Das Projekt "Analyse und Verwertung des Samenoels von Jatropha curcas" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Pharmazeutische Biologie durchgeführt. Die Euphorbiacee Jatropha curcas produziert oelreiche Samen. Dieses Oel laesst sich in Dieselmotoren verbrennen. Daher wird die Oelgewinnung aus Jatrophasamen im Rahmen eines GTZ-Projektes in Afrika und Suedamerika getestet. Neben den Lipiden enthaelt das Oel Phorbolester, die hautreizend und cocareinogen wirken. Wir haben die chemische Zusammensetzung zu untersuchen und die Moeglichkeit zu klaeren, wie diese Substanzen aus dem Oel entfernt werden koennen. Die Mutagenitaet der Phobolesters sowie ihr moeglicher Einsatz als pflanzliches Insektizid wird in diesem Projekt erarbeitet. Eine weitere Frage ist die Analyse und Desaktivierung der in den Samen vorkommenden Lektine. Die Wirkung des Oels und der Phorbolester auf Schnecken, die den Erreger der Bilharziose uebertragen, wird gemeinsam mit dem Institut fuer Tropenhygiene bearbeitet.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Technische Universität München, School of Engineering and Design, Lehrstuhl für Bioverfahrenstechnik durchgeführt. Landwirtschaftliche Abfallströme, die reich am pflanzlichen Zellwandbaustein Pektin sind, sind der Rohstoff für die geplante mikrobielle Biokonversion. Insbesondere Reste aus der Obst- und Gemüseverarbeitung, wie z.B. Apfeltreber und Zuckerrübenschnitzel, eignen sich dafür. Der darin enthaltene Hauptzuckerbestandteil, die D-Galakturonsäure, soll in einem zweistufigen Prozess mit Hilfe optimierter Pilzstämme erst herausgelöst, und dann gezielt zu vielseitig einsetzbaren Plattformchemikalien - sog. Polyhydroxysäuren - funktionalisiert werden. Diese ähneln in ihrer Struktur derzeit konventionell hergestellten Säuerungsmitteln, Stabilisatoren und Backtriebmitteln der Lebensmittel- und Kosmetikindustrie, versprechen aber neue, funktionelle Eigenschaften zu besitzen und haben durch die nachhaltige Produktionsweise aus nachwachsenden Rohstoffen einen ökologischen Mehrwert. Für die erfolgreiche Umsetzung der Projektidee arbeiten drei universitäre Gruppen mit assoziierten industriellen Partnern zusammen und bündeln ihre Expertisen. Im ersten Schritt sollen die Pektin-abbauenden Enzyme zur Verflüssigung der Biomasse mit Aspergillus niger hergestellt werden, dessen Produktionseffizienz mithilfe gezielter gentechnologischer Modifikation (Crispr/Cas9) optimiert werden soll. Unterstützt wird dies durch Omics-Technologien, um die entsprechenden regulatorischen Netzwerke besser zu verstehen. Die freiwerdenden Zucker sollen dann in einem zweiten Schritt in modifizierten Hefestämmen zu den Zielmolekülen umgebaut werden. Hierzu ist eine innovative Co-Fermentation von Zuckern und Zuckeralkoholen geplant, um eine ausgeglichene Redoxchemie des Stoffwechsels gewährleisten zu können. Diese Stammentwicklungen sind in die Verfahrensentwicklung integriert. Ziel ist der modellgestützte Aufbau einer verfahrenstechnischen Prozesskette von den optimierten biokatalytischen Prozessschritten bis zur Produktaufarbeitung, um die grundlegenden Daten für industrielle Umsetzungen bereit stellen zu können.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Molekulare Biowissenschaften durchgeführt. Landwirtschaftliche Abfallströme, die reich am pflanzlichen Zellwandbaustein Pektin sind, sind der Rohstoff für die geplante mikrobielle Biokonversion. Insbesondere Reste aus der Obst- und Gemüseverarbeitung, wie z.B. Apfeltreber und Zuckerrübenschnitzel, eignen sich dafür. Der darin enthaltene Hauptzuckerbestandteil, die D-Galakturonsäure, soll in einem zweistufigen Prozess mit Hilfe optimierter Pilzstämme erst herausgelöst, und dann gezielt zu vielseitig einsetzbaren Plattformchemikalien - sog. Polyhydroxysäuren - funktionalisiert werden. Diese ähneln in ihrer Struktur derzeit konventionell hergestellten Säuerungsmitteln, Stabilisatoren und Backtriebmitteln der Lebensmittel- und Kosmetikindustrie, versprechen aber neue, funktionelle Eigenschaften zu besitzen und haben durch die nachhaltige Produktionsweise aus nachwachsenden Rohstoffen einen ökologischen Mehrwert. Für die erfolgreiche Umsetzung der Projektidee arbeiten drei universitäre Gruppen mit assoziierten industriellen Partnern zusammen und bündeln ihre Expertisen. Im ersten Schritt sollen die Pektin-abbauenden Enzyme zur Verflüssigung der Biomasse mit Aspergillus niger hergestellt werden, dessen Produktionseffizienz mithilfe gezielter gentechnologischer Modifikation (Crispr/Cas9) optimiert werden soll. Unterstützt wird dies durch Omics-Technologien, um die entsprechenden regulatorischen Netzwerke besser zu verstehen. Die freiwerdenden Zucker sollen dann in einem zweiten Schritt in modifizierten Hefestämmen zu den Zielmolekülen umgebaut werden. Hierzu ist eine innovative Co-Fermentation von Zuckern und Zuckeralkoholen geplant, um eine ausgeglichene Redoxchemie des Stoffwechsels gewährleisten zu können. Diese Stammentwicklungen sind in die Verfahrensentwicklung integriert. Ziel ist der modellgestützte Aufbau einer verfahrenstechnischen Prozesskette von den optimierten biokatalytischen Prozessschritten bis zur Produktaufarbeitung, um die grundlegenden Daten für industrielle Umsetzungen bereit stellen zu können.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung, Umwelt - Holzforschung München, Professur für Holz- und Bioprozesse durchgeführt. Landwirtschaftliche Abfallströme, die reich am pflanzlichen Zellwandbaustein Pektin sind, sind der Rohstoff für die geplante mikrobielle Biokonversion. Insbesondere Reste aus der Obst- und Gemüseverarbeitung, wie z.B. Apfeltreber und Zuckerrübenschnitzel, eignen sich dafür. Der darin enthaltene Hauptzuckerbestandteil, die D-Galakturonsäure, soll in einem zweistufigen Prozess mit Hilfe optimierter Pilzstämme erst herausgelöst, und dann gezielt zu vielseitig einsetzbaren Plattformchemikalien - sog. Polyhydroxysäuren - funktionalisiert werden. Diese ähneln in ihrer Struktur derzeit konventionell hergestellten Säuerungsmitteln, Stabilisatoren und Backtriebmitteln der Lebensmittel- und Kosmetikindustrie, versprechen aber neue, funktionelle Eigenschaften zu besitzen und haben durch die nachhaltige Produktionsweise aus nachwachsenden Rohstoffen einen ökologischen Mehrwert. Für die erfolgreiche Umsetzung der Projektidee arbeiten drei universitäre Gruppen mit assoziierten industriellen Partnern zusammen und bündeln ihre Expertisen. Im ersten Schritt sollen die Pektin-abbauenden Enzyme zur Verflüssigung der Biomasse mit Aspergillus niger hergestellt werden, dessen Produktionseffizienz mithilfe gezielter gentechnologischer Modifikation (Crispr/Cas9) optimiert werden soll. Unterstützt wird dies durch Omics-Technologien, um die entsprechenden regulatorischen Netzwerke besser zu verstehen. Die freiwerdenden Zucker sollen dann in einem zweiten Schritt in modifizierten Hefestämmen zu den Zielmolekülen umgebaut werden. Hierzu ist eine innovative Co-Fermentation von Zuckern und Zuckeralkoholen geplant, um eine ausgeglichene Redoxchemie des Stoffwechsels gewährleisten zu können. Diese Stammentwicklungen sind in die Verfahrensentwicklung integriert. Ziel ist der modellgestützte Aufbau einer verfahrenstechnischen Prozesskette von den optimierten biokatalytischen Prozessschritten bis zur Produktaufarbeitung, um die grundlegenden Daten für industrielle Umsetzungen bereit stellen zu können.
Das Projekt "Teilvorhaben: Uni Bremen" wird vom Umweltbundesamt gefördert und von Jacobs University Bremen GmbH, School of Engineering and Science durchgeführt. Ziel des geplanten Kooperationsvorhabens ist die Entwicklung von Technologien, die für die Umsetzung in einer Bioraffinerie geeignet sind, für die Umwandlung von pektinreichen Rückständen zu Kraftstoffen und Chemikalien. Große Mengen pektinreicher Biomasse, wie Zitrusschale und Zuckerrübenschnitzel, werden weltweit produziert. In Brasilien, der weltweit größte Exporteur von Orangensaft, werden 12 Millionen Tonnen Zitrusfruchtschalen jährlich produziert. Weltweit werden etwa 20 Millionen Tonnen Zuckerrübenschnitzel produziert. Sowohl getrocknete Zuckerrübenschnitzel, als auch getrocknete Zitrusschalen werden derzeit als Viehfutter verwendet, aber mehrere Zuckerfabriken und Orangensaftfabriken legen sie einfach ab und lassen sie verrotten, weil die Energiekosten für das Trocknen und Pelletieren zu hoch sind. Abfälle von Zitrusfrüchten (CPW) werden in diesem kollaborativen Vorschlag behandelt. Diese werden in großen Mengen von der Orangensaft-Industrie von Brasilien, Argentinien und Kolumbien, sondern auch in Südeuropa produziert. Wir entwickeln ein Bioraffineriekonzept, bei dem die Gewinnung von hochwertigen Verbindungen und die Umwandlung der pektinreichen Biomasse zu Kraftstoffen oder Chemikalien das Ziel darstellen. Im Ergebnis erwarten wir unterschiedliche Ansätze für die Valorisierung von CPW zu präsentieren. Eine technoökonomische Bewertung der verschiedenen Ansätze wird vorgestellt. Alle Ansätze sind neuartig und innovativ. Die Valorisierung dieses Abfallproduktes ist nicht nur wirtschaftlich wertvoll, sondern schafft auch Beschäftigung in ländlichen Gebieten, in denen sich viele der Orangensaftindustrien befinden.
Das Projekt "Teilvorhaben 2" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Technische Chemie durchgeführt. Primäres Ziel des Projektes ist die Entwicklung eines Verfahrens zur stofflichen Verwertung von Hemicellulosen (HC). In Bioraffinerien beschränkt sich deren Verwertung derzeit weitestgehend auf die Erzeugung von Dampf, Strom oder Ethanol. Für letzteres existieren noch technische Herausforderungen damit sich dieses Vorhaben lohnt. Um HC erfolgreich zu Nutzen, ist eine gezielte Abtrennung und stoffliche Verwertung von HC ein essentieller Weg. Ziel ist es, HC beim Biomasseaufschluss möglichst vollständig von der Cellulose zu trennen und so zu isolieren, damit sie einer separaten stofflichen Nutzung zugefügt werden kann. Mögliche Einsatzgebiete der isolierten HC (Flotationsmittel, Flockungsmittel, Flammschutzmittel und Papieradditiv) sollen untersucht werden. Aussichtsreich ist die Anwendung der Flotationsmittel, wo derivatisierte Stäke als Produkt bereits Anwendung findet. 1) Charakterisierung der Stoffströme 2) Aufschluss, Isolierung und Reinigung von Hemicellulose (HC) aus Weizenstroh und Haferspelzen 3) Aufschluss, Isolierung und Reinigung von HC und Pektin aus Rübenschnitzel 4) Modifizierung und Derivatisierung der HC für den Flotationsprozess und Testung der Substanzen im Labormaßstab 5) Herstellung und Testung von Flammschutzmitteln auf Basis von HC und Pektinen 6) Herstellung und Testung von Papieradditiven auf Basis von HC 7) Machbarkeits- und Wirtschaftlichkeitsstudie.
Das Projekt "Conversion of environmentally-unfriendly onion waste into food ingredients" wird vom Umweltbundesamt gefördert und von Herbstreith und Fox - Pektin-Fabriken Neuenbürg durchgeführt. Objective: The objectives of the project are: - to reduce the environmental impact of onion waste disposal by converting - waste streams into useful products resulting in low-wastood production; - to optimise existing, and to develop new food processes for extracting and - ailoring onion flavours; adapt for extraction from waste; - to develop combination processes for the extraction and modification of fructo-oligosaccharides, gelling pectins and dietary fibre (DF) from onion waste; - to exploit the unique properties of onion parenchyma for producing fibre supplements suitable for texturally-sensitive foods. General Information: Over 450,000 tonnes of onion waste are produced annually in Europe mainly from onion processing industries in the UK, Holland, Spain, Italy. The waste makes poor fodder. Disposal commonly involves landfill (cost of 5-40 ECU per tonne) which is not suitable , environmentally, due to the rapid growth of phytopathogens e.g. Sclerotium cepivorum (white rot). Hence, there is considerable industrial and political pressure to convert the waste into useful products. This project will bring together European partners from the Food industry (SME's), Research Institutes and Universities to develop means for exploiting onion waste for the extraction of high quality, and commercially valuable onion oil, fructoligosaccharides (FOS), gelling pectins and low-lignin-dietary fibre for se in texturally sensitive foods. Onion waste will be provided by partner 4 and 6 (SME's) and fractionated by partner 2. Onion flavour compounds, for which there is a considerable market, will be enhanced by tailoring the biochemistry of flavour release (P1) and extracted by steam distillation (P6) and supercritical CO2 (P2) (so far untried on onions). It is estimated that oil extraction will give a minimum value of 30 ECU/ton waste P6. In addition to containing significant quantities of fructo-oligosaccharides, the flavour-free residue will comprise mainly cell wall material. Unusually for fruit and vegetables, this will be almost devoid of lignin and phenolics making it ideal for the production of a range of dietary fibre supplements suitable for use in fibre-poor, texturally-sensitive foods including dairy products (SME sub-contractor S1), drinks, sauces and desserts (P5). There is a lack of commercially available DF for such products (S1). Such supplementation will help to enhance ingestion of functionally-important DF throughout the EU. Modification of the crude fibre will involve physico-chemical (e.g. extrusion (P1)) and biochemical treatments (P2, S2), individually and in combination processes. Process development will rely on feedback of rheological behaviour of the product in food (P5) and physicochemical properties of DF (P3). Additional gelling pectins will be extracted from onion skins (further 70 ECU per ton waste (P1)). ... Prime Contractor: BBSRC Institute of Food Research; Norwich; UK.
Das Projekt "ERA-NET Euro TransBio-11: ALFAPRO-Nutzung und Verwertung von Alfalfa außerhalb der klassischen Zuchtindustrie" wird vom Umweltbundesamt gefördert und von VivaCell Biotechnology GmbH durchgeführt. Alfalfa ist die am häufigsten angebaute Leguminosen in der Welt, aber wird bislang fast ausschließlich in der Zuchtindustrie verwendet. Alfalfa besitzt die Fähigkeit, Stickstoff und organische Substanz im Boden zu fixieren, dabei die Stabilität des Bodens zu verbessern und der Anbau hat wesentlich geringere negative Auswirkungen auf die Umwelt als beispielsweise der von Soja. Das ultimative Ziel dieses Projektes ist es, die Proteinderivate von Soja durch neue Proteinderivate von Alfalfa in vielen Anwendungen der Lebensmittelindustrie zu ersetzen. Das Projekt soll die Instantaneous Controlled Pressure Drop Technologie mit milden Extraktionstechniken in einer biochemisch integrierten Pilotanlage kombinieren, um mit hoher Effizienz eine breite Palette industriell relevanter Substanzen (Proteine für die Nahrung, Nutraceutical, funktionelle Lebensmittelzutaten, Pektin, Biotreibstoff und Faserstoffe für Bau- und Papierindustrie) zu gewinnen. Das Projekt zielt darauf ab, mindestens 70% der Proteinfraktion von Alfalfa für Anwendungen mit hohem Mehrwert zu gewinnen und eine 20%ige Reduktion des Treibhauspotentials im Vergleich zu Protein aus Sojabohnen zu realisieren. Das kombinierte Verfahren wird in der Lage sein, alle eingesetzten Chemikalien zu recyceln und kann wirtschaftlich selbsterhaltend betrieben werden. Es stellt ein Null-Abfall-Verfahren da, welches mehr als 95% der behandelten Luzerne in Form von festen Fraktionen für Anwendungen außerhalb der Zuchtindustrie nutzbar macht.
Das Projekt "Entwicklung eines Verfahrens zur verbesserten Entsorgung von leichtgebundenen mineralischen Asbestfasern und Staeuben durch Einsatz biologischer Quellstoffe" wird vom Umweltbundesamt gefördert und von Universität Gesamthochschule Duisburg, Institut für Umwelttechnologie und Umweltanalytik durchgeführt. 1996 konnte das vom BMWi ueber die AiF gefoerderte Forschungsvorhaben 'Verfahren zur verbesserten Entsorgung von leichtgebundenen mineralischen Asbestfasern und Staeuben durch Einsatz biologischer Quellstoffe' erfolgreich abgeschlossen werden. Entsprechend der Zielsetzung wurde ein Verfahren zur Reduzierung der Faserfreisetzung ueber eine zuverlaessige Immobilisierung der Fasern in einer elastischen Matrix entwickelt. Das Verfahren stellt eine Erweiterung der klassischen Nasssanierung dar. Der Unterschied besteht in dem verwendeten Penetrationsmittel, das 'airless' auf das Objekt aufgetragen wird. Anstatt reinen Wassers finden waessrige biologische Quellstoffloesungen Verwendung. Je nach Anwendungsfall eignen sich Quellstoffe auf der Basis von Gelatine, Pektin, Carrageen oder Staerke mit chemischen Zuschlagstoffen. Die Quellstoffloesungen dringen in die poroesen Schichten ein und polymerisieren zu einem Gel, in dem die Fasern eingebunden werden. Abhaengig von der Rezeptur koennen unterschiedliche charakteristische Eigenschaften der Loesungen genutzt werden. So kann die Rezeptur im Hinblick auf eine Oberflaechenversiegelung oder auf maximale Eindringtiefe, thermische Reversibilitaet oder Bestaendigkeit gegenueber aeusseren Einfluessen ausgelegt werden. Die zu ca. 90 Gew.-Prozent aus Wasser bestehenden Quellstoffloesungen sind gegenueber Mensch, Umwelt und Werkstoffen unbedenklich. Die Entsorgungsmoeglichkeiten der einzelnen Fraktionen sowie die Moeglichkeit der Wiederverwendung der Werkzeuge etc. werden nicht eingeschraenkt. Im Rahmen des Forschungsvorhabens konnte gezeigt werden, dass durch die Verwendung biologischer Quellstoffe die Fasern direkt an der Sanierungsstelle in die Gelmatrix eingebunden werden. Die Penetrationszeiten liegen bei ca. 1 - 2 min/cm und die Zeiten bis zur Fixierung der Fasern in dem sich ausbildenden Gel unter 15 min. Die Faserfreisetzung so behandelter Mineralfaserverbunde wird bei der Abtragung um z.T. ueber 90 Prozent (Partikelanzahl) reduziert. Bei der vorzusehenden hydraulischen Verfestigung dieses Verbundes mit Zement entstehen Faserbetonbloecke, die der in den Asbestrichtlinien festgelegten Mindestfestigkeit im Hinblick auf die Ablagerungsfaehigkeit genuegen. Das entwickelte Verfahren ist einfach anzuwenden und benoetigt nur geringe Investitionen. Dazu zaehlen Faecherstrahlduesen fuer die ohnehin notwendigen Airless-Spritzgeraete und ein beheizbarer, isolierter Vorlagebehaelter. Bei groesseren Vorhaben ist der Einsatz eines Durchlauferhitzers vorteilhaft. Die Kosten fuer Quellstoffe, Energie und Zusatzchemikalien belaufen sich auf ca. 1 DM pro kg Spritzasbest. Derzeit laufen die Planungen fuer eine Kraftwerkssanierung, bei der das neu entwickelte Verfahren mit eingesetzt werden soll.
Das Projekt "Bioraffinerie Öllein (Linum usitatissimum L.) - Konzept zur ganzheitlichen Nutzung pflanzlicher Strukturkomponenten und molekularer Bausteine der Leinenpflanze" wird vom Umweltbundesamt gefördert und von Sachsen-Leinen e.V. durchgeführt. Die Projektidee baut auf dem Kontext der ganzheitlichen Nutzung der Ölleinpflanze als Nahrungsmittel sowie als Industrierohstoff in Form einer Bioraffinerie auf. Die wirtschaftliche Gewinnung und Verarbeitung von Leinsamen muss dabei im Focus stehen. Leinsamenprodukte wie Pflanzenöl, Presskuchen bzw. Backleinen und Diätleinen sind auf dieser Basis unter den Gesichtspunkten des gegenwärtigen Nutzungsportfolios sowohl aus wirtschaftlicher Sicht wie auch im Hinblick auf derzeitige und potenziell zusätzliche Anwendungspotenziale zu betrachten. Ziel ist es, Produktlinien zu entwickeln, die eine Wirtschaftlichkeit des Ölleinanbaus in dafür prädestinierten Anbaugebieten allein durch die Samennutzung ermöglichen. Eine ergänzende Wertschöpfung (Faser, Ligninen, Pektinen) soll zu dessen Stabilisierung führen und einen Beitrag zur Verbesserung der relativen Vorzüglichkeit des Ölleinanbaus leisten. Aufbauend auf der Machbarkeitsuntersuchung ist perspektivisch die Realisierung in einem regionalen Demonstrationsprojekt mit Modellcharakter geplant. AP1-Datenerhebung - Analyse der bisherigen Entwicklungen - Recherchen zu F&E-Arbeiten und Innovationen - Übertragbarkeit von allgemeinen Bioraffineriekonzepten auf das Wertschöpfungsnetz 'Öllein' - Praxisversuche - Potenzialanalyse und -ermittlung für die fokussierten Rohstoff- und Produktbereiche AP2-Vorstellung der Ergebnisse, Experten-Workshop.
Origin | Count |
---|---|
Bund | 19 |
Type | Count |
---|---|
Förderprogramm | 19 |
License | Count |
---|---|
offen | 19 |
Language | Count |
---|---|
Deutsch | 19 |
Englisch | 2 |
Resource type | Count |
---|---|
Keine | 11 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 19 |
Lebewesen & Lebensräume | 18 |
Luft | 6 |
Mensch & Umwelt | 19 |
Wasser | 7 |
Weitere | 19 |