Im Vordergrund des Projektes A2 steht die Entwicklung eines integrativen Rahmenkonzeptes zur Modellierung, mit dessen Hilfe Analysen und Simulationen räumlicher und zeitlicher Dynamiken von Transformationen, Adaptionen und Reorganisationen im Mensch-Umwelt-Verhältnis prähistorischer und archaischer Gesellschaften vorgenommen werden können. Dies wird auf der Basis der Daten und des Expertenwissens der SFB-Teilprojekte durchgeführt werden, um entsprechende Prozesse für den mediterranen und europäischen Raum modellieren zu können.
Anthropogenic global warming is regarded as a major threat to species and ecosystems worldwide. Predicting the biological impacts of future warming is thus of critical importance. The geological record provides several examples of mass extinctions and global ecosystem pertubations in which temperature-related stresses are thought to have played a substantial role. These catastrophic natural events are potential analogues for the consequences of anthropogenic warming but the Earth system processes during these times are still unexplored, especially in terms of their ultimate trigger and the extinction mechanisms. The Research Unit TERSANE aims at assessing the relative importance of warming-related stresses in ancient mass extinctions and at evaluating how these stresses emerged under non-anthropogenic conditions. An interdisciplinary set of projects will combine high-resolution geological field studies with meta-analyses and sophisticated analysis of fossil occurrence data on ancient (suspect) hyperthermal events to reveal the rate and magnitude of warming, their potential causes, their impact on marine life, and the mechanisms which led to ecologic change and extinction. Geochemistry, analytical paleobiology and physiology comprise our main toolkit, supplemented by biostratigraphy, sedimentology, and modelling.
Störungen des Kohlenstoffkreislaufs, sowohl natürlichen als auch anthropogenen Ursprungs, führen zu globale Erwärmung, Ozeanversauerung (OA) und Sauerstoffzehrung des Tiefenwassers. Natürliche Störungen des Kohlenstoffkreislaufs sind als Hauptursache von mindestens 4 von 5 Massensterben in der Erdgeschichte identifiziert wurden (z.B. Hönisch et al, 2009, Bijma et al.., 2013).Anthropogene Aktivitäten setzten CO2 zehnmal schneller frei als jedes andere Ereignis in den letzten 65 Mio. Jahren - vielleicht sogar während der letzten 300 Mio Jahren. Dies macht den heutigen CO2 Ausstoß zu einer der größten gesellschaftlichen Herausforderungen. Um die Auswirkungen der anthropogenen Störungen vorhersagen zu können, ist es zwingend erforderlich, die natürlichen Speicher und Dynamik des Kohlenstoffsystems zu verstehen. Dies erfordert die genaue Rekonstruktion der marinen Karbonatchemie für Zeiträume mit natürlichen Änderungen. In diesem Projekt wollen wir Veränderlichkeit am Übergang Glazial/Interglazial untersuchen weil die Änderungen der Karbonatchemie in der gleichen Größenordnung wie heute lagen. Da das Reservoir an anorganischem Kohlenstoff im Ozean ungefähr 60 mal größer ist als das der Atmosphäre, sind Rekonstruktionen der Veränderungen der Kohlenstoffsenke/-speicherung in der Tiefsee ein Schlüssel, um die glazialen/interglazialen Schwankungen im atmosphärischen CO2 - wie sie in Eisbohrkernen beobachtet werden - zu erklären. Prozesse im Südozean, wo der Großteil des Tiefenwassers ventiliert wird, spielen hierbei vermutlich eine zentrale Rolle. Man vermutet, dass der träge glaziale Süd Ozean mehr Kohlenstoff einlagern konnte, die Biologische Pumpe effektiver war und dass eine höhere Wassermassen-Stratifizierung das Entweichen von CO2 in die Atmosphäre verringert hat. Nach dem glazialen Maximum wird mit dem Rückzug des Meereises die Tiefsee Kohlenstoff - Pumpe wieder mit der Atmosphäre verbunden und führt zu einer erhöhten CO2-Freisetzung. Bislang ist dies, wenn auch von Indizienbeweisen unterstützt, nur eine Hypothese, zum Beweis bedarf es der Rekonstruktionen der glazialen/interglazialen variierenden Karbonatchemie. Dies ist das übergreifende Ziel unseres Antrags. Auf dem Weg zur Rekonstruktion des glazialen/interglazialen Kohlenstoffpools liegen 3 Zwischenziele: 1) Rekonstruktion von Oberflächenwasser-Tiefsee- CO2-Gradienten, glaziale Kohlenstoffspeicherung und deglaziale Entgasung mittels Bor-Isotopen und B/Ca fossiler Foraminiferen als Hauptvariablen. 2) Erstellen der ersten Kalibrationen von Bor-Isotopen und B/Ca Ratio für Cibicides wuellerstorfi (Tiefseeforaminifere) unter in-situ Druck. 3) Entwicklung von analytischen Methoden, welche die Analyse von einzelnen Foraminiferen Schalen erlauben.
Ziel ist es, Methoden zu entwickeln, die geeignet sind alte Sedimente in Trockengebieten verlässlich zu datieren: (i) Entwicklung einer Methode um mittels kosmogenen 10Be and 53Mn terrestrische Alter von Mikrometeoriten (aus Trockenseesedimenten und der Gipsstaubbedeckung der Landschaft) zu bestimmen, (ii) Entwicklung und Anwendung der 10Be/21Ne-Bedeckungalterdatierung an Grobsedimenten, (iii) Entwicklung einer kosmogenen 21,22Ne Methode um Halit (Steinsalz) in Oberflächensedimenten (z.B. fossile Salzseen) zu datieren. Erwartete erschließbare Altersbereiche: ca. 1 bis 22 Ma bzw. ca. 0.5 bis 10 Ma, für 53Mn und 10Be/21Ne Bedeckungsaltersdatierung, es gibt keine theoretische Obergrenze für 21,22Ne.
Der episodische Charakter der Urbanisierung auf der mongolischen Hochebene bietet uns die ideale Gelegenheit, die Auswirkungen der Städte auf die lokale Umwelt zu untersuchen und diachrone Veränderungen zu erforschen. In den weiten östlichen Steppen gibt es nur zwei mongolenzeitliche Städte: Karakorum - die Hauptstadt des vereinigten Mongolenreichs - und Khar Khul Khaany Balgas. Beide wurden von Grund auf neu errichtet und verkörpern den dramatischen Wandel von einer Pastoralwirtschaft zu einer Stadtlandschaft. Beide Stätten und ihr Siedlungsnetz sind von der modernen Urbanisierung und den landwirtschaftlichen Aktivitäten nahezu unberührt geblieben. Mit unserem Fokus auf Energie/Brennstoff, Nahrung, Baumaterialien - zusammen mit den für ihre Herstellung notwendigen Öfen - und Eisenproduktion einschließlich Schmelzöfen untersuchen wir die energieintensiven Materialflüsse mit den stärksten Auswirkungen auf die Umwelt. Ein weiterer Vorteil der vorgeschlagenen Vorgehensweise ist unser zweifach vergleichender Ansatz: Wir vergleichen nicht nur zwei Städte in zwei verschiedenen Tälern, sondern wir werden auch in einer diachronen Perspektive arbeiten (in Phase II). Um unsere Ziele zu erreichen und diese Hypothesen zu überprüfen, werden wir einen Multi-Proxy-Ansatz verwenden, der innovative Methoden aus einer Vielzahl von Disziplinen kombiniert: Archäologie, Archäozoologie, physische Anthropologie, Bioarchäologie, Bodenkunde, Paläoökologie, Paläoklimatologie, Fernerkundung und Geophysik. Eine große methodische Stärke unseres Netzwerks besteht darin, dass einzelne Aspekte von verschiedenen Disziplinen untersucht werden, die jeweils über eigenes Quellenmaterial verfügen. Dieselbe Frage wird aus verschiedenen Perspektiven betrachtet, was komplementäre Einsichten, aber auch die gegenseitige Kontrolle der erzielten Ergebnisse und ihrer Interpretationen ermöglicht. Gemeinsam werden wir den Verflechtungen zwischen Urbanismus, Wirtschaftspraktiken und Umwelt auf den Grund gehen. Um unsere interdisziplinäre Forschungsagenda zu systematisieren, werden wir den urbanen Metabolismus als konzeptionellen Rahmen verwenden und die Lebenszyklusanalyse in dieses Konzept integrieren, um den Weg der Güter von der physischen Gewinnung bis zum Endverbrauch und ihrer Entsorgung zu verfolgen. Dieses Forschungsdesign, bei dem eine Vielzahl von Proxies verwendet wird, um die oft gleichzeitig stattfindenden und sich überschneidenden, also miteinander verflochtenen Prozesse zu bewerten, ist in dieser Weltregion noch nicht durchgeführt worden und wird innerhalb und außerhalb unserer Disziplinen neue Maßstäbe setzen. Für eine effektive, thematisch fokussierte Zusammenarbeit richten wir vier Schwerpunktbereiche ein: A) Siedlungswesen, B) Nutzung von Non-Food-Ressourcen, C) Versorgung der Stadt, D) Umweltbedingungen. Diese Bereiche systematisieren die identifizierten Kernthemen, um die Verflechtungen von Wirtschaft, Stadt und Umwelt zu verdeutlichen.
In Projekt P2 werden wir die Chrolonolgie und Intensität der menschlichen Besiedelung der Bale-Mountains untersuchen und deren Auswirkungen auf die Entwaldung des Sanetti-Plateaus durch Feuer. Um diese Zusammenhänge zu untersuchen, werden wir uns auf folgende Punkte konzentrieren:1. In Zusammenarbeit mit Projekt P1 (Archäologie) werden wir Chronologie (mittels Radio-Kohlenstoff- und Optisch stimulierter Lumineszenz-Datierungen) und Art und Intensität der menschlichen Besiedelung untersuchen. Hierzu dienen Anthrosole unter Felsvorsprüngen und Höhlen als Archive und molekulare Marker als Landnutzungs-Indikatoren, wie z.B. Phosphor-Mapping (Birk et al. 2007), Benzolpolycarbonsäuren (Glaser et al. 1998) und Sterole und Gallensäuren als Fäkalbiomarker (Birk et al. 2012). 2. In Zusammenarbeit mit den Projekten P3 (Basis-Umweltdaten-Erhebung) und P7 (Erd-Käfer) werden wir typische Standortseigenschaften (Böden und Topographie) erhoben. Diese Daten erlauben uns die Rekonstruktion der ehemaligen Erica-Ausbreitung sowie von gegenwärtigen reellen und potenziellen Erica-Standorten. 3. Mit der gleichen Intension werden wir potenzielle molekulare Erica-Marker untersuchen wie z.B. Cutin und Suberin (Spielvogel et al. 2014), CuO lignin und Monosaccharide (Spielvogel et al. 2007; Eder et al. 2010), Phytolithe (Iriarte et al. 2010), n-Alkane, Stabilisotopen-Signaturen (Glaser und Zech 2005).Sollten keine Erica-spezifischen Biomarker gefunden werden, wenden wir Metabolomics-Techniken an, um zwischen Erica und Gras-Vegetation im Boden zu unterscheiden.4. Um mögliche Interaktionen zwischen der menschlichen Besiedelung und der zeitlichen und räumlichen Dynamik der Erica-Vegetation zu identifizieren, werden Sedimente von konkaven glazialen Ablagerungen auf dem Sanetti-Plateau mit den oben beschriebenen molekularen Markern untersucht. Wir gehen davon aus, dass die Chronologie und Intensität von Feuer die Dynamik der Erica-Vegetation bestimmt. In Zusammenarbeit mit P4 (Paleoökologie, Pollen) und P5 (Paleoclimatologie, 18O-Zucker) werden wir identifizieren, ob das Brennen der Erica-Standorte mehr durch die menschliche Besiedelung oder durch paläoklimatische Fluktuationen bestimmt wird.
Nach über 150 Jahren umfangreicher Forschung zur Evolution früher Hominini und ihrer Umweltanpassungen sind immer noch grundlegende Fragen der Stammesgeschichte unserer Vorfahren offen. So sind die Ernährungsweisen früher (größer als 2.0 Ma) Homo sp. und Paranthropus boisei und deren Entwicklung sowie ihre Adaption an ökologische und klimatische Bedingungen noch nicht geklärt. Dies ist auf die extrem seltenen älter als 2 Ma datierten Fossilfunde von Homo und P. boisei zurückzuführen. Des Weiteren ist wenig über die Paläoökologie von Hominini-Fundstellen im Süden des Ostafrikanischen Grabens (EAR), nahe des Überganges von großen Grass- zu Baumsavannen bekannt. In Ostafrika beschränken sich Rekonstruktionen der Ernährungsweisen von Homo und Paranthropus boisei auf Fossilien aus dem östlichen Ast des EAR. Isotopendaten deuten im Turkana Becken vor ca. 2 Ma auf zwei Gruppen mit deutlichen Unterschieden in ihrer Nahrungsaufnahme: P. boisei ernährte sich vorwiegend von C4-Biomasse, während Homo vermehrt C3-Ressourcen konsumierte. Die Paläoökologie dieser Region war durch gleichbleibend heiße Temperaturen mit einer Entwicklung zunehmend offener C4-Grasslandschaften, der heutigen Somali-Masai Savanne, geprägt. Im Gegensatz zu den gut untersuchten Bereichen in Kenia, werden im Rahmen dieses Projekts zwei Hominini-Fundstellen im wenig untersuchten südlichen Teil des EAR analysiert: (1) die Plio-Pleistozänen Chiwondo/Chitimwe Sedimente (Karonga Becken, N Malawi), welche Fossilien von H. rudolfensis und P. boisei (ca. 2.4 Ma) führen, und damit die einzige Hominini-Lokalität in der heutigen bewaldeten Sambesischen Savanne sind, und (2) die Pleistozänen mit H. erectus (ca. 0.7 Ma) assoziierten Manyara Ablagerungen (Manyara Becken, N Tansania) knapp nördlich des Übergangs zur heutigen C4-dominierten Somali-Masai Grasssavanne,.Das Projekt profitiert von exzellenten, auf Geochemie spezialisierten Einrichtungen, um die Adaption früher Hominini zu untersuchen: innovative Methoden der Clumped Isotope Geochemie und U-Pb-Datierung werden ebenso angewandt wie etablierte d13C, d18O und dD Isotopenmessungen. Besonders hervorzuheben sind auch die zur Verfügung stehenden Proxys: die Senckenberg-Sammlungen, die auch einen der ältesten Funde der Gattung Homo bereitstellen, ICDP Bohrkerne vom Lake Malawi, und im Verlauf des Projektes neu gewonnene Proben. Das Projekt beinhaltet drei Arbeitspakete: I) Ernährung von H. rudolfensis und P. boisei, II) Plio-Pleistozäne Paläotemperaturen des südostafrikanischen Savannen-Ökosystems und III) Plio-Pleistozäne Paläovegetation der Manyara Sedimente. Die Ergebnisse ermöglichen einen umfassenden und innovativen Vergleich von Paläotemperaturen, Ökosystem-Strukturen und früher Hominini-Ernährung über eine Baum- und Grasslandsavannengrenze in Südostafrika hinweg. Der notwenige geochronologische Rahmen wird durch U-Pb-Datierungen geschaffen; dies werden die ersten absoluten Alter für die bisher nur grob datierten Karonga Becken Sedimente sein
Traditionelles Forschungsobjekt im kontinentalen Jungpaläozoikum sind Feuchtbiotope in Graufazies. Im Unterperm finden sich dort jedoch nur konservative, verarmende Biozönosen karbonischen Charakters. Moderne, zum Mesozoikum überleitende Faunen- und Floren entwickeln sich in trockeneren Arealen der Rotfazies bzw. instabilen Environments. Das schmale, nur 22 x 6 km große Döhlen-Becken, ein syn-depositional basin im Bereich des Elbe-Lineament, liefert mit der direkten Nachbarschaft von 'lowland', 'upland' und 'extra-basinal' Biotopen ein singuläres Forschungsobjekt für die Interaktion von Klima, Geomorphologie und Vulkanismus im Kontext zu globalen Klimaprozessen und der Evolution von Floren und Faunen im Übergang zum Mesophytikum/Mesozoikum. Die zu untersuchenden, von vulkanischen Aschefällen (bis zu 50 Prozent der Sedimente) dominierten Bio- und Lithofaziesmuster sollen zusammen mit geochemischen Signalen in Siliciten, Kohlen und Bitumina Aufschluss über obige Interaktion zwischen abiotischen und biotischen Faktoren und Prozessen geben. Schwerpunkt sind Genese und Fossilführung von Pyroklastiten und Cherts.
Sauerstoffisotopenanalysen and Conodontenapatit belegen eine dramatische Erwärmung der niedrigen Breiten von bis 10° C vom späten Perm in die frühe Trias. Diese während fast der gesamten Frühen Trias anhaltende klimatische Erwärmung kann als Folge der Förderung der Sibirischen Trapp Basalte und daran geknüpfter Prozesse und damit als Konsequenz einer dramatisch erhöhten atmosphärischen CO2 Konzentration gesehen werden. Der Temperaturanstieg, eine hohe atmosphärische CO2 Konzentration sowie weitverbreitete anoxische Bedingungen in den Weltozeanen (Deadly Trio) könnten zu dem Massensterben im späten Perm geführt und die verzögerte Erholung der Ökosysteme nach der Perm-Trias Krise bedingt haben. Allerdings gibt es für diesen kritischen Zeitraum in der Erdgeschichte derzeit keine Proxy-Rekords für die atmosphärische CO2 Konzentration und die Temperaturentwicklung in den mittleren bis höheren Paläobreiten. Das angestrebte Forschungsprojekt hat zum Ziel, die atmosphärische CO2 Konzentration sowie die Temperaturgeschichte in den mittleren bis höheren Breiten für den Zeitabschnitt des späten Perms bis frühe Mittlere Trias zu rekonstruieren. Kohlenstoffisotopenanalysen an karbonatischen Paläoböden sollen zur Rekonstruktion der atmosphärischen CO2 Konzentrationen genutzt werden. Die Temperaturgeschichte in den mittleren bis höheren Breiten soll mittels Sauerstoffisotopenanalysen an biogenem Apatit ermittelt werden. Die erarbeiteten pCO2 und Paläotemperaturrekords sollen mit paläobiologischen Diversitätsmustern der niedrigen und hohen Breiten verglichen werden, um den Einfluss von zwei Komponenten des Deadly Trios (Temperatur, pCO2) auf die Selektivität in der Faunenentwicklung (niedrige vs. hohe Breiten) beschreiben zu können.
Der episodische Charakter der Urbanisierung auf der mongolischen Hochebene bietet uns die ideale Gelegenheit, die Auswirkungen der Städte auf die lokale Umwelt zu untersuchen und diachrone Veränderungen zu erforschen. In den weiten östlichen Steppen gibt es nur zwei mongolenzeitliche Städte: Karakorum - die Hauptstadt des vereinigten Mongolenreichs - und Khar Khul Khaany Balgas. Beide wurden von Grund auf neu errichtet und verkörpern den dramatischen Wandel von einer Pastoralwirtschaft zu einer Stadtlandschaft. Beide Stätten und ihr Siedlungsnetz sind von der modernen Urbanisierung und den landwirtschaftlichen Aktivitäten nahezu unberührt geblieben. Mit unserem Fokus auf Energie/Brennstoff, Nahrung, Baumaterialien - zusammen mit den für ihre Herstellung notwendigen Öfen - und Eisenproduktion einschließlich Schmelzöfen untersuchen wir die energieintensiven Materialflüsse mit den stärksten Auswirkungen auf die Umwelt. Ein weiterer Vorteil der vorgeschlagenen Vorgehensweise ist unser zweifach vergleichender Ansatz: Wir vergleichen nicht nur zwei Städte in zwei verschiedenen Tälern, sondern wir werden auch in einer diachronen Perspektive arbeiten (in Phase II). Um unsere Ziele zu erreichen und diese Hypothesen zu überprüfen, werden wir einen Multi-Proxy-Ansatz verwenden, der innovative Methoden aus einer Vielzahl von Disziplinen kombiniert: Archäologie, Archäozoologie, physische Anthropologie, Bioarchäologie, Bodenkunde, Paläoökologie, Paläoklimatologie, Fernerkundung und Geophysik. Eine große methodische Stärke unseres Netzwerks besteht darin, dass einzelne Aspekte von verschiedenen Disziplinen untersucht werden, die jeweils über eigenes Quellenmaterial verfügen. Dieselbe Frage wird aus verschiedenen Perspektiven betrachtet, was komplementäre Einsichten, aber auch die gegenseitige Kontrolle der erzielten Ergebnisse und ihrer Interpretationen ermöglicht. Gemeinsam werden wir den Verflechtungen zwischen Urbanismus, Wirtschaftspraktiken und Umwelt auf den Grund gehen. Um unsere interdisziplinäre Forschungsagenda zu systematisieren, werden wir den urbanen Metabolismus als konzeptionellen Rahmen verwenden und die Lebenszyklusanalyse in dieses Konzept integrieren, um den Weg der Güter von der physischen Gewinnung bis zum Endverbrauch und ihrer Entsorgung zu verfolgen. Dieses Forschungsdesign, bei dem eine Vielzahl von Proxies verwendet wird, um die oft gleichzeitig stattfindenden und sich überschneidenden, also miteinander verflochtenen Prozesse zu bewerten, ist in dieser Weltregion noch nicht durchgeführt worden und wird innerhalb und außerhalb unserer Disziplinen neue Maßstäbe setzen. Für eine effektive, thematisch fokussierte Zusammenarbeit richten wir vier Schwerpunktbereiche ein: A) Siedlungswesen, B) Nutzung von Non-Food-Ressourcen, C) Versorgung der Stadt, D) Umweltbedingungen. Diese Bereiche systematisieren die identifizierten Kernthemen, um die Verflechtungen von Wirtschaft, Stadt und Umwelt zu verdeutlichen.
| Origin | Count |
|---|---|
| Bund | 304 |
| Wissenschaft | 24 |
| Type | Count |
|---|---|
| Daten und Messstellen | 23 |
| Förderprogramm | 304 |
| unbekannt | 1 |
| License | Count |
|---|---|
| offen | 327 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 252 |
| Englisch | 139 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Datei | 16 |
| Dokument | 4 |
| Keine | 213 |
| Webseite | 92 |
| Topic | Count |
|---|---|
| Boden | 269 |
| Lebewesen und Lebensräume | 270 |
| Luft | 203 |
| Mensch und Umwelt | 328 |
| Wasser | 190 |
| Weitere | 325 |