API src

Found 44 results.

Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria

Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.

Forschergruppe (FOR) 861: Cross-scale Monitoring: Biodiversity and Ecosystem Functions, Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change

Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).

Indonesian Throughflow variability on sub-orbital timescales during Marine Isotopes Stages (MIS) 2 and 3

This project will provide quantitative estimates of the flow of low-salinity warm water through the Indonesian Gateway on suborbital timescales during MIS 2 and 3 (focusing on Dansgaard Oeschger (D-O) oscillations) and will assess the Indonesian Throughflow (ITF) s impact on the hydrography of the eastern Indian Ocean and global thermohaline circulation during this critical interval of high climate variability. ITF fluctuations, associated with sea level change, temperature and salinity variations in the West Pacific Warm Pool (WPWP) strongly influence precipitation over Australia, the strength of the southeast-Asian summer monsoon, and the intensity of warm meridional currents in the Indian Ocean. We will test the hypothesis that increased ITF is associated with warm interstadials of MIS 3, whereas a strong reduction in ITF occurred during stadials. We will use as main proxies planktonic and benthic foraminiferal isotopes in conjunction with Mg/Ca temperature estimates and radiogenic isotopes (mainly Nd) as tracers of Pacific water masses along depth transects in the Timor Passage and the eastern Indian Ocean. This project will provide the paleoceanographic framework that will be crucial to validate and refine circulation models of D-O events and high-frequency climate variability on a global scale.

Sedimentstabilität und Sedimenttransportvorgänge, Watershed sediment yield modelling for data scarce areas; a case study, Awash River Basin, Ethiopia

The main goal of the research was to device an alternative solution for watershed sediment yield modelling for data scarce areas where the existing physically based models can not be applicable. Awash River Basin in Ethiopia was selected as case study area. GIS data on soil, land use, precipitation, temperature, stream flow and suspended sediment yield was collected from the Federal Ministry of Water Resources of Ethiopia (FMWRE) and from the National Metrology Service Agency (NMSA) offices. Soil data obtained from FMWRE and Food and Agriculture Organization (FAO) world soil 1974 database was used for derivation of the soil erodibility factor (ERFAC) estimation equation. The ratio of silt to sand and clay content was considered as the governing factor for soil erodibility in developing the ERFAC equation. The SWAT2005 model was selected for calibration and validation of stream flow and sediment yield. A sensitivity analysis was carried out to prioritize model calibration parameters. From the sensitivity analysis, curve number II (CN2), soilwater available to plants (SOL-AWC) and ground water base flow factor (ALPHA-BF) were selected as major stream flow calibration parameters. Similarly CN2, SURLAG (surface lag), slope and sediment routing factor (SPCON) were taken as the major sediment calibration parameters. Parameters related to the soil properties and river channel characteristics were given special attention during the model calibration. Eleven years (1990-2000) stream flow and sediment data were used for model calibration and six years data (2001-2006) were used for model validation. Calibration has been done at three gauging stations located in the Awash River basin. The statistical indicators, Coefficient of determination (R2), Nash-Sutclife efficiency (NSE), Root mean square error observations standard deviation (RSR were applied to evaluate the calibration and validation results. The values of these indicators were used to ratethe performance of the model. Watershed geomorphologic and topographic factors were extracted from the SWAT2005 watershed configuration, using a GIS tool and empirical equations. The relative importance of the factors was determined using Pearsons correlation coefficient based on the sediment yield output obtained from the SWAT2005 model calibration. The results show that, the sediment yield is highly correlated with stream flow, watershed area and watershed slope. Based on the identified parameters and the SWAT2005 model output, an alternative sediment yield estimation equation was derived and checked for its validity.

The impact of precipitation intensity and vegetation in the catchment area on autochthonous and allochthonous carbon transfer in stream biofilm food webs

In rivers and streams, biofilms are major sites of carbon cycling. They retain large amounts of dissolved organic carbon (DOC) and consequently are most important for the development of aquatic organisms on higher trophic levels. Besides autochthonous primary production, which supports heterotrophic production in biofilms, large amounts of organic carbon (OC) are derived from the surrounding catchment areas. More precipitation and more frequent and severe floods due to climate change will increase the transport of material into streams. Moreover, catchment characteristics including vegetation affect the transport and nature of DOC into aquatic ecosystems. Thus, carbon dynamics depend on how a stream is embedded within and interacts with its surrounding terrestrial environment. Despite its importance for carbon cycling it is not understood to which extent autochthonous or allochthonous carbon is used in biofilms and how increased addition of allochthonous carbon determines the relative use of both carbon sources. The combined application of 13C and 14C analysis on differently labeled DOC sources intend to answer to which extent DOC from different sources is used by bacteria in biofilms and finally transported to higher trophic levels. The use of 13C and 14C signals on carbon compounds and biomarkers is an excellent method to determine carbon sources for microorganisms and the transport of labeled material within the food web.

Continental-scale glacier variations in Europe (Alps, Scandinavia) and their connection to climate: past - present - future

The understanding of long-term, natural climate variability on different spatial and temporal scales is crucial to assess the recent climate change in a global to regional context. Since glaciers are considered as very important climate indicators, the understanding of past and present glacier variations is a key task for evaluating current climate change. Alpine and Scandinavian glaciers do react differently on variations of energy balance, temperature, precipitation and atmospheric circulation. This project investigates the importance of regional/continental temperature and precipitation as driving factors for glacier dynamics (retreats, advances) during the period from the Little Ice Age (LIA) to the early 21st century. Historical information from different archives will allow the reconstructions of glacier length fluctuations and mass balances from (western) Scandinavian glaciers and of a transect from western to the eastern Alps. Further, the sensitivity of Alpine and Scandinavian glaciers to variations of temperature and precipitation, including glacier advances and retreats covering half a millennium, will be studied by means of (non-linear) statistical approaches. A complementary method by reconstruction of mass balances using a continuity approach combined with a GIS-based energy balance model and gridded climate data will also be applied. Finally, the mass balances are extrapolated for the entire Alps and Scandinavia using a distributed energy balance model. This enables a synoptical analysis of European climate related to its significance for glacier fluctuations for the last half millennium. Moreover, the project will shed some light on the future glacier behaviour within the different mountain ranges of Scandinavia and the Alps using existing distributed mass balance and ELA models using different scenarios on the increase of temperature and the change of precipitation. We will also address the question of a changing perception of the glaciers in the Alps and Scandinavia for the last few centuries. The fear of threat by glaciers in early times has changed today to a fear of loss of glaciers as beautiful landscape by the current rapid change of climate. The long-term glacier length record for the Alps and Scandinavia will be stored in the existing database of the Global Terrestrial Network on Glaciers (GTN-G) as part of the World Glacier Monitoring Service (WGMS). A close cooperation between the Universities in Bern/Zurich and Bergen, Norway, will ensure a mutual enrichment of the scientific research. The project is coupled with a joint proposal submitted by the Bjerknes Centre for Climate Research in Bergen. Both projects base on a mutual collaboration of data and knowledge exchange. Finally, to inform the public about the consequences of the current glacier change is crucial, and glaciers are excellent indicators for the public perception of climate change in mountainous areas.

The role of intermediate sulfur species (ISS) for isotopic fractionation processes during abiotic and chemolithoautotrophic sulfide oxidation in a natural environment

Sulfur isotope fractionation (34S/32S) has been used since the late 1940s to study the chemical and biological sulfur cycle. While large isotope fractionations during bacterial sulfate reduction were used successfully to interpret, e.g., accumulation of sulfate in ancient oceans or the evolution of early life, much less is known about fractionation during sulfide oxidation. The fractionation between the two end-members sulfide and sulfate is commonly much smaller and inconsistencies exist whether substrate or product are enriched. These inconsistencies are explained by a lack of knowledge on oxidation pathways and rates as well as intermediate sulfur species, such as elemental sulfur, polysulfides, thiosulfate, sulfite, or metalloid-sulfide complexes (e.g. thioarsenates), potentially acting as 34S sinks.In the proposed project, we will develop a method for sulfur species-selective isotope analysis based on separation by preparative chromatography. Separation of Sn2- and S0 will be achieved after derivatization with methyl triflate on a C18 column, separation of the other sulfur species in an alkaline eluent on an AS16 column. Sulfur in the collected fractions will be extracted directly with activated copper chips (Sn2-, S0), or precipitated as ZnS (S2-) or BaSO4 and analyzed by routine methods as SO2. Results of this species-selective approach will be compared to those from previous techniques of end-member pool determinations and sequential precipitations.The method will be applied to sulfide oxidation profiles at neutral to alkaline hot springs at Yellowstone National Park, USA, where we detected intermediate sulfur species as important species. Determining 34S/32S only in sulfide and sulfate, our previous study has shown different fractionation patterns for two hot spring drainages with sulfide oxidation profiles that seemed similar from a geochemical perspective. The reasons for the different isotopic trends are unclear. In the present project, we will differentiate species-selective abiotic versus biotic fractionation using on-site incubation experiments with the chemolithotrophic sulfur-oxidizing bacteria Thermocrinis ruber as model organism. For selected samples, we will test whether 33S and 36S further elucidate species-selective sulfide oxidation patterns. We expect that lower source sulfide concentrations increase elemental sulfur disproportionation, thus increase redox cycling and isotope fractionation. We also expect that the larger the concentration of intermediate sulfur species, including thioarsenates, the larger the isotope fractionation. Following fractionation in species-selective pools, we will be able to clarify previously reported inconsistencies of 34S enrichment in substrate or product, elucidate sulfide oxidation pathways and rates, and reveal details about sulfur metabolism. Our new methodology and field-based data will be a basis for more consistent studies on sulfide oxidation in the future.

10Be Surface Exposure Dating in the Central Andes

Surface exposure dating has become an important tool for glacial and climate reconstructions in recent years. Especially in arid mountain areas, where organic material for radiocarbon dating is scarce, it is now possible to establish precise glacial chronologies from moraine deposits. In previous and ongoing SNF-projects, we have mapped moraines in many parts of the Central Andes. Only recently we started to apply surface exposure dating using in-situ 10Be in the Cordillera Real and Cochabamba, Bolivia (ca.15 S), and in the Andes of Central Chile/Argentina (30-40 S). We expect to get important insights into past changes of the tropical and the ek-tropical atmospheric circulation, i.e. the westerlies in the south and the South American Summer Monsoon in the north. First results from northern Chile (ca.30 S) show that glaciers advanced ca.30 ka BP and again between ca.14 and 12 ka BP. Moisture advection during the temperature minimum of the global LGM (last glacial maximum: 18-20 ka BP) seems to have been insufficient to allow considerable glacial extents. Preliminary exposure ages indicate that glaciers in the Cordillera Real and Cochabamba did not only advance during the LGM, triggered by temperature reductions, but also during the Late Glacial and the Early Holocene - likely due to increased precipitation during the 'Tauca' and 'Coipasa' wet phases (18-14 and 13-11 ka BP). Although our preliminary results are promising and show the high potential of surface exposure dating for Late Quaternary glacier and climate reconstruction, three aspects are evident that currently limit the paleoclimatic interpretations: I.) our preliminary chronologies in Bolivia are based on too few exposure ages II.) there is a gap of glacial chronologies in NW-Argentina and South Bolivia III.) up to now there is a complete absence of calibration sites in the Central Andes In order to further assess the role of temperature and the tropical and ek-tropical moisture sources, respectively, on the glaciation history in the Central Andes, we intend to apply surface exposure dating in six selected research areas in NW-Argentina (4) and Bolivia (2). In combination with the glacier-climate model, which has previously been developed in our working group, the exposure age chronologies will allow the quantitative reconstruction of temperature and precipitation conditions for the dated glacial stages. An important focus of the proposed project is to carry out calibration studies. This implies the necessity to independently date glacial deposits using for example radiocarbon dating of lake sediments. This is the only way to minimize the systematic uncertainties of the exposure ages and thus to confirm the paleoclimatic interpretations.

Modellkopplung und komplexe Strukturen, Model coupling and complex structures - Evaporation-driven transport and precipitation of salts in porous media

Degradation of the soil productivity due to salt accumulation (salinization) is a major concern in arid, semi-arid and coastal regions. Soil salinization is an old issue but encouraged irrigation practices have been rapidly increasing its intensity and magnitude in the past few decades. Studies have shown that excess of the irrigated water contributes significantly to evaporation from the bare soil surface and therefore to the salinization. In some parts of the world soil salinity has grown so acute that the agricultural lands have been abandoned. Evaporation salinization is mainly influenced by interaction between the flow and transport processes in the atmosphere and the porous-medium. On the atmosphere side, wind velocity, air temperature and radiation have a strong impact on evaporation. Furthermore, turbulence causes air mixing, influences the vapor transport and creates a boundary layer at the soil-atmosphere interface which indeed influences evaporation. On the porous-medium side, dissolved salt is transported under the influence of viscous forces, capillary forces, gravitational forces and advective and diffusive fluxes. The water either directly evaporates from the water-filled pores or it is transported to air due to diffusive processes. Continuous evaporation promotes salt accumulation and precipitation resulting in soil salinization. In the scope of this work we attempt to develop a model concept capable of handling flow, transport and precipitation processes related to evaporative salinization of an unsaturated porous-medium.

Schwerpunktprogramm (SPP) 1266: Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), Sub project: Dynamics of Mid-latitude/ Mediterranean climate during the last 150 ka: Black Sea /Northern Anatolian Paleoenvironmental Reconstructions (DynNAP)

As an isolated marginal sea, the Black Sea reacted particularly sensitive to paleoclimatic and paleoenvironmental changes and on both global and regional scales. In spite of its unique potential for high resolution paleoclimate reconstructions, late Quaternary sediment sequences of the Black Sea have only subordinately been studied with respect to paleoclimatic questions. This is somewhat surprising considering the key-geographic location of the Black Sea, where climate is strongly affected by two major climate systems; the North Atlantic/Siberian pressure system in winter and the Indian monsoon in summer. Highly-resolved and precisely dated paleoclimate records are crucial for reconstructing past regional climate variability, which can then be compared to paleoclimate records from the North Atlantic, Europe and the Indian monsoon domain. Several core sites in the Black Sea along the North-Anatolian rim can provide records of vegetation dynamics and changing precipitation regimes in the Anatolian hinterland as well as paleoceanographic/ paleolimnologic data of environmental changes in the marine/limnic Black Sea system itself. Uranium-series dated stalagmites from Sofular Cave located at the Black Sea coast in north-western Turkey will provide, as terrestrial counterpart, long complementary paleorecords of changes in vegetation and precipitation. When combined, such records will allow us to better quantify the far-field effects of North Atlantic climate and Indian monsoon during the Holocene, Eemian and the last two glacial/interglacial transitions (T1 and T2).

1 2 3 4 5