Pflanzenwachstum. Die Ziele des vorgestellten Projekts sind 1) den C-/N-Kreislauf und die Verluste besser zu verstehen, 2) die vielen Daten der unterschiedlichen Standorte zu verwenden, um das Modell robust zu kalibrieren und validieren, 3) Managementszenarien (Fruchtfolgen, Zwischenfrüchte, organische und anorganische Düngung) und deren Auswirkungen auf N-Verluste zu messen und zu simulieren, um die Wirksamkeit von Maßnahmen standortdifferenziert und unter verschiedenen Wetterbedingungen zu quantifizieren, sowie 4) Emissionsminderungspotentiale unterschiedlicher Bodenmanagementstrategien aufzuzeigen, um modellgestützte deutschlandweite Handlungsempfehlungen für ein klimaschonendes Stickstoffmanagement zu ermöglichen.
Die Antragsteller sind durch erfolgreiche, jahrelange Forschungsarbeit Experten für das Thema N-Kreislauf, N-Verluste und Modellierung und möchten die vorhandene Kompetenz sowie schon vorhandene eigene Versuchsdaten und -ergebnisse verwenden, um den N-Kreislauf einschließlich der N-Emissionen zu simulieren. Hierfür werden wir ausgewählte Varianten von fünf Feldversuchen untersuchen, für die schon für Zeiträume zwischen vier und 116 Jahren relevante Daten z.B. zur N-Aufnahme, Gehalte des organischen Kohlenstoffs und des Gesamtstickstoffs, oder Klimagasmessungen zur Verfügung stehen. Die Versuche wurden an unterschiedlichen Standorten in ganz Deutschland angelegt und decken verschiedenste Bodencharakteristika und Klimata ab. Durch die Verwendung schon vorhandener Daten und die erweiterte eigene Beprobung kann ein viele Jahrzehnte umfassender Datensatz (Pflanze x Management x Umwelt-Interaktionen) an verschiedenen Standorten modellbasiert und damit kostengünstig ausgewertet werden. In dem vorgestellten Projekt soll die prozessbasierte dynamische open-source-Modellplattform SIMPLACE eingesetzt werden. SIMPLACE berechnet u.a. den täglichen Nährstoffumsatz im Boden, den Nitrataustrag, die N2O-Emissionen abhängig von den Bodencharakteristika sowie das Pflanzenwachstum. Die Ziele des vorgestellten Projekts sind 1) den C-/N-Kreislauf und die Verluste besser zu verstehen, 2) die vielen Daten der unterschiedlichen Standorte zu verwenden, um das Modell robust zu kalibrieren und validieren, 3) Managementszenarien (Fruchtfolgen, Zwischenfrüchte, organische und anorganische Düngung) und deren Auswirkungen auf N-Verluste zu messen und zu simulieren, um die Wirksamkeit von Maßnahmen standortdifferenziert und unter verschiedenen Wetterbedingungen zu quantifizieren, sowie 4) Emissionsminderungspotentiale unterschiedlicher Bodenmanagementstrategien aufzuzeigen, um modellgestützte deutschlandweite Handlungsempfehlungen für ein klimaschonendes Stickstoffmanagement zu ermöglichen.
| Origin | Count |
|---|---|
| Bund | 424 |
| Kommune | 82 |
| Land | 9251 |
| Wirtschaft | 8 |
| Wissenschaft | 20 |
| Zivilgesellschaft | 43 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 9265 |
| Förderprogramm | 340 |
| Gesetzestext | 2 |
| Text | 30 |
| Umweltprüfung | 1 |
| unbekannt | 40 |
| License | Count |
|---|---|
| geschlossen | 83 |
| offen | 4379 |
| unbekannt | 5216 |
| Language | Count |
|---|---|
| Deutsch | 9625 |
| Englisch | 5400 |
| Resource type | Count |
|---|---|
| Archiv | 3998 |
| Bild | 2 |
| Datei | 619 |
| Dokument | 26 |
| Keine | 4883 |
| Unbekannt | 2 |
| Webdienst | 6 |
| Webseite | 4216 |
| Topic | Count |
|---|---|
| Boden | 9148 |
| Lebewesen und Lebensräume | 9586 |
| Luft | 9352 |
| Mensch und Umwelt | 9678 |
| Wasser | 9547 |
| Weitere | 9663 |