Das Projekt wird im Rahmen der Aktion COST 837 entwickelt. (Pflanzenbiotechnologie zur Beseitigung organischer Schadstoffe und toxischer Metalle aus Abwasser und Altlasten; Internet: http//lbewww.epfl.ch/COSTB37): 1. Studieren welche Pflanzen es ermoeglichen aromatische Sulfatkomponente sowie Pestizide zu akkumulieren, zu transformieren und abzubauen. 2. Entwickeln und testen, auf kleiner Ebene, von Pflanzensystemen die fuer die Behandlung industrieller Abwasser und Standorte, die durch organische persistente Schadstoffe verunreinigt wurden, eingesetzt werden koennen. Charakterisieren und verstehen der physiologischen und biochemischen Mechanismen, welche zur Ansammlung. Transformation und Abbau der verschieden organischen Schadstoffe fuehren.
Aufbauend auf bisherigen Erkenntnissen sollten die Wechselwirkungen zwischen persistenten, phenolischen Desinfektionsmittelkomponenten und biologisch-chemisch-physikalischen Prozessen im Oberflaechenwasser sowie bei ausgewaehlten Verfahren der Trinkwasseraufbereitung ermittelt werden. Dazu muessen die in Frage kommenden Anreicherungs - und Nachweisverfahren dieser besonderen Problematik angepasst werden. Mit Hilfe relativ unkomplizierter Analysenmethoden sollten detaillierte Untersuchungen zum Transport- und Abbauverhalten in waessrigem Milieu durchgefuehrt werden. Neben Laborversuchen bietet sich dazu eine halbtechnische Anlage zur Infiltration und Untergrundpassage an. Darueber hinaus sollen Stichproben aus dem Einzugsgebiet der Dortmunder Stadtwerke AG Aufklaerung ueber die Belastung der Ruhr und des Trinkwassers durch diese Stoffe geben. Eine moeglichst umfassende Literaturzusammenstellung zu diesem Thema erfolgt mit Hilfe der EDV-Literaturspeicherung.
Es wird u.a. ein wissenschaftlicher Workshop im Juni 1986 in Amsterdam (Free University) vorbereitet. Untersucht werden Umweltchemie (Bestaendigkeit, Transportprozesse, Umwandlung), analytische Chemie, Metabolismus in lebenden Organismen und biologische Wirkungen von Organophosphorverbindungen (natuerliche und anthrapogene Stoffe, u.a. Pestizide), die z.T. nur langsam vollstaendig biologisch und/oder chemisch abgebaut werden. Bei Grossverwendung solcher Produkte koennen Rueckstandsspuren mit hoher Aktivitaet in niedrigen Konzentrationen relevant sein.
<p>Neue relevante Spurenstoffe </p><p>Das Gremium zur Relevanzbewertung von Spurenstoffen hat im Juni 2025 die Einschätzung des Spurenstoffzentrums bestätigt: Die Arzneimittel Venlafaxin, dessen aktiver Metabolit O-Desmethylvenlafaxin sowie Gabapentin mit dem strukturähnlichen Pregabalin und die Chemikalie Hexamethoxymethylmelamin, sind relevante Spurenstoffe.</p><p><strong>Venlafaxin und <em>O</em>-Desmethylvenlafaxin</strong></p><p><a href="https://www.umweltbundesamt.de/dokument/kurzdossier-venlafaxin-o-desmethylvenlafaxin-cas-nr">Venlafaxin</a> ist ein verschreibungspflichtiges Antidepressivum aus der Gruppe der Serotonin- und Noradrenalin-Wiederaufnahmehemmer. Der menschliche Körper scheidet Venlafaxin bis zu 10 % unverändert und den Rest als <em>O</em>-Desmethylvenlafaxin (ODV) wieder aus. Beide Stoffe gelangen so über das häusliche Abwasser in kommunale Kläranlagen, wo sie durch konventionelle Reinigungsverfahren kaum oder gar nicht entfernt werden. Infolgedessen treten sie im Ablauf der Kläranlagen auf und können in Oberflächengewässern in Konzentrationen von bis zu 0,55 µg/L (Venlafaxin) und 2,5 µg/L (ODV) nachgewiesen werden.</p><p>Einmal im aquatischen <a href="https://www.umweltbundesamt.de/service/glossar/%C3%B6?tag=kosystem#alphabar">Ökosystem</a> angelangt, bleiben diese Stoffe aufgrund ihrer <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Persistenz#alphabar">Persistenz</a> sehr lange in der Umwelt. Dies ist insbesondere für Fische problematisch, denn für Venlafaxin ist eine hohe Fischtoxizität nachgewiesen. Ebenso überschreiten die Konzentrationen im Oberflächengewässer bereits Grenzwerte wie den <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PNEC#alphabar">PNEC</a> und einen JD-UQN-Vorschlag. Das Vorkommen von Venlafaxin in der aquatischen Umwelt stellt also ein ökotoxikologisches Risiko dar. Für ODV fehlen vergleichbare Daten, jedoch ist aufgrund der ähnlichen Struktur ebenfalls von einer ökotoxikologischen Relevanz auszugehen.</p><p><strong>Deshalb sind Venlafaxin und O-Desmethylvenlafaxin relevante Spurenstoffe</strong><strong>:</strong></p><p><strong>Gabapentin und Pregabalin</strong></p><p><a href="https://www.umweltbundesamt.de/dokument/kurzdossier-gabapentin-pregabalin-cas-nr-60142-96-3">Gabapentin und Pregabalin</a> sind strukturell verwandte Arzneimittel, die zur Behandlung von Epilepsie sowie chronischen Nervenschmerzen eingesetzt werden. Auch sie gelangen über das kommunale Abwasser in Kläranlagen, wo sie nur unzureichend entfernt werden.</p><p>In der Kläranlage können zudem Lactam-Derivate dieser Wirkstoffe entstehen: Gabapentin-Lactam und Pregabalin-Lactam. Die Bildung der Lactam-Verbindungen ist allerdings umkehrbar – ein tatsächlicher Abbau findet also nicht statt. Entsprechend gelangen sowohl die Ausgangssubstanzen als auch ihre Lactame in die Umwelt.</p><p>Gabapentin und Pregabalin sind sehr mobil. Sie können sich im aquatischen Ökosystem und im Wasserkreislauf weit verbreiten – bis in das Grund- und Trinkwasser. Dies belegen bereits verschiedene Monitoringdaten.</p><p>In Tierversuchen wurde darüber hinaus eine schädigende Wirkung auf die Reproduktion nachgewiesen. Da es sich um Humanarzneimittel handelt, existieren jedoch keine entsprechenden Einstufungen nach <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CLP#alphabar">CLP</a>-Verordnung. Die hohe Mobilität und die Reproduktionstoxizität von Gabapentin und Pregabalin könnten insbesondere für das Roh- und Trinkwasser ein Problem darstellen.</p><p><strong>Deshalb sind Gabapentin und </strong><strong>Pregabalin relevante Spurenstoffe:</strong></p><p><strong>Hexamethoxymethylmelamin (HMMM)</strong></p><p><a href="https://www.umweltbundesamt.de/dokument/kurzdossier-hmmm-cas-nr-3089-11-0">Hexamethoxymethylmelamin (HMMM)</a> kommt als Vernetzungsmittel für Reifenpolymere sowie in Beschichtungen und Kunststoffen für Dosen, Spulen und Fahrzeuge zum Einsatz. Trotz dieser Anwendungsbereiche ist der <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Stoff#alphabar">Stoff</a> bislang nicht unter der <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=REACH-Verordnung#alphabar">REACH-Verordnung</a> registriert – der Grund hierfür ist nicht abschließend geklärt.</p><p>Durch die Anwendung als Reifenvernetzungsmittel kann HMMM beispielsweise mit dem Straßenablauf in die Umwelt gelangen. Der Nachweis von HMMM im Kläranlagenabfluss deutet zudem darauf hin, dass auch das kommunale Abwasser eine Eintragsquelle sein könnte. Obwohl HMMM noch nicht sehr lange in Messprogrammen integriert ist, weisen Monitoringdaten darauf hin, dass HMMM weit verbreitet in deutschen Oberflächengewässern vorkommt.</p><p>HMMM ist sehr mobil und kann sich dadurch leicht in der aquatischen Umwelt verbreiten. Bisher gibt es kaum Daten zu toxikologischen und ökotoxikologischen Effekten von HMMM.</p><p>HMMM wird in der Umwelt zu anderen Stoffen umgewandelt, unter anderem auch zu Melamin. Wie viel Melamin dadurch entsteht, ist noch nicht abschließend geklärt. Erste Studien legen nahe, dass HMMM nur einen geringen Beitrag zur Melaminbelastung leistet. Die Fragegestellung ist deshalb relevant, weil Melamin ebenfalls ein relevanter Spurenstoff ist: Er ist persistent, mobil und humantoxisch und gilt daher als besonders besorgniserregend – insbesondere im Hinblick auf das Grund- und Rohwasser, welche zur Trinkwassergewinnung dienen.</p><p><strong>Deshalb ist </strong><strong>HMMM ein relevanter Spurenstoff:</strong></p><p><strong>Was bedeutet die Einstufung als „relevanter Spurenstoff“?</strong></p><p>Die Einstufung als „relevanter Spurenstoff“ weist für Spurenstoffe darauf hin, dass Maßnahmen zur Eintragsminderung ergriffen werden sollten. Diese können die Rückkopplung in die europäischen Genehmigungs- und Zulassungsverfahren für chemische Stoffe oder in andere rechtliche Vorgaben, wie die <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a> sein. Informationskampagnen sowie die gezielte verbesserte Elimination dieser Stoffe bei der Abwasserreinigung sind weitere Schritte. Ebenso gibt es die Möglichkeit, einen <a href="https://www.umweltbundesamt.de/das-spurenstoffzentrum-des-bundes-stoffmanagement">„Runden Tisch“ zu herstellerbezogenen Maßnahmen</a> einzuberufen. Die Erstellung einer Liste relevanter Spurenstoffe ist auch unter dem Themenfeld „Risiken durch Stoffeinträge begrenzen“ Teil der <a href="https://www.bmuv.de/download/nationale-wasserstrategie-2023">Nationalen Wasserstrategie</a>, die das Bundeskabinett im März 2023 beschlossen hat. Die Kurzdossiers aller relevanten Spurenstoffe werden <a href="https://www.umweltbundesamt.de/relevante-spurenstoffe#relevante-spurenstoffe">hier</a> veröffentlicht.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p>
Ausgangslage/Betroffenheit: Die Stadt Regensburg hat etwa 134.000 Einwohner (Erstwohnsitze) und ist damit die viertgrößte Stadt Bayerns. Unter den Modellvorhaben weist Regensburg das stärkste Bevölkerungswachstum auf - sowohl in der zurückliegenden Einwohnerentwicklung als auch in den Prognosen bis 2025, nach denen ein Anstieg der Bevölkerung um 5,4Prozent erwartet wird. Regensburg liegt am nördlichsten Punkt der Donau und den Mündungen der linken Nebenflüsse Naab und Regen. Es wird von den Winzerer Höhen, den Ausläufern des Bayrischen Waldes und dem Ziegetsberg umrandet, wodurch die Entstehung von Inversionswetterlagen begünstigt wird. Durch die topographische Pfortenlage weist die Stadt zudem eine hohe Nebelhäufigkeit auf und ist insbesondere in den Wintermonaten anfällig für Feinstaubbelastungen. Im Gegensatz zu vielen anderen Städten hat Regensburg einen relativ kompakt gegliederten Stadtkörper und eine insgesamt homogene Siedlungsstruktur. Prägend ist die historische Altstadt mit ca. 1.000 denkmalgeschützten Gebäuden. Diese gilt als einzige authentisch erhaltene, mittelalterliche Großstadt Deutschlands und ist seit 2006 Welterbe der UNESCO (Organisation der Vereinten Nationen für Erziehung, Wissenschaft und Kultur). Die Regensburger Altstadt wird als 'Steinerne Stadt' charakterisiert. Ihre historisch gewachsene dichte Baustruktur mit steinernen Plätzen und Gassen, wenig Bäumen im öffentlichen Raum und einer hohen Nutzungsdichte (Wohnen, Einkaufen, Arbeiten, Tourismus) erwärmt sich insbesondere im Sommer stärker als das Umland und wirkt als Hitzespeicher. So können die Temperaturunterschiede im Stadtgebiet bis zu 6 GradC betragen. Das Phänomen der Wärmeinsel, das sich im Zuge des fortschreitenden Klimawandels deutlicher ausprägt, impliziert einen sinkenden thermischen Komfort, löst zusätzliche Energiebedarfe aus und stellt u.U. veränderte Ansprüche an die Gestaltung von Freiflächen. Aufgrund der Lage an der Donau muss sich Regensburg ferner auf häufigere Schwüle und Gefährdung durch Hochwasser einstellen. Aus der Notwendigkeit zur Anpassung an den Klimawandel erwächst in Verbindung mit anderen Zielbildern einer nachhaltigen Siedlungsentwicklung ein umfassender planerischer Handlungsbedarf. Im Rahmen des Modellprojekts thematisiert die Stadt Regensburg den Widerspruch zwischen einer Stadtentwicklungs- und Bauleitplanung, die auf Flächensparsamkeit und Innenentwicklung ausgerichtet ist, und erforderlichen Anpassungsstrategien an den Klimawandel, die bei der besonderen städtebaulichen Kompaktheit der Stadt Regensburg tendenziell eine Auflockerung von Baustrukturen und Flächenentsiegelung beinhalten. Im Sinne einer klimaangepassten Stadtentwicklung galt es: - auf strategischer Ebene die Weichen für eine klimaangepasste Flächennutzung für die zukünftige Stadtentwicklung zu stellen - auf operativer Ebene Maßnahmen für restriktive bis persistente Stadt- und Freiraumstrukturen zu entwickeln.
Die Resilienz natürlicher Populationen gegen Umweltveränderungen wird von der Menge schädlicher Mutationen in der Population, d.h. ihrer Mutationslast bestimmt. Deren Fitnesseffekt hängt vom Selektionsdruck und der Populationsgröße ab, welche beide in Raum und Zeit veränderlich sind. Auswirkungen dieser Dynamik auf die Mutationslast sind wenig erforscht, was unser Verständnis der Gefährdung von Arten durch Umweltveränderungen behindert. Drastische Reduzierungen der Populationsgröße führen zu Inzucht, was die Mutationslast stärker exponiert und selektiv wirksam macht. Dies verursacht eine Fitness-Reduktion betroffener Individuen, ermöglicht aber auch eine Entfernung schädlicher Mutationen durch Purging, was die Mutationslast langfristig verringern kann. Folglich hat Übernutzung in der Vergangenheit die Mutationslast vieler Arten beeinflusst, vor allem in der Antarktis, wo Robben- und Walfang große ökologische Auswirkungen hatten. In meinem Projekt plane ich durch Genomsequenzierung räumliche und zeitliche Dynamiken der Mutationslast in Antarktischen Pelzrobben zu erforschen. Dabei verfolge ich drei komplementäre Ziele. Erstens werde ich räumliche Dynamiken der Mutationslast durch den Vergleich von sechs Populationen mit unterschiedlicher effektiver Populationsgröße und Geschichte untersuchen. Erkenntnisse zur Mutationslast dieser Populationen liefern Aufschluss über deren Gefährdung durch Umweltveränderungen. Zweitens werde ich Langzeit-Dynamiken der Mutationslast durch eine Quantifizierung von Purging zu verschiedenen Zeitpunkten der Populationsgeschichte analysieren. Ein Vergleich von Regionen innerhalb des Genoms welche vor, während und nach dem durch Robbenjagd verursachten Flaschenhals von Inzucht betroffen waren, wird über das genetische Erbe dieses Eingriffes aufklären. Schließlich werde ich kurzfristige Dynamiken der Mutationslast untersuchen, indem ich den Umwelteinfluss auf die Mutationslast einer rückläufigen Population in Südgeorgien analysieren werde. Dort hat sich der Selektionsdruck auf die Robben durch den von Erwärmung getriebenen Rückgang des Antarktischen Krills erhöht. Eine einzigartige, vier Jahrzehnte umfassende Langzeitstudie erlaubt hier die Erforschung des Zusammenhangs der Mutationslast und dem Fitnessmerkmal „Rekrutierungs-Erfolg“. Dies kann zeigen, ob aktuelle Umweltveränderungen die Mutationslast durch Purging verringern, was für die Beständigkeit der Populationen relevant ist. Mein Projekt kombiniert hochauflösende genomische Verfahren mit einem herausragenden Untersuchungssystem und verspricht neue Erkenntnisse zur Beständigkeit eines antarktischen Prädatoren. Diese sind essentiell für das Verständnis der Resilienz des Ökosystems des Südpolarmeeres. Durch die Einführung moderner genomischer Methoden in ein polares Modellsystem werde ich zum SPP beitragen können, zudem werde ich mich durch Kollaborationen und das Ausrichten eines Workshops zu reproduzierbarem coding in die breitere SPP-Gemeinschaft integrieren.
Ziel des Projektes ist die Entwicklung dekorativer Beschichtungsfilme fuer Holzwerkstoffe, die durch eingefuehrte Pressverfahren appliziert werden koennen und zu witterungsbestaendigen, in ihrer Optik frei gestaltbaren Oberflaechen fuehren. Zu diesem Zweck sollen mit duroplastischen Harzen getraenkte Dekorpapiere zusaetzlich mit einem witterungsbestaendigen Klarlacksystem versehen werden, um als Vorprodukt fuer die witterungsbestaendige Pressbeschichtung von Holzwerkstoffen zur Verfuegung stehen.
Titandioxid-Nanopartikel (n-TiO2) stellen aufgrund ihrer Persistenz und vermehrten Freisetzung aus Sonnenschutzmitteln ein zunehmendes Risiko für aquatische Ökosysteme dar. Ihre Auswirkungen sind jedoch nach wie vor schwer abzuschätzen, da einerseits erst kürzlich Analysemethoden zur Bestimmung ihrer Konzentration in Umweltmedien entwickelt wurden. Andererseits ist ihr Verbleib in aquatischen Systemen nur unzureichend erforscht. Insbesondere die Verteilung zwischen der Wasseroberfläche (SML), Wassersäule, Sedimenten, Pflanzen und Plankton hängt von Prozessen ab, die einzeln in Laborexperimenten untersucht, aber selten unter Umweltbedingungen bewertet wurden. Darüber hinaus wurde die Rolle des Windes bei der Dispersion von Nanopartikeln in der SML bisher nicht untersucht, obwohl Winddrift wahrscheinlich wesentlich zur räumlichen Dispersion von hydrophobem n-TiO2 beiträgt. In diesem Projekt untersuchen wir die Verteilung von n-TiO2 in einem typischen Badesee mittels Feldmessungen, Laborexperimenten und eines reaktiven Transportmodells. Wir werden den Eintrag von Sonnenschutzmitteln anhand von Umfragen und Proben unter den Badegästen quantifizieren und die Abwaschrate von Sonnenschutzmitteln von der Haut unter Feldbedingungen bestimmen. Die Menge an n-TiO2 in der Wasserphase, an der Wasseroberfläche (hydrophobe Filme) und in aquatischen Organismen wird mit einer neu entwickelten Methode bestimmt, die auf Spurenelementen beruht, um den natürlichen TiO2-Hintergrund zu korrigieren. Es wird eine Probenahmekampagne mit hoher Messfrequenz durchgeführt, um empirische Daten über die Ausbreitungsrate aufgrund von Konvektion und Winddrift zu erhalten. Die Akkumulation von anthropogenen n-TiO2 im Sediment wird ebenfalls durch Messungen der Konzentration vor und nach der Badesaison bestimmt. Die gewonnenen Daten werden für die Entwicklung, Prüfung und Optimierung von Verteilungsmodellen verwendet, die die räumliche Ausbreitung zusammen mit den Eigenschaften der Nanopartikeln und der Wasserchemie berücksichtigen. Zur Bestimmung der für das Modell erforderlichen Parameter werden Laborexperimente durchgeführt. Die Haftungseffizienz wird mit n-TiO2 bestimmt, dass aus Sonnenschutzmitteln extrahiert und auf natürliche Weise in Seewasser aufgebracht wurde. Surrogate für natürliche Kolloide werden auf der Grundlage einer detaillierten Untersuchung im Untersuchungssee ausgewählt und als Heteroaggregationspartner in den Laborexperimenten verwendet. Um den Einfluss des Windes auf die SML zu parametrisieren, werden Mesokosmen-Experimente durchgeführt, um die Stabilität von Sonnencreme-SML unter kontrollierten aero- und hydrodynamischen Bedingungen zu quantifizieren. Die Ergebnisse werden es erstmalig ermöglichen, die wichtigsten Prozesse zu bestimmen, die für den Verbleib von n-TiO2 aus Sonnenschutzmitteln in Badegewässern relevant sind, und die zukünftige ökologische Risikobewertung anorganischer UV-Filter in Sonnenschutzmitteln ermöglichen.
Die Dispersionstendenz und Persistenz von Umweltchemikalien werden einschliesslich der Umwandlungsprodukte und unter Einbeziehung von Abfallbeseitigungsverfahren bestimmt. Ziel ist es, eine bessere Abschaetzung und Voraussage des ueberregionalen Umweltrisikos zu ermoeglichen.
| Origin | Count |
|---|---|
| Bund | 677 |
| Land | 10 |
| Wissenschaft | 9 |
| Type | Count |
|---|---|
| Chemische Verbindung | 16 |
| Daten und Messstellen | 8 |
| Förderprogramm | 588 |
| Taxon | 1 |
| Text | 39 |
| unbekannt | 45 |
| License | Count |
|---|---|
| geschlossen | 97 |
| offen | 598 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 543 |
| Englisch | 213 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 3 |
| Datei | 3 |
| Dokument | 27 |
| Keine | 497 |
| Unbekannt | 1 |
| Webseite | 174 |
| Topic | Count |
|---|---|
| Boden | 534 |
| Lebewesen und Lebensräume | 591 |
| Luft | 453 |
| Mensch und Umwelt | 696 |
| Wasser | 499 |
| Weitere | 680 |