Die Firma GELITA mit Hauptsitz in Eberbach ist der größte Produzent und Anbieter von Gelatine und kollagenen Peptiden weltweit und produziert ein breites Sortiment an Gelatine-Produkten für den Bereich Food und Pharma. Grundlage ist die Verarbeitung von tierischen Produkten, aus denen die benötigten Grundstoffe zur Weiterverarbeitung für Gelatine gewonnen werden können. Die Verarbeitung von Lebensmitteln ist, und dies trifft auch für die Verarbeitung von Gelatine zu, eine der energieintensivsten Branchen in Deutschland. Daher ist das Ziel Energie in den Fertigungsprozessen von hochwertigen Lebensmitteln einzusparen allgegenwärtig. Ein wesentlicher Verfahrensschritt in der Herstellung von Gelatine ist die Konzentrierung und Trocknung einer wässrigen Gelatinelösung bis zu einem Feststoff, der nach heutigem Stand der Technik gemahlen und weiterverarbeitet werden kann. Speziell die Trocknung ist sehr aufwändig und energieintensiv, da sehr viel Dampf erzeugt und vorgehalten werden muss. Ziel des Vorhabens ist es daher, den derzeitigen Prozess aus Konzentrierung und Trocknung durch ein energetisch günstigeres Verfahren zu ersetzen. Die Nachteile und Limitierungen des zur Konzentrierung eingesetzten Dünnschichtverdampfers sollen durch die Entwicklung eines Planetenextruders mit großer innerer Oberfläche überwunden werden. Das Verfahren soll zusätzlich durch den Einsatz von maschinellem Lernen intelligent gesteuert werden, um alle möglichen Gelatinequalitäten und Viskositäten effizient verarbeiten zu können. Dieser Extruder soll mittels seiner Förderwerkzeuge die verschiedenen, meist hochviskosen Medien durch Entgasung, auch unter dem optionalen Einsatz eines Vakuums, energetisch optimiert aufkonzentrieren, so dass eine erheblich vereinfachte Trocknung folgen kann. Unter Berücksichtigung aller Stellgrößen, könnten über dieses neue innovative Verfahren Energieeinsparungen bei der Herstellung von Gelatine von ca. 34 GWh pro Jahr erreicht werden.
Jaehrlich fallen bei der Gefluegelzucht mehr als 20.000 t Federn an. Federn bestehen zu 95 Prozent aus dem unloeslichen Strukturprotein Keratin, welches sehr stabil ist. Durch chemische und mechanische Methoden koennen Federn hydrolysiert werden und als Quelle fuer definierte Aminosaeuren und Peptide genutzt werden. Problematisch ist die dabei anfallende hohe Salzfracht. Der Einsatz von Enzymen kann eine 'sanfte' Aufarbeitung der Federn bewirken. Von Vorteil ist dabei die Entstehung definierter Produkte. Aus heissen Quellen der Azoreninsel San Miguel wurde ein anaerober, thermophiler Stamm mit keratinolytischer Aktivitaet isoliert und als Fervidobacterium pennavorans charakterisiert. Federn, Wolle und Keratin aus Hoernern konnten von dem Neuisolat abgebaut werden. Zellgebundene Keratinaseaktivitaet konnte im pH-Bereich von 6-11 und im Temperaturbereich von 30-120 Grad C. nachgewiesen werden. Das Enzym wurde mit Hilfe von praeparativer Gelelektrophorese gereinigt und naeher charakterisiert. Es handelte sich um eine Serinprotease mit einer Molekularmasse von 130.000 Da, die optimal bei pH 10,0 und 80 Grad C. aktiv war. Der isoelektrische Punkt lag bei pH 3,8. Die thermostabile Keratinase konnte das Modellsubstrat Federmehl zu Peptiden mit einer Molekularmasse kleiner 3.000 Da abbauen. Die Keratinase soll zur Umsetzung von unloeslichen und loeslichen Proteinen wie Keratinen oder Gelatine in industriell verwertbare Produkte eingesetzt werden.
Ziel dieses Projekts ist es, Signalkomponenten der systemisch erworbenen Resistenz (SAR) in Arabidopsis thaliana und einer Mutante, eds1, welche nicht mehr in der Lage ist, SAR Signale zu produzieren oder zu transportieren, zu identifizieren. EDS1 abhängige Peptide, Lipide und polare niedermolekulare Stoffe werden mit massenspektrometrischen Methoden identifiziert. Danach wird in verschiedenen (Nutz)Pflanzen untersucht, ob die so identifizierten möglichen SAR Komponenten Resistenz gegen Krankheitserreger auslösen. Des Weiteren wird der Einfluss von SAR Signalen auf Prozesse wie z.B. Trockenresistenz untersucht.
Es wurde eine neue Klasse von Naturstoffen in hoeheren Pflanzen entdeckt, die fuer die Schwermetallentgiftung verantwortlich sind und auch im Oekosystem nach diesen Mechanismen toxische Metalle inaktivieren. Die Substanzen wurden aufgeklaert und als (Gamma-Glu-Cys)n Gly (Phytochelatine) bzw. (Gamma-Glu-Cys)n Beta-ala (homo-Phytochelatine) beschrieben. Dieser Entgiftungsmechanismus wurde in mehr als 300 untersuchten Pflanzenarten gefunden und duerfte somit Allgemeingueltigkeit fuer niedere (Algen) und hoehere Pflanzen haben. Dieser Mechanismus macht es den Pflanzen in schwermetallbelasteten Boeden moeglich, zu ueberleben und duerfte ein wichtiges Zielsystem fuer die Pflanzenzuechtung werden, um zu verhindern, dass toxische Schwermetalle in die pflanzliche Nahrungskette gelangen.
Traeger der Erbeigenschaften von Organismen sind Nukleinsaeuren und Nukleoproteine. Die genetische Wirkung ionisierender Strahlen auf diese makromolekularen Substanzen soll erforscht werden durch Untersuchung der Strahlenwirkung auf die organischen Untereinheiten, insbesondere Nukleinsaeurebasen, Nukleoside, Nukleotide und Peptide. Als Objekt dienen hauptsaechlich Einkristalle dieser Substanzen, deren dichte Packung der im Makromolekuel auftretenden gleicht. Untersucht werden moeglichste primaere Prozesse, der Strahlenwirkung und ihre Folgereaktionen, vor allem Erzeugung und Reaktionen freier Radikale. Als Untersuchungsmethoden dienen spektrometrische Methoden, in erster Linie Elektronenspin-Resonanz-Spektroskopie.
1
2
3
4
5
…
17
18
19