API src

Found 13 results.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, The long-term landscape evolution of the Lambert Rift - An integrated thermochronological approach

Advancing the Integrated Monitoring of Trace Gas Exchange between Biosphere and Atmosphere (ABBA)

Descriptions are provided by the Actions directly via e-COST. The global environment is a complex system with numerous intricately linked processes. The land surface-atmosphere interface plays a vital role in the functioning of the Earth System by controlling transfers of energy, momentum and matter. Thus, land atmosphere interactions are important factors controlling and affecting the Earth climate system. To increase and evaluate our understanding of the critical controlling processes, interactions and feedbacks between biosphere and atmosphere, long-term integrated interdisciplinary monitoring efforts are necessary. This COST Action creates a platform for analysis, harmonisation, and synthesis, assessment of future needs and further development of a European integrated monitoring program for comprehensive trace gas flux observations. The existing national and European flux monitoring communities work separately; networking by this COST Action creates added value and is invaluable to advance the continuity, scope and quality of flux monitoring. This Action advances the applicability of produced data in climate and Earth system modelling research, as well as in more operational short to medium term forecasting of weather and air quality. Current methodologies, operationality, dissemination, and coordination will also be addressed in this COST Action. Development of common methodologies, data management systems and protocols will increase the reliability, value and cost-efficiency of European flux observations. Keywords: land-atmosphere interactions, energy and biogeochemical fluxes, multi-species flux monitoring, assimilation in climate and weather forecasting models, climate and global change

Sonderforschungsbereich (SFB) 564: Nachhaltige Landnutzung und ländliche Entwicklung in Bergregionen Südostasiens; Sustainable Land Use and Rural Development in Mountainous Regions of Southeast Asia, B 3.1: Efficient water use of mixed cropping systems in watersheds of Northern Thailand highlands

Worldwide an important part of agricultural added value is produced under irrigation. By irrigation unproductive areas can be cultivated, additional harvests can be obtained or different crops can be planted. Since its introduction into Northern Thailand lychee has developed as one of the dominating cash crops. Lychee is produced in the hillside areas and has to be irrigated during the dry season, which is the main yield-forming period. Water therefore is mainly taken from sources or streams in the mountain forests. As nowadays all the available resources are being used do to increased production, a further increase in production can only be achieved by increasing the water use efficiency. In recent years, partial root-zone drying has become a well-established irrigation technique in wine growing areas. In a ten to fifteen days rhythm one part of the root system is irrigated while the other dries out and produces abscisic acid (ABA) a drought stress hormone. While the vegetative growth and thus labor for pruning is reduced, the generative growth remains widely unaffected. Thereby water-use efficiency can be increased by more than 40Prozent. In this sub-project the PRD-technique as well as other deficit irrigation strategies shall be applied in lychee and mango orchards and its effects on plant growth and yield shall be analyzed. Especially effects of this water-saving technology on the nutrient balance shall be considered, in order to develop an optimized fertigation strategy with respect to yield and fruit quality. As shown in preliminary studies, the nutrient supply is low in soils and fruit trees in Northern Thailand (e.g. phosphate) and even deficient for both micronutrients boron (B) and zinc (Zn). Additionally, non-adapted supply of nitrogen (mineralization, fertilization) can induce uneven flowering and fruit set. Therefore, improvement is necessary. For a better understanding of possible influence of low B and Zn supply on flowering and fruit set, mobility and retranslocation of both micronutrients shall be investigated for mango and lychee. Finally, the intended system of partial root-zone fertigation (PRF) shall guarantee an even flowering and a better yield formation under improved use of the limited resource water. As this modern technique, which requires a higher level of irrigation-technology, cannot be immediately spread among the farmers in the region, in a parallel approach potential users shall be integrated in a participative process for adaptation and development. Water transport and irrigation shall be considered, as both factors offer a tremendous potential for water saving. Local knowledge shall be integrated in the participatory process (supported by subproject A1.2, Participatory Research) in order to finally offer adapted technologies for application within PRF systems for the different conditions of farmers in the hillsides of Northern Thailand.

Fixed Point Open Ocean Observatories Network (FIXO3)

The Fixed point Open Ocean Observatory network (FixO3) seeks to integrate European open ocean fixed point observatories and to improve access to these key installations for the broader community. These will provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. Coordinated by the National Oceanography Centre, UK, FixO3 will build on the significant advances achieved through the FP7 programmes EuroSITES, ESONET and CARBOOCEAN. With a budget of 7.00 Million Euros over 4 years (starting September 2013) the proposal has 29 partners drawn from academia, research institutions and SMEs. In addition 14 international experts from a wide range of disciplines comprise an Advisory Board. The programme will be achieved through: 1. Coordination activities to integrate and harmonise the current procedures and processes. Strong links will be fostered with the wider community across academia, industry, policy and the general public through outreach, knowledge exchange and training. 2. Support actions to offer a) access to observatory infrastructures to those who do not have such access, and b) free and open data services and products. 3. Joint research activities to innovate and enhance the current capability for multidisciplinary in situ ocean observation. Open ocean observation is currently a high priority for European marine and maritime activities. FixO3 will provide important data on environmental products and services to address the Marine Strategy Framework Directive and in support of the EU Integrated Maritime Policy. The FixO3 network will provide free and open access to in situ fixed point data of the highest quality. It will provide a strong integrated framework of open ocean facilities in the Atlantic from the Arctic to the Antarctic and throughout the Mediterranean, enabling an integrated, regional and multidisciplinary approach to understand natural and anthropogenic change in the ocean.

Permafrost Carbon Cycle Observations and Modeling across multiple spatiotemporal scales (PERCCOM)

Permafrost ecosystems in the high Northern latitudes are estimated to store about 1700 Petagram of carbon, which is roughly 50% of the total global belowground carbon, or about double the amount currently contained in the global atmosphere. Future climate projections indicate a strong warming potential for these regions over the next century, which may significantly alter the biogeochemical processes governing the carbon cycle, and thus holds the potential to partly destabilize and release these enormous existing carbon reservoirs. At the same time, the database on carbon exchange fluxes between surface and atmosphere is sparse compared to the size of the region, and significant gaps exist concerning e.g. the coverage of specific landscape units, or observations during the cold season. As a consequence, many processes within the permafrost carbon cycle remain poorly understood, leading to large uncertainties in climate model simulations for this region. To close existing gaps in both flux Arctic flux databases and process understanding, integrated monitoring and modeling tools are required that provide insight into feedback mechanisms between permafrost ecosystems and climate change. This project will establish year-round observation systems in the permafrost region that integrate over multiple spatiotemporal scales to capture carbon flux variability from local to continental levels. The obtained information will be used to identify causal links between environmental drivers and patterns in carbon fluxes based on an integrated framework of atmospheric transport modeling, multivariate statistics, geostatistical inversion and biogeochemical process modeling. The resulting insights into biogeochemical mechanisms will help to improve process representation in modeling frameworks, with the overarching objective to reduce uncertainties in climate projections.

Energy and Water Fluxes at the Soil Atmosphere Interface of Water Repellent soils

Water repellency (WR) plays a significant role in a large number of soils all over the world. In many regions global warming will lead to drier land surfaces and thus, increasing the likeliness of actual water repellency for such soils. The hydrological effects of WR (surface runoff, water erosion, preferential flow) have been relatively well investigated in the last decades. However, its effect on the energy balance between soil and atmosphere has not been studied yet. We postulate that global warming does not only lead to an increase in WR of soils, but WR has an impact on the energy balance and thus, will lead to a feedback on global warming. In order to test our hypothesis, we want to determine all components of the energy- and water balance between soil and atmosphere for a strongly water repellent soil. As a reference we want to repeat the same measurements for the same soil, at which the WR has been suspended by application of a surfactants. While the laboratory studies aim to give insight into more principle processes, the lysimeter (bare and with plants) and field scale studies shall give information about integrated complex natural processes. The gained knowledge shall be implemented into a numerical simulation tool for modeling water and energy balances in order to predict the effects of WR under different atmospheric conditions and physical soil properties.

Biopolymers from syngas fermentation (SYNPOL)

SYNPOL aims to propel the sustainable production of new biopolymers from feedstock. SYNPOL will theretoestablish a platform that integrates biopolymer production through modern processing technologies, withbacterial fermentation of syngas, and the pyrolysis of highly complex biowaste (e.g., municipal, commercial,sludge, agricultural). The R&D activities will focus on the integration of innovative physico-chemical, biochemical,downstream and synthetic technologies to produce a wide range of new biopolymers. The integration will engagenovel and mutually synergistic production methods as well as the assessment of the environmental benefitsand drawbacks. This integrative platform will be revolutionary in its implementation of novel microwave pyrolytictreatments together with systems-biology defined highly efficient and physiologically balanced recombinantbacteria. The latter will produce biopolymer building-blocks and polyhydroxyalkanoates that will serve tosynthesize novel bio-based plastic prototypes by chemical and enzymatic catalysis. Thus, the SYNPOL platformwill empower the treatment and recycling of complex biological and chemical wastes and raw materials in asingle integrated process. The knowledge generated through this innovative biotechnological approach will notonly benefit the environmental management of terrestrial wastes, but also reduce the harmful environmentalimpact of petrochemical plastics. This project offers a timely strategic action that will enable the EU to lead worldwide the syngas fermentation technology for waste revalorisation and sustainable biopolymer production.

Wood2Chem: a computer aided platform to support the optimal implementation of wood-based bio refinery concepts

Wood2CHem: A computer-aided platform for developing bio-refinery concepts The bio-refinery concept offers the timber industry numerous development opportunities by integrating the production of value-added products made from biomass. The computer-aided platform Wood2CHem, developed within the scope of this project, will help to devise innovative means for promoting wood as a resource using a holistic and integrated approach. Background Due to its composition and complex chemical structure, wood can be used to make a large number of value-added products. The bio-refinery concept proposes to widen the range of products derived from wood while adopting a systemic approach aimed at promoting synergies in the production of various products by integrating different processes. It therefore offers an enormous development potential for the wood sector and opens up many new markets. The development of bio-refinery concepts poses a significant challenge. A large number of processes that integrate studies and technologies of innovative transformation need to be evaluated, integrated and optimised using a holistic approach before the most promising concepts can be identified. Aim By applying techniques from process engineering, energy integration and multi-objective optimisation, the consortium of the Wood2CHem project proposes to develop a computer-aided platform for systematically generating the most promising bio-refinery models and evaluating their thermodynamic, economic and environmental performance. This integrated platform will be developed by combining expertise in chemical engineering and process engineering. It is aimed at integrating technological developments of wood transformation and will be validated in industrial case studies. Significance The Wood2CHem project concerns the development of industrial concepts and will therefore primarily interest experts and engineers in the field who wish to develop integrated and innovative concepts for a rational promotion of wood. It will allow them to envisage and compare inegrated process chains. The platform will integrate all the actors wishing to assume the perspective of industrial ecology.

Quantifying and modelling pathways of soil organic matter as affected by abiotic factors, microbial dynamics, and transport processes (QUASOM)

Soils play a critical role in the coupled carbon-cycle climate system. However, our scientific understanding of the role of soil biological-physicochemical interactions and of vertical transport for biogeochemical cycles is still limited. Moreover the representation of soil processes in current models operating at global scale is crude compared to vegetation processes like photosynthesis. Hence, the general aim of this project is to improve our understanding of the key interactions between the biological and the physicochemical soil systems that are often not explicitly considered in current experimental and modeling approaches and are likely to influence the biogeochemical cycles for a large part of the terrestrial biosphere and thus have the potential to significantly impact the Earth System as a whole. This will be achieved through an approach that integrates new soil mesocosm experiments, field data from ongoing European projects and soil process modeling. In mesocosm tracer experiments the fate of fresh and autochthonous soil organic matter will be followed under varying temperature and moisture regimes in bacterial and fungal dominated soils and the hypothesis tested that transfer coefficients between soil organic matter pools are constant as implemented in current soil organic matter models. A new soil model structure will be developed that may explicitly account for the role of microbes and transport for soil organic matter dynamics. This will be supported by multiple-constraint model identification techniques, which allows testing and achieving model consistency with several observation types. An incorporation of such new soil module into a global dynamic vegetation model (DGVM) is foreseen.

Selective tribological optimisation of fluid kinetics and efficiency by laser surface structuring (STOKES)

Economic losings caused by wear and friction are still tremendous, just in Germany the losings are amounted to 100 bn € p.a., for Europe the losses exceed 400 bn €. Recent investigations have shown that laser manufactured structures can exert considerable influence on the tribological behaviour of surfaces. Besides hydrodynamic effects, which can improve friction, the ability of the structures to store lubricant lead to the maintenance of a lubrication film. As the state of the art techniques for laser surface structuring, particularly for tribological applications are mainly on an a R&D level, the production technology is in need of adequate manufacturing techniques. Main topics in this field of research are the inevitable pre- and post-treatment steps of current laser surface structuring techniques as well as the high process durations. The overall goal of this project is to solve both of those tasks by the development and realisation of a process technology, which enables the process chain integrated laser surface structuring of hydraulic parts. The project aims to cover a defined segment of a growing market and the technological achievements will offer the participating SMEs promising options of upgrading their product values. In addition to the direct improvement of single systems by the investigations on demonstration parts within the project, the high transferability of the technique to further products will enable the value enhancement of whole product classes. This offers the possibility of a strong enhancement of the total product output. A consortium has been established, which covers the laser supply and technique as well as the surface preparation technology. Manufacturers of hydraulic parts are members of the consortium in order to close the technological range. Two powerful RTD performers could be gained, which are specialised on the laser processing on the one hand and on tribology on the other hand.

1 2