API src

Found 4690 results.

Related terms

Konferenz: Climate Change and Paths to Sustainability

Zielsetzung und Anlass des Vorhabens: Das Europäische Klimaforum (European Climate Forum e. V.) ist ein neugegründetes Forum, das verschiedene Akteure im Klima- und Energiebereich zusammenbringt, um einen neuen integrierten Ansatz in der Klimaforschung und -Debatte voranzubringen. Mitglieder sind führende wissenschaftliche Institutionen in Europa, Vertreter der Industrie sowie international aktive Umweltverbände. Die Konferenz in Berlin am 14.-15. Dezember war das Hauptereignis im Jahr 2002 und gehört zu einer Serie von kleineren und größeren ECF-Veranstaltungen. Angesichts der bisherigen Trennung zwischen akademischen Studien im Klimabereich und konkreten Bemühungen der Wirtschaft und der Verbände Lösungen für das Klimaproblem zu finden, ist ein stetiger und strukturierter Dialog wichtig. Die Konferenz hat einen Beitrag zur Zusammenbringung dieser zwei Bereiche geleistet. Fazit: Die Konferenz und die Diskussionen wurde sowohl von den Teilnehmern als auch Veranstalter als höchst interessant und erfolgreich eingestuft. Anregungen zu zukünftigen Forschungsprojekten wurden geliefert. Der Dialogprozess wird weitergeführt. Es wurde deutlich, dass in Zukunft kleinere Studien und Positionspapiere geeignet sind um gezielt bestimmte Klimarelevanten Fragen zwischen Unternehmen, Nichtregierungsorganisationen und Wissenschaftlern zu diskutieren. Die jährlichen ECF Konferenzen werden fortgeführt werden und die nächste wird am 8.-10. September 2003 am Tyndall Centre/UEA (Norwich) stattfinden. Die ECF Konferenz wird als teil der dritten Nachhaltigkeitstage stattfinden.

Untersuchung des Vorkommens von PFAS (Per- und polyfluorierte Alkylverbindungen) in Abfallströmen

Das Forschungsvorhaben "Untersuchung des Vorkommens von PFAS in Abfallströmen" zielte darauf ab, das Risiko von per- und polyfluorierten Verbindungen (PFAS) für Mensch und Umwelt zu bewerten. Im Rahmen des Projekts wurden PFAS in bestimmten Abfallströmen identifiziert, quantifiziert und vor dem Hintergrund der Anforderungen des Stockholmer Übereinkommens über persistente organische Schadstoffe (POP) bewertet. Durch eine Literaturrecherche wurden relevante Abfallströme identifiziert, ein Probenplan entwickelt und eine gezielte Probennahme durchgeführt. Die erhaltenen Ergebnisse wurden genutzt, um Risiken für Mensch und Umwelt aufzuzeigen und daraus Maßnahmenvorschläge für eine umweltgerechte Abfallbewirtschaftung abzuleiten. Veröffentlicht in Texte | 85/2024.

Digitales Schrägluftbild Hamburg

Schrägluftbilder: 2018 wurde erstmals für ganz Hamburg ein Bildflug durchgeführt, bei dem hochaufgelöste Oblique-Luftbilder entstanden. Die eingesetzte Kamera nimmt zeitgleich sowohl Senkrechtbilder als auch Schrägbilder nach allen 4 Seiten auf. Der aktuelle Datensatz ist aus dem Frühjahr 2022 (März). Die Schrägbilder dienen als Quelle für die Analyse von städtebaulichen Situationen innerhalb des gesamten Stadtgebietes. Sie werden als Dienst in den Geoportalen im LGV bereitgestellt.

Fließgewässermessstelle Grögling Brücke, Altmühl

Die Messstelle Grögling Brücke (Messstellen-Nr: 4173) befindet sich im Gewässer Altmühl in Bayern. Die Messstelle dient der Überwachung des chemischen Zustands, des Grundwasserstands in tieferen Grundwasserstockwerken.

LURCH - PFClean: Innovatives modulares System zur nachhaltigen Reduzierung von PFAS-Kontaminanten aus Boden und Grundwasser, Teilprojekt 3

Die Auswirkung extremer Schmelzereignisse auf die zukünftige Massenbilanz des grönländischen Eisschildes

Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.

Vertical partitioning and sources of CO2 production and effects of temperature, oxygen and root location within the soil profile on C turnover

For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.

Ecological-physical linkages in fluvial eco-hydromorphology

Recent discussions on the path eco-hydromorphic research has followed in the past decades highlight the need for greater ecological input into this field. Traditional approaches have been criticized for being largely correlation-based (Vaughan et al., 2009) ecological black boxes (Leclerc, 2005) and strongly relying on weak, disproven and/or outdated assumptions about the dynamics of stream biota (Lancaster & Downes, 2010). In recognition of this, process-oriented research aiming at elucidating and quantifying causal mechanisms has been proposed as a promising approach, though challenging, to study the relations between flow, morphodynamics and biological populations in running waters. In terms of levels of biological organization, it has been recognized that processes determining the response of aquatic biota to hydromorphological alteration occur mainly at the population level. In this sense, relating demographic rates to flow and morphology seems to offer great potential for progress (Lancaster & Downes, 2010). Thus, tapping into existing ecological knowledge (e.g., key patch approach for habitat networks, Verboom et al. 2001; metapopulation theory, Levins 1970; Hanski & Gaggiotti 2004, landscape-scale estimations of habitat suitability and carrying capacity, Reijnen et al. 1995; Duel et al. 1995 2003; population-level viability estimations; Akçakaya 2001; resource utilization scales, ONeill et al. 1988; habitat-use patterns, Milne et al. 1989) in order to link ecology to hydromorphology at a more fundamental level constitutes an important path towards better science and management.

Forschergruppe (FOR) 1701: Introducing Non-Flooded Crops in Rice-Dominated Landscapes: Impact on Carbon, Nitrogen and Water Cycles (ICON), ICON Coordination: Logistics, Information Management and Regional Development Pathways

SP0 is conceived for coordination of the ICON research, for internal and external scientific exchange as well as for investigating development pathways of land use on the Philippines. The SP0 team will supervise the project activities as a whole, including reporting and final synthesis. It will design the ICON homepage, establish and maintain a web-based database and present the project and its results in scientific forums and public media. It will organize collaboration and scientific exchange with international networks dealing with atmospheric processes, global carbon, nitrogen, water and energy cycles, and long-term ecological research. Specifically, SP0 is devoted to ensuring a sound integration of the ICON project within the scientific communities of Germany and SE Asia. Supported by the ICON local research coordinator based at and employed by IRRI, it will coordinate with the IRRI farm management to assist other ICON subprojects with field setup, routine data collection and technical backstopping.

Natural variation of flowering time due to cis-regulatory evolution of FLOWERING LOCUS T and its orthologs and paralogs in Brassica napus

In many plant species, FLOWERING LOCUS T and related proteins are the mobile signal that communicates information on photoperiod from the leaves to the shoots, where the transition to flowering is realized. FT expression is tightly controlled at the transcriptional level so that it is restricted to leaves, occurs only in appropriate photoperiods, and integrates ambient temperature and developmental cues, as well as information on biotic and abiotic stress. We previously established that FT transcription in the model plant Arabidopsis thaliana requires proximal promoter cis-elements and a distal enhancer, both evolutionary conserved among Brassicacea species. In addition, FT transcription is blocked prior vernalization in biannual accessions and vernalization-dependency of FT is controlled through a CArG-box located in the first intron that binds the transcriptional repressor FLOWERING LOCUS C (FLC). Chromatin-mediated repression by the Polycomb Group (PcG) pathway is required for photoperiod-dependent FT regulation and participates in FT expression level modulation in response to other cues.In this project, I propose to explore the available sequence data from the 1001 genome project in Arabidopsis to evaluate how often changes in regulatory cis-elements at FT have occurred and how these translate into an adaptive value. Allele-specific FT expression pattern will be measured in F1 hybrids of different accessions in response to varying environmental conditions. FT alleles that show cis-regulatory variation will be further analyzed to pinpoint the causal regulatory changes and study their effect in more detail. The allotetrapolyploid species Brassica napus is a hybrid of two Brassiceae species belonging to the A- and C-type genome, which are in turn mesopolyploid due to a genome triplication that occurred ca. 10x106 years ago. We will determine allele-specific expression of FT paralogs from both genomes of a collection of B. napus accessions. The plants will be grown in the field in changing environmental conditions to maximize the chance to detect expression variation of the paralogs. We will compare the contribution of the founder genomes to the regulation of flowering time and asses variation in this contribution. A particular focus will be to study the impact of chromatin-mediated repression on allele selection in B. napus.

1 2 3 4 5467 468 469